782
Views
211
CrossRef citations to date
0
Altmetric
Review

Biochemistry of Tau in Alzheimer’s disease and related neurological disorders

, , , , , , , , , , & show all
Pages 207-224 | Published online: 09 Jan 2014

References

  • Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proc. Natl Acad. Sci. USA72(5), 1858–1862 (1975).
  • Neve RL, Harris P, Kosik KS, Kurnit DM, Donlon TA. Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Brain Res.387(3), 271–280 (1986).
  • O’Farrell PZ, Goodman HM, O’Farrell PH. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell12(4), 1133–1141 (1977).
  • Ksiezak-Reding H, Binder LI, Yen SH. Immunochemical and biochemical characterization of tau proteins in normal and Alzheimer’s disease brains with Alz 50 and Tau-1. J. Biol. Chem.263(17), 7948–7953 (1988).
  • Janke C, Holzer M, Klose J, Arendt T. Distribution of isoforms of the microtubule-associated protein tau in grey and white matter areas of human brain: a two-dimensional gelelectrophoretic analysis. FEBS Lett.379(3), 222–226 (1996).
  • Schweers O, Schonbrunn-Hanebeck E, Marx A, Mandelkow E. Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for β-structure. J. Biol. Chem.269(39), 24290–24297 (1994).
  • Butler M, Shelanski ML. Microheterogeneity of microtubule-associated tau proteins is due to differences in phosphorylation. J. Neurochem.47(5), 1517–1522 (1986).
  • Hanger DP, Byers HL, Wray S et al. Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J. Biol. Chem.282(32), 23645–23654 (2007).
  • Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Brain Res. Rev.33(1), 95–130 (2000).
  • Baumann K, Mandelkow EM, Biernat J, Piwnica-Worms H, Mandelkow E. Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett.336(3), 417–424 (1993).
  • Vincent I, Rosado M, Davies P. Mitotic mechanisms in Alzheimer’s disease? J. Cell Biol.132(3), 413–425 (1996).
  • Hamdane M, Delobel P, Sambo AV et al. Neurofibrillary degeneration of the Alzheimer-type: an alternate pathway to neuronal apoptosis? Biochem. Pharmacol.66(8), 1619–1625 (2003).
  • Holzer M, Rodel L, Seeger G et al. Activation of mitogen-activated protein kinase cascade and phosphorylation of cytoskeletal proteins after neurone-specific activation of p21ras. II. Cytoskeletal proteins and dendritic morphology. Neuroscience105(4), 1041–1054 (2001).
  • Buee-Scherrer V, Goedert M. Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases in intact cells. FEBS Lett.515(1–3), 151–154 (2002).
  • Goedert M, Hasegawa M, Jakes R et al. Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Lett.409(1), 57–62 (1997).
  • Kitano-Takahashi M, Morita H, Kondo S et al. Expression, purification and crystallization of a human tau-tubulin kinase 2 that phosphorylates tau protein. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.63(Pt 7), 602–604 (2007).
  • Sato S, Cerny RL, Buescher JL, Ikezu T. Tau-tubulin kinase 1 (TTBK1), a neuron-specific tau kinase candidate, is involved in tau phosphorylation and aggregation. J. Neurochem.98(5), 1573–1584 (2006).
  • Tomizawa K, Omori A, Ohtake A, Sato K, Takahashi M. Tau-tubulin kinase phosphorylates tau at Ser-208 and Ser-210, sites found in paired helical filament-tau. FEBS Lett.492(3), 221–227 (2001).
  • Greenwood JA, Scott CW, Spreen RC, Caputo CB, Johnson GV. Casein kinase II preferentially phosphorylates human tau isoforms containing an amino-terminal insert. Identification of threonine as the primary phosphate acceptor. J. Biol. Chem.269(6), 4373–4380 (1994).
  • Woods YL, Cohen P, Becker W et al. The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2B3e at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochem. J.355(Pt 3), 609–615 (2001).
  • Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell89(2), 297–308 (1997).
  • Drewes G. MARKing tau for tangles and toxicity. Trends Biochem. Sci.29(10), 548–555 (2004).
  • Paudel HK. The regulatory Ser262 of microtubule-associated protein tau is phosphorylated by phosphorylase kinase. J. Biol. Chem.272(3), 1777–1785 (1997).
  • Sergeant N, Delacourte A, Buee L. Tau protein as a differential biomarker of tauopathies. Biochim. Biophys. Acta1739(2–3), 179–197 (2005).
  • Hanger DP, Hughes K, Woodgett JR, Brion JP, Anderton BH. Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci. Lett.147(1), 58–62 (1992).
  • Mandelkow EM, Thies E, Trinczek B, Biernat J, Mandelkow E. MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. J. Cell Biol.167(1), 99–110 (2004).
  • Lee G, Thangavel R, Sharma VM et al. Phosphorylation of tau by fyn: implications for Alzheimer’s disease. J. Neurosci.24(9), 2304–2312 (2004).
  • Williamson R, Scales T, Clark BR et al. Rapid tyrosine phosphorylation of neuronal proteins including tau and focal adhesion kinase in response to amyloid-b peptide exposure: involvement of Src family protein kinases. J. Neurosci.22(1), 10–20 (2002).
  • Jenkins SM, Johnson GV. Tau complexes with phospholipase C-gamma in situ.Neuroreport9(1), 67–71 (1998).
  • Hwang SC, Jhon DY, Bae YS, Kim JH, Rhee SG. Activation of phospholipase C-g by the concerted action of tau proteins and arachidonic acid. J. Biol. Chem.271(31), 18342–18349 (1996).
  • Rhee SG. Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem.70, 281–312 (2001).
  • Houlden H, Johnson J, Gardner-Thorpe C et al. Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nat. Genet.39(12), 1434–1436 (2007).
  • Haltiwanger RS, Busby S, Grove K et al. O-glycosylation of nuclear and cytoplasmic proteins: regulation analogous to phosphorylation? Biochem. Biophys. Res. Commun.231(2), 237–242 (1997).
  • Kreppel LK, Blomberg MA, Hart GW. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem.272(14), 9308–9315 (1997).
  • Hart GW, Housley MP, Slawson C. Cycling of O-linked b-N-acetylglucosamine on nucleocytoplasmic proteins. Nature446(7139), 1017–1022 (2007).
  • Dong DL, Xu ZS, Hart GW, Cleveland DW. Cytoplasmic O-GlcNAc modification of the head domain and the KSP repeat motif of the neurofilament protein neurofilament-H. J. Biol. Chem.271(34), 20845–20852 (1996).
  • Lefebvre T, Ferreira S, Dupont-Wallois L et al. Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins – a role in nuclear localization. Biochim. Biophys. Acta1619(2), 167–176 (2003).
  • Lefebvre T, Caillet-Boudin ML, Buee L, Delacourte A, Michalski JC. O-GlcNAc glycosylation and neurological disorders. Adv. Exp. Med. Biol.535, 189–202 (2003).
  • Landrieu I, Smet C, Wieruszeski JM et al. Exploring the molecular function of PIN1 by nuclear magnetic resonance. Curr. Protein Pept. Sci.7(3), 179–194 (2006).
  • Lippens G, Landrieu I, Smet C. Molecular mechanisms of the phospho-dependent prolyl cis/trans isomerase Pin1. FEBS J.274(20), 5211–5222 (2007).
  • Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature399(6738), 784–788 (1999).
  • Zhou XZ, Kops O, Werner A et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol. Cell6(4), 873–883 (2000).
  • Galas MC, Dourlen P, Begard S et al. The peptidylprolyl cis/trans-isomerase Pin1 modulates stress-induced dephosphorylation of Tau in neurons. Implication in a pathological mechanism related to Alzheimer disease. J. Biol. Chem.281(28), 19296–19304 (2006).
  • Hamdane M, Dourlen P, Bretteville A et al. Pin1 allows for differential Tau dephosphorylation in neuronal cells. Mol. Cell. Neurosci.32(1–2), 155–160 (2006).
  • Dourlen P, Ando K, Hamdane M et al. The peptidyl prolyl cis/trans isomerase Pin1 downregulates the inhibitor of apoptosis protein survivin. Biochim. Biophys. Acta1773(9), 1428–1437 (2007).
  • Sultana R, Boyd-Kimball D, Poon HF et al. Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol. Aging27(11), 1564–1576 (2006).
  • Butterfield DA, Poon HF, St Clair D et al. Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol. Dis.22(2), 223–232 (2006).
  • Thorpe JR, Morley SJ, Rulten SL. Utilizing the peptidyl-prolyl cis-trans isomerase pin1 as a probe of its phosphorylated target proteins. Examples of binding to nuclear proteins in a human kidney cell line and to tau in Alzheimer’s diseased brain. J. Histochem. Cytochem.49(1), 97–108 (2001).
  • Holzer M, Gartner U, Stobe A et al. Inverse association of Pin1 and tau accumulation in Alzheimer’s disease hippocampus. Acta Neuropathol.104(5), 471–481 (2002).
  • Ramakrishnan P, Dickson DW, Davies P. Pin1 colocalization with phosphorylated tau in Alzheimer’s disease and other tauopathies. Neurobiol. Dis.14(2), 251–264 (2003).
  • Thorpe JR, Mosaheb S, Hashemzadeh-Bonehi L et al. Shortfalls in the peptidyl-prolyl cis–trans isomerase protein Pin1 in neurons are associated with frontotemporal dementias. Neurobiol. Dis.17(2), 237–249 (2004).
  • Brion JP, Couck AM, Passareiro E, Flament-Durand J. Neurofibrillary tangles of Alzheimer’s disease: an immunohistochemical study. J. Submicrosc. Cytol.17(1), 89–96 (1985).
  • Delacourte A, Defossez A. Biochemical characterization of an immune serum which specifically marks neurons in neurofibrillary degeneration in Alzheimer’s disease. C. R. Acad. Sci. III Sci. Vie303(11), 439–444 (1986).
  • Wischik CM, Novak M, Thogersen HC et al. Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc. Natl Acad. Sci. USA85(12), 4506–4510 (1988).
  • Jakes R, Novak M, Davison M, Wischik CM. Identification of 3- and 4-repeat tau isoforms within the PHF in Alzheimer’s disease. EMBO J.10(10), 2725–2729 (1991).
  • Kondo J, Honda T, Mori H et al. The carboxyl third of tau is tightly bound to paired helical filaments. Neuron1(9), 827–834 (1988).
  • Matsuo ES, Shin RW, Billingsley ML et al. Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau. Neuron13(4), 989–1002 (1994).
  • Sergeant N, Bussiere T, Vermersch P, Lejeune JP, Delacourte A. Isoelectric point differentiates PHF-tau from biopsy-derived human brain tau proteins. Neuroreport6(16), 2217–2220 (1995).
  • Yoshida H, Goedert M. Sequential phosphorylation of tau protein by cAMP-dependent protein kinase and SAPK4/p38δ or JNK2 in the presence of heparin generates the AT100 epitope. J. Neurochem.99(1), 154–164 (2006).
  • Morishima-Kawashima M, Hasegawa M, Takio K et al. Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments. Neuron10(6), 1151–1160 (1993).
  • Mailliot C, Trojanowski JQ, Lee VM. Impaired tau protein function following nitration-induced oxidative stress in vitro and in vivo. Neurobiol. Aging23(1), S415–S415 (2002).
  • Munch G, Kuhla B, Luth HJ, Arendt T, Robinson SR. Anti-AGEing defences against Alzheimer’s disease. Biochem. Soc. Trans.31(Pt 6), 1397–1399 (2003).
  • Avila J, Lucas JJ, Perez M, Hernandez F. Role of tau protein in both physiological and pathological conditions. Physiol. Rev.84(2), 361–384 (2004).
  • Delacourte A, Sergeant N, Buee L. Neurodegenerative Diseases: Tau Proteins in Neurodegenerative Diseases Other Than Alzheimer’s Disease (Therapy, MTiC Edition). Humana Press, NY, USA (2007).
  • Baker M, Mackenzie IR, Pickering-Brown SM et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature442(7105), 916–919 (2006).
  • Cruts M, Gijselinck I, van der Zee J et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature442(7105), 920–924 (2006).
  • Delacourte A, Buee L. Normal and pathological Tau proteins as factors for microtubule assembly. Int. Rev. Cytol.171, 167–224 (1997).
  • Zhukareva V, Vogelsberg-Ragaglia V, Van Deerlin VM et al. Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia. Ann. Neurol.49(2), 165–175 (2001).
  • Zhukareva V, Sundarraj S, Mann D et al. Selective reduction of soluble tau proteins in sporadic and familial frontotemporal dementias: an international follow-up study. Acta Neuropathol.105(5), 469–476 (2003).
  • Forman MS, Trojanowski JQ, Lee VM. TDP-43: a novel neurodegenerative proteinopathy. Curr. Opin. Neurobiol.17(5), 548–555 (2007).
  • Sergeant N, David JP, Goedert M et al. Two-dimensional characterization of paired helical filament-tau from Alzheimer’s disease: demonstration of an additional 74-kDa component and age-related biochemical modifications. J. Neurochem.69(2), 834–844 (1997).
  • Goedert M, Spillantini MG, Cairns NJ. Crowther RA. Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron8(1), 159–168 (1992).
  • Sergeant N, David JP, Lefranc D et al. Different distribution of phosphorylated tau protein isoforms in Alzheimer’s and Pick’s diseases. FEBS Lett.412(3), 578–582 (1997).
  • Sergeant N, Wattez A, Delacourte A. Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration: tau pathologies with exclusively “exon 10” isoforms. J. Neurochem.72(3), 1243–1249 (1999).
  • Tolnay M, Sergeant N, Ghestem A et al. Argyrophilic grain disease and Alzheimer’s disease are distinguished by their different distribution of tau protein isoforms. Acta Neuropathol.104(4), 425–434 (2002).
  • Richardson JC, Steele J, Olszewski J. Supranuclear ophthalmoplegia, pseudobulbar palsy, nuchal dystonia and dementia. A clinical report on eight cases of “heterogenous system degeneration”. Trans. Am. Neurol. Assoc.88, 25–29 (1963).
  • Steele JC, Richardson JC, Olszewski J. Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch. Neurol.10, 333–359 (1964).
  • Rebeiz JJ, Kolodny EH, Richardson EP Jr. Corticodentatonigral degeneration with neuronal achromasia: a progressive disorder of late adult life. Trans. Am. Neurol. Assoc.92, 23–26 (1967).
  • Rebeiz JJ, Kolodny EH, Richardson EP, Jr. Corticodentatonigral degeneration with neuronal achromasia. Arch. Neurol.18(1), 20–33 (1968).
  • Braak H, Braak E. Argyrophilic grains: characteristic pathology of cerebral cortex in cases of adult onset dementia without Alzheimer changes. Neurosci. Lett.76(1), 124–127 (1987).
  • Cairns NJ, Bigio EH, Mackenzie IR et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the consortium for frontotemporal lobar degeneration. Acta Neuropathol.114(1), 5–22 (2007).
  • Brion S, Plas J, Jeanneau A. Pick’s disease. Anatomo–clinical point of view. Rev. Neurol. (Paris)147(11), 693–704 (1991).
  • Buee Scherrer V, Hof PR, Buee L et al. Hyperphosphorylated tau proteins differentiate corticobasal degeneration and Pick’s disease. Acta Neuropathol.91(4), 351–359 (1996).
  • Delacourte A, Robitaille Y, Sergeant N et al. Specific pathological Tau protein variants characterize Pick’s disease. J. Neuropathol. Exp. Neurol.55(2), 159–168 (1996).
  • Probst A, Tolnay M, Langui D, Goedert M, Spillantini MG. Pick’s disease: hyperphosphorylated tau protein segregates to the somatoaxonal compartment. Acta Neuropathol.92(6), 588–596 (1996).
  • Mailliot C, Sergeant N, Bussiere T et al. Phosphorylation of specific sets of tau isoforms reflects different neurofibrillary degeneration processes. FEBS Lett.433(3), 201–204 (1998).
  • Harper PS, Reardon W. Heart disease in myotonic dystrophy. Lancet339(8798), 939 (1992).
  • Reardon W, Harper PS. Advances in myotonic dystrophy: a clinical and genetic perspective. Curr. Opin. Neurol. Neurosurg.5(5), 605–609 (1992).
  • Brook JD, McCurrach ME, Harley HG et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3´ end of a transcript encoding a protein kinase family member. Cell69(2), 385 (1992).
  • Ranum LP, Rasmussen PF, Benzow KA, Koob MD, Day JW. Genetic mapping of a second myotonic dystrophy locus. Nat. Genet.19(2), 196–198 (1998).
  • Meola G. Clinical and genetic heterogeneity in myotonic dystrophies. Muscle Nerve23(12), 1789–1799 (2000).
  • Meola G, Sansone V. Cerebral involvement in myotonic dystrophies. Muscle Nerve36(3), 294–306 (2007).
  • Sansone V, Gandossini S, Cotelli M et al. Cognitive impairment in adult myotonic dystrophies: a longitudinal study. Neurol. Sci.28(1), 9–15 (2007).
  • Vermersch P, Sergeant N, Ruchoux MM et al. Specific tau variants in the brains of patients with myotonic dystrophy. Neurology47(3), 711–717 (1996).
  • Yoshimura N. Alzheimer’s neurofibrillary changes in the olfactory bulb in myotonic dystrophy. Clin. Neuropathol.9(5), 240–243 (1990).
  • Yoshimura N, Otake M, Igarashi K et al. Topography of Alzheimer’s neurofibrillary change distribution in myotonic dystrophy. Clin. Neuropathol.9(5), 234–239 (1990).
  • Sergeant N, Sablonniere B, Schraen-Maschke S et al. Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Hum. Mol. Genet.10(19), 2143–2155 (2001).
  • Gomes-Pereira M, Foiry L, Nicole A et al. CTG trinucleotide repeat “big jumps”: large expansions, small mice. PLoS Genet.3(4), E52 (2007).
  • Seznec H, Agbulut O, Sergeant N et al. Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities. Hum. Mol. Genet.10(23), 2717–2726 (2001).
  • Maurage CA, Udd B, Ruchoux MM et al. Similar brain tau pathology in DM2/PROMM and DM1/Steinert disease. Neurology65(10), 1636–1638 (2005).
  • Morishima-Kawashima M, Hasegawa M, Takio K et al. Proline-directed and non-proline-directed phosphorylation of PHF-tau. J. Biol. Chem.270(2), 823–829 (1995).
  • Derkinderen P, Scales TM, Hanger DP et al. Tyrosine 394 is phosphorylated in Alzheimer’s paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase. J. Neurosci.25(28), 6584–6593 (2005).
  • Ueda K, Masliah E, Saitoh T et al. Alz-50 recognizes a phosphorylated epitope of tau protein. J. Neurosci.10(10), 3295–3304 (1990).
  • Lippens G, Wieruszeski JM, Leroy A et al. Proline-directed random-coil chemical shift values as a tool for the NMR assignment of the tau phosphorylation sites. Chembiochem5(1), 73–78 (2004).
  • Smet C, Leroy A, Sillen A et al. Accepting its random coil nature allows a partial NMR assignment of the neuronal Tau protein. Chembiochem5(12), 1639–1646 (2004).
  • Lippens G, Sillen A, Smet C et al. Studying the natively unfolded neuronal Tau protein by solution NMR spectroscopy. Protein Pept. Lett.13(3), 235–246 (2006).
  • Cleveland DW, Hwo SY, Kirschner MW. Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J. Mol. Biol.116(2), 227–247 (1977).
  • Mandelkow E, Song YH, Schweers O, Marx A, Mandelkow EM. On the structure of microtubules, tau, and paired helical filaments. Neurobiol. Aging16(3), 347–354 (1995).
  • Hoenger A, Gross H. Structural investigations into microtubule-MAP complexes. Methods Cell Biol.84, 425–444 (2008).
  • Santarella RA, Skiniotis G, Goldie KN et al. Surface-decoration of microtubules by human tau. J. Mol. Biol.339(3), 539–553 (2004).
  • Kar S, Fan J, Smith MJ, Goedert M, Amos LA. Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. EMBO J.22(1), 70–77 (2003).
  • Mandelkow E, von Bergen M, Biernat J, Mandelkow EM. Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol.17(1), 83–90 (2007).
  • Sillen A, Barbier P, Landrieu I et al. NMR investigation of the interaction between the neuronal protein tau and the microtubules. Biochemistry46(11), 3055–3064 (2007).
  • Hasegawa M, Smith MJ, Goedert M. Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly. FEBS Lett.437(3), 207–210 (1998).
  • Delobel P, Flament S, Hamdane M et al. Functional characterization of FTDP-17 tau gene mutations through their effects on Xenopus oocyte maturation. J. Biol. Chem.277(11), 9199–9205 (2002).
  • Fischer D, Mukrasch MD, von Bergen M et al. Structural and microtubule binding properties of tau mutants of frontotemporal dementias. Biochemistry46(10), 2574–2582 (2007).
  • Tatebayashi Y, Planel E, Chui DH et al. c-jun N-terminal kinase hyperphosphorylates R406W tau at the PHF-1 site during mitosis. FASEB J.20(6), 762–764 (2006).
  • Landrieu I, Lacosse L, Leroy A et al. NMR analysis of a Tau phosphorylation pattern. J. Am. Chem. Soc.128(11), 3575–3583 (2006).
  • Vandermeeren M, Mercken M, Vanmechelen E et al. Detection of tau proteins in normal and Alzheimer’s disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay. J. Neurochem.61(5), 1828–1834 (1993).
  • Motter R, Vigo-Pelfrey C, Kholodenko D et al. Reduction of b-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann. Neurol.38(4), 643–648 (1995).
  • Zemlan FP, Mulchahey JJ, Gudelsky GA. Quantification and localization of kainic acid-induced neurotoxicity employing a new biomarker of cell death: cleaved microtubule-associated protein-tau (C-tau). Neuroscience121(2), 399–409 (2003).
  • Mori H, Hosoda K, Matsubara E et al. Tau in cerebrospinal fluids: establishment of the sandwich ELISA with antibody specific to the repeat sequence in tau. Neurosci. Lett.186(2–3), 181–183 (1995).
  • Johnson GV, Seubert P, Cox TM et al. The tau protein in human cerebrospinal fluid in Alzheimer’s disease consists of proteolytically derived fragments. J. Neurochem.68(1), 430–433 (1997).
  • Sjogren M, Davidsson P, Gottfries J et al. The cerebrospinal fluid levels of tau, growth-associated protein-43 and soluble amyloid precursor protein correlate in Alzheimer’s disease, reflecting a common pathophysiological process. Dement. Geriatr. Cogn. Disord.12(4), 257–264 (2001).
  • Borroni B, Gardoni F, Parnetti L et al. Pattern of Tau forms in CSF is altered in progressive supranuclear palsy. Neurobiol. Aging PMID: 17709155 (2007) (Epub ahead of print).
  • Hampel H, Buerger K, Zinkowski R et al. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch. Gen. Psychiatry61(1), 95–102 (2004).
  • Maccioni RB, Lavados M, Guillon M et al. Anomalously phosphorylated tau and Aβ fragments in the CSF correlates with cognitive impairment in MCI subjects. Neurobiol. Aging27(2), 237–244 (2006).
  • Hampel H, Teipel SJ. Total and phosphorylated tau proteins: evaluation as core biomarker candidates in frontotemporal dementia. Dement. Geriatr. Cogn. Disord.17(4), 350–354 (2004).
  • Hampel H, Burger K, Pruessner JC et al. Correlation of cerebrospinal fluid levels of tau protein phosphorylated at threonine 231 with rates of hippocampal atrophy in Alzheimer disease. Arch. Neurol.62(5), 770–773 (2005).
  • Hu YY, He SS, Wang X et al. Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer’s disease patients : an ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am. J. Pathol.160(4), 1269–1278 (2002).
  • Blennow K. CSF biomarkers for mild cognitive impairment. J. Intern. Med.256(3), 224–234 (2004).
  • Sanchez-Juan P, Green A, Ladogana A et al. CSF tests in the differential diagnosis of Creutzfeldt-Jakob disease. Neurology67(4), 637–643 (2006).
  • Goodall CA, Head MW, Everington D et al. Raised CSF phospho-tau concentrations in variant Creutzfeldt-Jakob disease: diagnostic and pathological implications. J. Neurol. Neurosurg. Psychiatr.77(1), 89–91 (2006).
  • Van Everbroeck B, Boons J, Cras P. Cerebrospinal fluid biomarkers in Creutzfeldt-Jakob disease. Clin. Neurol. Neurosurg.107(5), 355–360 (2005).
  • Vanderstichele H, De Vreese K, Blennow K et al. Analytical performance and clinical utility of the INNOTEST PHOSPHO-TAU181P assay for discrimination between Alzheimer’s disease and dementia with Lewy bodies. Clin. Chem. Lab. Med.44(12), 1472–1480 (2006).
  • Vanmechelen E, Vanderstichele H, Hulstaert F et al. Cerebrospinal fluid tau and β-amyloid(1-42) in dementia disorders. Mech. Ageing Dev.122(16), 2005–2011 (2001).
  • Grossman M, Farmer J, Leight S et al. Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer’s disease. Ann. Neurol.57(5), 721–729 (2005).
  • Verbeek MM, Pijnenburg YA, Schoonenboom NS, Kremer BP, Scheltens P. Cerebrospinal fluid tau levels in frontotemporal dementia. Ann. Neurol.58(4), 656–657; author reply 657 (2005).
  • Petersen RC. Mild cognitive impairment: current research and clinical implications. Semin. Neurol.27(1), 22–31 (2007).
  • Brys M, Pirraglia E, Rich K et al. Prediction and longitudinal study of CSF biomarkers in mild cognitive impairment. Neurobiol. Aging PMID: 17889968 (2007) (Epub ahead of print).
  • Andersson ME, Sjolander A, Andreasen N et al. Kinesin gene variability may affect tau phosphorylation in early Alzheimer’s disease. Int. J. Mol. Med.20(2), 233–239 (2007).
  • Buerger K, Ewers M, Pirttila T et al. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain129(Pt 11), 3035–3041 (2006).
  • Boesenberg-Grosse C, Schulz-Schaeffer WJ, Bodemer M et al. Brain-derived proteins in the CSF: do they correlate with brain pathology in CJD? BMC Neurol.6, 35 (2006).
  • Engelborghs S, De Vreese K, Van de Casteele T et al. Diagnostic performance of a CSF-biomarker panel in autopsy-confirmed dementia. Neurobiol. Aging PMID: 17428581 (2007) (Epub ahead of print).
  • Buerger K, Alafuzoff I, Ewers M et al. No correlation between CSF tau protein phosphorylated at threonine 181 with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain130(Pt 10), E82 (2007).
  • Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl Acad. Sci. USA104(14), 5860–5865 (2007).
  • Bantscheff M, Eberhard D, Abraham Y et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol.25(9), 1035–1044 (2007).
  • Fulga TA, Elson-Schwab I, Khurana V et al. Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo.Nat. Cell Biol.9(2), 139–148 (2007).
  • Blard O, Feuillette S, Bou J et al. Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila. Hum. Mol. Genet.16(5), 555–566 (2007).
  • Magnani E, Fan J, Gasparini L et al. Interaction of tau protein with the dynactin complex. EMBO J.26(21), 4546–4554 (2007).
  • Dixit R, Ross JL, Goldman YE, Holzbaur EL. Differential regulation of dynein and kinesin motor proteins by tau. Science319(5866), 1086–1089 (2008).
  • Mazanetz M, Fischer P. Untangling Tau hyperphosphorylation in drug design for neurodegenerative diseases.Nat. Rev. Drug Discov.6(6), 464–479).
  • Bensemain F, Hot D, Ferreira S et al. Evidence for induction of the ornithine transcarbamylase expression in Alzheimer’s disease. Mol. Psychiatry PMID: 17893704 (2007) (Epub ahead of print).
  • Luo MH, Leski ML, Andreadis A. Tau isoforms which contain the domain encoded by exon 6 and their role in neurite elongation. J. Cell. Biochem.91(5), 880–895 (2004).
  • Andreadis A. Tau gene alternative splicing: expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim. Biophys. Acta1739(2–3), 91–103 (2005).
  • Janke C, Beck M, Holzer M, Bigl V, Arendt T. Analysis of the molecular heterogeneity of the microtubule-associated protein tau by two-dimensional electrophoresis and RT-PCR. Brain Res. Brain Res. Protoc.5(3), 231–242 (2000).
  • Andreasen N, Gottfries J, Vanmechelen E et al. Evaluation of CSF biomarkers for axonal and neuronal degeneration, gliosis, and β-amyloid metabolism in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatr.71(4), 557–558 (2001).
  • de Jong D, Jansen RW, Pijnenburg YA et al. CSF neurofilament proteins in the differential diagnosis of dementia. J. Neurol. Neurosurg. Psychiatr.78(9), 936–938 (2007).
  • Bax L, Yu LM, Ikeda N, Tsuruta H, Moons KG. Development and validation of MIX: comprehensive free software for meta-analysis of causal research data.BMC Med. Res. Methodol.6, 50 (2005).
  • Bax L, Yu LM, Ikeda N, Moons KG. A systematic comparison of software dedicated to meta-analysis of causal studies. BMC Med. Res. Methodol.7, 40 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.