536
Views
32
CrossRef citations to date
0
Altmetric
Review

Viral proteomics: global evaluation of viruses and their interaction with the host

&
Pages 815-829 | Published online: 09 Jan 2014

References

  • Patterson SD, Ruedi A. Proteomics: the first decade and beyond. Nat. Genet.33, 311–323 (2003).
  • Miklos GL, Maleszka R. Protein functions and biological contexts. Proteomics1, 169–178 (2001).
  • Nair KS, Jaleel A, Asmann YW, Short KR, Raghavakaimal S. Proteomic research: potential opportunities for clinical and physiological investigators. Am. J. Physiol. Endocrinol. Metab.286, 863–874 (2004).
  • Fields BN, Knipe DM, Howley PM. Fundamental virology. In: Principles of virus structure (3rd Edition). Lippincott, Williams & Wilkins, Philadelphia, PA, USA 59–100 (1996).
  • Cantin R, Méthot S, Tremblay MJ. Plunder and stowaways: incorporation of cellular proteins by enveloped viruses. J. Virol.79(11), 6577–6587 (2005).
  • Bernhard OK, Diefenbach RJ, Cunningham AL. New insights into viral structure and virus-cell interactions through proteomics. Expert Rev. Proteomics2(4), 577–588 (2005).
  • Maxwell KL, Frappier L. Viral proteomics. Microbiol. Mol. biol. Rev.71(2), 398–411 (2007).
  • Kalkkinen N, Jornvall H, Soderlund H, Kaariainen L. Analysis of semliki-forest-virus structural proteins to illustrate polyprotein processing of alpha viruses. Eur. J. Biochem.108, 31–37 (1980).
  • Go EP, Wikoff WR, Shen Z et al. Mass spectrometry reveals specific and global molecular transformations during viral infection. J. Proteome Res.5, 2405–2416 (2006).
  • Fuerstenau SD, Benner WH, Thomas JJ et al. Mass spectrometry of an intact virus. Angew. Chem. Int. Ed. Engl.40(3), 542–544 (2001).
  • Todaa T, Sugimotob M. Proteome analysis of Epstein–Barr virus-transformed B-lymphoblasts and the proteome database. J. Chrom. B787, 197–206 (2003).
  • Steen H, Mann M. The ABC’s (and XYZ’s) of peptide sequencing. Nat. Rev. Mol. Cell Biol.5(9), 699–711 (2004).
  • Kattenhorn LM, Mills R, Wagner M et al. Identification of proteins associated with murine cytomegalovirus virions. J. Virol.78(20), 11187–11197 (2004).
  • Chung C-S, Chen C-H, Ho M-Y et al. Vaccinia virus proteome: identification of proteins in Vaccinia virus intracellular mature virion particles. J. Virol.80(5), 2127–2140 (2006).
  • Yoder JD, Chen TS, Gagnier CR et al. Pox proteomics: mass spectrometry analysis and identification of Vaccinia virion proteins. Virology J.3(10), 1–16 (2006).
  • Resch W, Hixson KK, Moore RJ, Lipton MS, Moss B. Protein composition of the vaccinia virus mature virion. Virology358, 233–247 (2007).
  • Chertova E, Chertov O, Coren LV et al. Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J. Virol.80(18), 9039–9052 (2006).
  • Saphire ACS, Gallay PA, Bark SJ. Proteomic analysis of human immunodeficiency virus using liquid chromatography/tandem mass spectrometry effectively distinguishes specific incorporated host proteins. J. Proteome Res.5, 530–538 (2006).
  • Karas M, Hillenkamp F. Laser desorption ionizatio of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem.60, 2299–3201 (1988).
  • Pappin DJC, Hojrupt P, Bleasby AJ. Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biol.3, 327–332 (1993).
  • Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB. Electrospray interphase for liquid chromatographs and mass spectrometers. Anal. Chem.57, 675–679 (1985).
  • Davison AJ, Davison MD. Identification of structural proteins of channel catfish virus by mass spectrometry. Virology206, 1035–1043 (1995).
  • Chelius D, Huhmer AFR, Shieh CH et al. Analysis of the adenovirus type 5 proteome by liquid chromatography and tandem mass spectrometry methods. J. Proteome Res.1, 501–513 (2002).
  • Bortz E, Julian PW, Jia Q et al. Identification of proteins associated with murine Gammaherpesvirus 68 virions. J. Virol.77(24), 13425–13432 (2003).
  • Varnum SM, Streblow DN, Monroe ME et al. Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J. Virol.78(20), 10960–10966 (2004).
  • Zhu FX, Chong JM, Wu L, Yuan Y. Virion proteins of Kaposi’s sarcoma-associated Herpes virus. J. Virol.79(2), 800–811 (2005).
  • O’Connor CM, Kedes DH. Mass spectrometric analyses of purified rhesus monkey rhadinovirus reveal 33 virion-associated proteins. J. Virol.80(3), 1574–1583 (2006).
  • Renesto P, Abergel C, Decloquement P et al. Mimivirus giant particles incorporate a large fraction of anonymous and unique gene products. J. Virol.80(23), 11678–11685 (2006).
  • Raoult D, Scola BL, Birtles R. The discovery and characterization of mimivirus, the largest known virus and putative pneumonia agent. Clin. Infect. Dis.45, 95–102 (2007).
  • Song W, Lin Q, Joshi SB, Lim TK, Hew C-L. Proteomic studies of the Singapore grouper iridovirus. Mol. Cell. Proteomics5, 256–264 (2006).
  • Perera O, Green TB, Stanley M. Stevens J, White S, Becnel JJ. Proteins associated with Culex nigripalpus nucleopolyhedrovirus occluded virions. J. Virol.81(9), 4585–4590 (2007).
  • Deng F, Wang R, Fang M et al. Proteomics analysis of HearNPV identified two new ODV associated proteins, HA44 and HA100. J. Virol.81(17), 9377–9385 (2007).
  • Li Z, Lin Q, Chen J et al. Shotgun identification of structural proteome of shrimp white spot syndrome virus and iTRAQ differentiation of envelope and nucleocapsid subproteomes. Mol. Cell. Proteomics6, 1609–1620 (2007).
  • Ying W, Hao Y, Zhang Y et al. Proteomic analysis on structural proteins of severe acute respiratory syndrome coronavirus. Proteomics4, 492–504 (2004).
  • Berro R, Fuente Cdl, Klase Z et al. Identifying the membrane proteome of HIV-1 latently infected cells. J. Biol. Chem.282(11), 8207–8218 (2007).
  • Fortin J-F, Cantin R, Lamontagne G, Tremblay M. Host-derived ICAM-1 glycoproteins incorporated on human immunodeficiency virus type 1 are biologically active and enhance viral infectivity. J. Virol.71(5), 3588–3596 (1997).
  • Cantin R, Fortin J-F, Lamontagne G, Tremblay M. The presence of host-cell derived HLA-DR1 on human immunodeficiency virus type1 increases viral infectivity. J. Virol.71(3), 1922–1930 (1997).
  • Siuzdak G. Probing viruses with mass spectrometry. J. Mass Spectrom.33, 203–211 (1998).
  • Thomas JJ, Bakhtiar R, Siuzdak G. Mass spectrometry in viral proteomics. Acc. Chem. Res.33, 179–187 (2000).
  • Fuerstenau SD, Benner WH, Thomas JJ et al. Mass spectrometry of an intact virus. Angew. Chem. Intern. Ed.40(3), 541–544 (2001).
  • Despeyroux D, Phillpotts R, Watts P. Electrospray mass spectrometry for detection and characterization of purified cricket paralysis virus (CrPV). Rapid Commun. Mass Spectrom.10, 937–941 (1996).
  • Thomas JJ, Bothner B, Traina J, Benner WH, Siuzdak G. Electrospray ion mobility spectrometry of intact viruses. Spectroscopy18, 31–36 (2004).
  • Parrish JR, Gulyas KD, Russell L, Finley J. Yeast two-hybrid contributions to interactome mapping. Curr. Opin. Biotech.17, 387–393 (2006).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature422(6928), 198–207 (2003).
  • Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature340, 245–246 (1989).
  • Causier B. Studying the interactome with the yeast two-hybrid system and mass spectrometry. Mass Spec. Rev.23, 350–367 (2004).
  • Bartel PL, Roecklein JA, SenGupta D, Fields S. A protein linkage map of Escherichia coli bacteriophage T7. Nat. Genet.12, 72–77 (1996).
  • McCraith S, Holtzman T, Moss B, Fields S. Genome-wide analysis of vaccinia virus protein–protein interactions. Proc. Natl Acad. Sci. USA97(9), 4879–4884 (2000).
  • Flajolet M, Rotondo G, Daviet L et al. A genomic approach of the hepatitis C virus generates a protein interaction map. Gene242, 369–379 (2000).
  • Uetz P, Dong Y-A, Zeretzke C et al. Herpesviral protein networks and their interaction with the human proteome. Science311, 239–242 (2006).
  • Cristea IM, Carroll J-WN, Rout MP et al. Tracking and elucidating Alphavirus–host protein interactions. J. Biol. Chem.281(40), 30269–30278 (2006).
  • Dziembowski A, Séraphin B. Recent developments in the analysis of protein complexes. FEBS Lett.556(1–3), 1–6 (2004).
  • Holowaty MN, Zeghouf M, Wu H et al. Protein profiling with Epstein–Barr nuclear antigen-1 reveals an interaction with the Herpes virus-associated ubiquitin-specific protease HAUSP/USP7. J. Biol. Chem.278(32), 29987–29994 (2003).
  • Mayer D, Molawi K, Martínez-Sobrido L et al. Identification of cellular interaction partners of the influenza virus ribonucleoprotein complex and polymerase complex using proteomic-based approaches. J. Proteome Res.6, 672–682 (2007).
  • Phizicky E, Bastiaens PIH, Zhu H, Snyder M, Fields S. Protein analysis on a proteomic scale. Nature422(6928), 208–215 (2003).
  • Mann M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol.7(12), 952–958 (2006).
  • Toda T, Sugimoto M, Omori A et al. Proteomic analysis of Epstein–Barr virus-transformed human B-lymphoblastiod cell lines before and after immortalization. Electrophoresis21, 1814–1822 (2000).
  • Alfonso P, Rivera J, Hernáez B, Alonso C, Escribano JM. Identification of cellular proteins modified in response to African swine fever virus infection by proteomics. Proteomics4, 2037–2046 (2004).
  • Li C, Tan Y-X, Zhou H et al. Proteomic analysis of hepatitis B virus-associated hepatocellular carcinoma: identification of potential tumor markers. Proteomics5, 1125–1139 (2005).
  • Coiras M, Camafeita E, Ureña T et al. Modifications in the human T cell proteome induced by intracellular HIV-1 Tat protein expression. Proteomics6, S63–S73 (2006).
  • Bartee E, McCormack A, Fruh K. Quantitative membrane proteomics reveals new cellular targets of viral immune modulators. PLoS Pathog.2(10), e107 (2006).
  • Mansouri M, Douglas J, Rose PP et al. Kaposi sarcoma herpesvirus K5 removes CD31/PECAM from endothelial cells. Blood108(6), 1932–1940 (2006).
  • Sanchez DJ, Gumperz JE, Ganem D. Regulation of CD1d expression and function by a herpesvirus infection. J. Clin. Invest.115(5), 1369–1378 (2001).
  • Coscoy L, Ganem D. A viral protein that selectively downregulates ICAM-1 and B7–2 and modulates T cell costimulation. J. Clin. Invest.107(12), 1599–1606 (2001).
  • Mannova P, Fang R, Wang H et al. Modification of host lipid raft proteome upon hepatitis C virus replication. Mol. Cell. Proteomics5, 2319–2325 (2006).
  • Jiang X-S, Tang L-Y, Dai J et al. Quantitative analysis of severe acute respiratory syndrome (SARS)-associated coronavirus-infected cells using proteomic approaches. Mol. Cell. Proteomics4, 902–913 (2005).
  • Chan EY, Qian W-J, Diamond DL et al. Quantitative analysis of HIV-1 infected CD4+ cell proteome: dysregulated cell cycle progression and nuclear transport coincide with robust virus production. J. Virol.81(14), 7571–7583 (2007).
  • Diamond DL, Jacobs JM, Paeper B et al. Proteomic profiling of human liver biopsies: hepatitis C virus-induced fibrosis and mitochondrial dysfunction. Hepatology46, 649–657 (2007)
  • McAllister SC, Hansen SG, Ruhl RA et al. Kaposi sarcoma-associated herpesvirus (KSHV) induces heme oxygenase-1 expression and activity in KSHV-infected endothelial cells. Blood103, 3465–3473 (2004).
  • Stanton RJ, McSharry BP, Rickards CR et al. Cytomegalovirus destruction of focal adhesions revealed in a high throughput western blot analysis of cellular protein expression. J. Virol.81(15), 7860–7872 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.