72
Views
20
CrossRef citations to date
0
Altmetric
Review

Protein expression overlap: more important than which proteins change in expression?

, , &
Pages 187-205 | Published online: 09 Jan 2014

References

  • Arendt T. Alzheimer’s disease as a disorder of dynamic brain self-organization. Prog. Brain Res.147, 355–378 (2005).
  • Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M. Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics4(12), 3943–3952 (2004).
  • Butterfield DA, Gnjec A, Poon HF et al. Redox proteomics identification of oxidatively modified brain proteins in inherited Alzheimer’s disease: an initial assessment. J. Alzheimers Dis.10(4), 391–397 (2006).
  • Castegna A, Aksenov M, Aksenova M et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic. Biol. Med.33(4), 562–571 (2002).
  • Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, Butterfield DA. Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J. Neurochem.85(6), 1394–1401 (2003).
  • Celis JE, Moreira JM, Cabezon T et al. Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions. Mol. Cell. Proteomics4(4), 492–522 (2005).
  • Celis JE, Moreira JM, Gromova I et al. Towards discovery-driven translational research in breast cancer. FEBS J.272(1), 2–15 (2005).
  • David DC, Ittner LM, Gehrig P et al. β-amyloid treatment of two complementary P301L tau-expressing Alzheimer’s disease models reveals similar deregulated cellular processes. Proteomics6(24), 6566–6577 (2006).
  • Di Poto C, Iadarola P, Bardoni AM et al. 2-DE and MALDI-TOF-MS for a comparative analysis of proteins expressed in different cellular models of amyotrophic lateral sclerosis. Electrophoresis28(23), 4320–4329 (2007).
  • Diedrich M, Mao L, Bernreuther C et al. Proteome analysis of ventral midbrain in MPTP-treated normal and L1cam transgenic mice. Proteomics8(6),1266–1275 (2008).
  • Leverenz JB, Umar I, Wang Q et al. Proteomic identification of novel proteins in cortical lewy bodies. Brain Pathol.17(2), 139–145 (2007).
  • Periquet M, Corti O, Jacquier S, Brice A. Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function. J. Neurochem.95(5), 1259–1276 (2005).
  • Perluigi M, Poon HF, Maragos W et al. Proteomic analysis of protein expression and oxidative modification in r6/2 transgenic mice: a model of Huntington disease. Mol. Cell. Proteomics4(12), 1849–1861 (2005).
  • Sultana R, Boyd-Kimball D, Cai J et al. Proteomics analysis of the Alzheimer’s disease hippocampal proteome. J. Alzheimers Dis.11(2), 153–164 (2007).
  • Tsuji T, Shiozaki A, Kohno R, Yoshizato K, Shimohama S. Proteomic profiling and neurodegeneration in Alzheimer’s disease. Neurochem. Res.27(10), 1245–1253 (2002).
  • Wilson KE, Marouga R, Prime JE et al. Comparative proteomic analysis using samples obtained with laser microdissection and saturation dye labelling. Proteomics5(15), 3851–3858 (2005).
  • Zabel C, Chamrad DC, Priller J et al. Alterations in the mouse and human proteome caused by Huntington’s disease. Mol. Cell. Proteomics1(5), 366–375 (2002).
  • Zabel C, Sagi D, Kaindl AM et al. Comparative proteomics in neurodegenerative and non-neurodegenerative diseases suggest nodal point proteins in regulatory networking. J. Proteome Res.5(8), 1948–1958 (2006).
  • Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nat. Genet.33(Suppl.), 311–323 (2003).
  • Smalheiser NR. Informatics and hypothesis-driven research. EMBO Rep.3(8), 702 (2002).
  • Allen JF. In silico veritas. Data-mining and automated discovery: the truth is in there. EMBO Rep.2(7), 542–544 (2001).
  • Moreira JM, Ohlsson G, Rank FE, Celis JE. Down-regulation of the tumor suppressor protein 14-3-3σ is a sporadic event in cancer of the breast. Mol. Cell. Proteomics4(4), 555–569 (2005).
  • Ohlsson G, Moreira JM, Gromov P, Sauter G, Celis JE. Loss of expression of the adipocyte-type fatty acid-binding protein (A-FABP) is associated with progression of human urothelial carcinomas. Mol. Cell. Proteomics4(4), 570–581 (2005).
  • McGregor E, Dunn MJ. Proteomics of the heart: unraveling disease. Circ. Res.98(3), 309–321 (2006).
  • McGregor E, Dunn MJ. Proteomics of heart disease. Hum. Mol. Genet.12(Spec. 2), R135–R144 (2003).
  • Bauer JW, Baechler EC, Petri M et al. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med.3(12), E491 (2006).
  • Grant JE, Hu J, Liu T, Jain MR, Elkabes S, Li H. Post-translational modifications in the rat lumbar spinal cord in experimental autoimmune encephalomyelitis. J. Proteome Res.6(7), 2786–2791 (2007).
  • Schulz M, Dotzlaw H, Mikkat S, Eggert M, Neeck G. Proteomic analysis of peripheral blood mononuclear cells: selective protein processing observed in patients with rheumatoid arthritis. J. Proteome Res.6(9), 3752–3759 (2007).
  • No authors listed. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell72(6), 971–983 (1993).
  • Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet368(9533), 387–403 (2006).
  • Samii A, Nutt JG, Ransom BR. Parkinson’s disease. Lancet363(9423), 1783–1793 (2004).
  • Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr. Neuropathological classification of Huntington’s disease. J. Neuropathol. Exp. Neurol.44(6), 559–577 (1985).
  • Lubec G, Nonaka M, Krapfenbauer K, Gratzer M, Cairns N, Fountoulakis M. Expression of the dihydropyrimidinase related protein 2 (DRP-2) in Down syndrome and Alzheimer’s disease brain is downregulated at the mRNA and dysregulated at the protein level. J. Neural Transm. Suppl.57, 161–177 (1999).
  • Krapfenbauer K, Berger M, Lubec G, Fountoulakis M. Changes in the brain protein levels following administration of kainic acid. Electrophoresis22(10), 2086–2091 (2001).
  • Tilleman K, Van den Haute C, Geerts H, van Leuven F, Esmans EL, Moens L. Proteomics analysis of the neurodegeneration in the brain of tau transgenic mice. Proteomics2(6), 656–665 (2002).
  • Bajo M, Fruehauf J, Kim SH, Fountoulakis M, Lubec G. Proteomic evaluation of intermediary metabolism enzyme proteins in fetal Down’s syndrome cerebral cortex. Proteomics2(11), 1539–1546 (2002).
  • Newman SF, Sultana R, Perluigi M et al. An increase in S-glutathionylated proteins in the Alzheimer’s disease inferior parietal lobule, a proteomics approach. J. Neurosci. Res.85(7), 1506–1514 (2007).
  • Hartl D, Irmler M, Römer I et al. Transcriptome and proteome analysis of early embryonic mouse brain development. Proteomics8(6),1257–1265 (2008).
  • Challapalli KK, Zabel C, Schuchhardt J, Kaindl AM, Klose J, Herzel H. High reproducibility of large-gel two-dimensional electrophoresis. Electrophoresis25(17), 3040–3047 (2004).
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17(10), 994–999 (1999).
  • Tannu NS, Hemby SE. Methods for proteomics in neuroscience. Prog. Brain Res.158, 41–82 (2006).
  • Mangiarini L, Sathasivam K, Seller M et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell87(3), 493–506 (1996).
  • Berth M, Moser FM, Kolbe M, Bernhardt J. The state of the art in the analysis of two-dimensional gel electrophoresis images. Appl. Microbiol. Biotechnol.76(6), 1223–1243 (2007).
  • Hoerndli F, David DC, Gotz J. Functional Genomics meets neurodegenerative disorders. Part II: application and data integration. Prog. Neurobiol.76(3), 169–188 (2005).
  • Limviphuvadh V, Tanaka S, Goto S, Ueda K, Kanehisa M. The commonality of protein interaction networks determined in neurodegenerative disorders (NDDs). Bioinformatics23(16), 2129–2138 (2007).
  • Powers WJ, Videen TO, Markham J et al. Selective defect of in vivo glycolysis in early Huntington’s disease striatum. Proc. Natl Acad. Sci. USA104(8), 2945–2949 (2007).
  • Atamna H, Frey WH II. Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer’s disease. Mitochondrion7(5), 297–310 (2007).
  • Huang C, Tang C, Feigin A et al. Changes in network activity with the progression of Parkinson’s disease. Brain130(Pt 7), 1834–1846 (2007).
  • Browne SE, Yang L, DiMauro JP, Fuller SW, Licata SC, Beal MF. Bioenergetic abnormalities in discrete cerebral motor pathways presage spinal cord pathology in the G93A SOD1 mouse model of ALS. Neurobiol. Dis.22(3), 599–610 (2006).
  • Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D. Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell127(1), 59–69 (2006).
  • McGill JK, Beal MF. PGC-1α, a new therapeutic target in Huntington’s disease? Cell127(3), 465–468 (2006).
  • St-Pierre J, Drori S, Uldry M et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell127(2), 397–408 (2006).
  • Cowan CM, Raymond LA. Selective neuronal degeneration in Huntington’s disease. Curr. Top. Dev. Biol.75, 25–71 (2006).
  • Dickson DW. Linking selective vulnerability to cell death mechanisms in Parkinson’s disease. Am. J. Pathol.170(1), 16–19 (2007).
  • Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am. J. Pathol.170(1), 75–86 (2007).
  • Zoghbi HY, Botas J. Mouse and fly models of neurodegeneration. Trends Genet.18(9), 463–471 (2002).
  • Mao L, Zabel C, Herrmann M et al. Proteomic shifts in embryonic stem cells with gene dose modifications suggest the presence of balancer proteins in protein regulatory networks. PLoS ONE2(11), E1218 (2007).
  • Zabel C, Klose J. Influence of Huntington’s disease on the human and mouse proteome. Int. Rev. Neurobiol.61, 241–283 (2004).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.