283
Views
40
CrossRef citations to date
0
Altmetric
Review

Targeted proteomics in Alzheimer’s disease: focus on amyloid-β

, , , &
Pages 225-237 | Published online: 09 Jan 2014

References

  • Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet368(9533), 387–403 (2006).
  • Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci.12(10), 383–388 (1991).
  • Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev.81(2), 741–766 (2001).
  • Burdick D, Soreghan B, Kwon M et al. Assembly and aggregation properties of synthetic Alzheimer’s A4/β amyloid peptide analogs. J. Biol. Chem.267(1), 546–554 (1992).
  • Jarrett JT, Berger EP, Lansbury PT Jr. The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry32(18), 4693–4697 (1993).
  • De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active γ-secretase complex. Neuron38(1), 9–12 (2003).
  • Sinha S, Anderson JP, Barbour R et al. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature402(6761), 537–540 (1999).
  • Vassar R, Bennett BD, Babu-Khan S et al. β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science286(5440), 735–741 (1999).
  • Higgins LS, Murphy GM Jr, Forno LS, Catalano R, Cordell B. P3 β-amyloid peptide has a unique and potentially pathogenic immunohistochemical profile in Alzheimer’s disease brain. Am. J. Pathol.149(2), 585–596 (1996).
  • Wei W, Norton DD, Wang X, Kusiak JW. Aβ 17–42 in Alzheimer’s disease activates JNK and caspase-8 leading to neuronal apoptosis. Brain125(Pt 9), 2036–2043 (2002).
  • Koike H, Tomioka S, Sorimachi H et al. Membrane-anchored metalloprotease MDC9 has an α-secretase activity responsible for processing the amyloid precursor protein. Biochem. J.343(Pt 2), 371–375 (1999).
  • Nelson KK, Schlondorff J, Blobel CP. Evidence for an interaction of the metalloprotease-disintegrin tumour necrosis factor α convertase (TACE) with mitotic arrest deficient 2 (MAD2), and of the metalloprotease-disintegrin MDC9 with a novel MAD2-related protein, MAD2β. Biochem. J.343(Pt 3), 673–680 (1999).
  • Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM 10. Proc. Natl Acad. Sci. USA98(10), 5815–5820 (2001).
  • Lammich S, Kojro E, Postina R et al. Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl Acad. Sci. USA96(7), 3922–3927 (1999).
  • Buxbaum JD, Liu K-N, Luo Y et al. evidence that tumor necrosis factor α converting enzyme is involved in regulated α-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem.273(43), 27765–27767 (1998).
  • Slack BE, Ma LK, Seah CC. Constitutive shedding of the amyloid precursor protein ectodomain is up-regulated by tumour necrosis factor-α converting enzyme. Biochem. J.357(Pt 3), 787–794 (2001).
  • Leissring MA. Proteolytic degradation of the amyloid β-protein: the forgotten side of Alzheimer’s disease. Curr. Alzheimer Res.3(5), 431–435 (2006).
  • Waldron E, Jaeger S, Pietrzik CU. Functional role of the low-density lipoprotein receptor-related protein in Alzheimer’s disease. Neurodegener. Dis.3(4–5), 233–238 (2006).
  • Moir RD, Tanzi RE. LRP-mediated clearance of Aβ is inhibited by KPI-containing isoforms of APP. Curr. Alzheimer Res.2(2), 269–273 (2005).
  • Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun.120(3), 885–890 (1984).
  • Masters CL, Simms G, Weinman NA et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl Acad. Sci. USA82(12), 4245–4249 (1985).
  • Shen J, Kelleher RJ III. The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc. Natl Acad. Sci. USA104(2), 403–409 (2007).
  • Rovelet-Lecrux A, Hannequin D, Raux G et al. APP locus duplication causes autosomal dominant early-onset al.heimer disease with cerebral amyloid angiopathy. Nat. Genet.38(1), 24–26 (2006).
  • Neve RL, McPhie DL, Chen Y. Alzheimer’s disease: a dysfunction of the amyloid precursor protein(1). Brain Res.886(1–2), 54–66 (2000).
  • Standridge JB. Vicious cycles within the neuropathophysiologic mechanisms of Alzheimer’s disease. Curr. Alzheimer Res.3(2), 95–108 (2006).
  • Stokin GB, Goldstein LS. Axonal transport and Alzheimer’s disease. Annu. Rev. Biochem.75, 607–627 (2006).
  • Terry RD. The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J. Neuropathol. Exp. Neurol.55(10), 1023–1025 (1996).
  • Lee HG, Zhu X, Nunomura A, Perry G, Smith MA. Amyloid-β vaccination: testing the amyloid hypothesis?: heads we win, tails you lose! Am. J. Pathol.169(3), 738–739 (2006).
  • Rottkamp CA, Atwood CS, Joseph JA et al. The state versus amyloid-β: the trial of the most wanted criminal in Alzheimer disease. Peptides23(7), 1333–1341 (2002).
  • Smith MA, Casadesus G, Joseph JA, Perry G. Amyloid-β and tau serve antioxidant functions in the aging and Alzheimer brain. Free Radic. Biol. Med.33(9), 1194–1199 (2002).
  • Peterson A, Lantz MS. Is it Alzheimer’s? Neuropsychological testing helps to clarify diagnostic puzzle. Geriatrics56(4), 58–61 (2001).
  • Haass C, Schlossmacher MG, Hung AY et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature359(6393), 322–325 (1992).
  • Motter R, Vigo-Pelfrey C, Kholodenko D et al. Reduction of β-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann. Neurol.38(4), 643–648 (1995).
  • Tabaton M, Nunzi MG, Xue R et al. Soluble amyloid β-protein is a marker of Alzheimer amyloid in brain but not in cerebrospinal fluid. Biochem. Biophys. Res. Commun.200(3), 1598–1603 (1994).
  • Van Nostrand WE, Wagner SL, Shankle WR et al. Decreased levels of soluble amyloid β-protein precursor in cerebrospinal fluid of live Alzheimer disease patients. Proc. Natl Acad. Sci. USA89(7), 2551–2555 (1992).
  • Iwatsubo T, Odaka A, Suzuki N et al. Visualization of A β 42(43) and A β 40 in senile plaques with end-specific A β monoclonals: evidence that an initially deposited species is A β 42(43). Neuron13(1), 45–53 (1994).
  • Blennow K. CSF biomarkers for Alzheimer’s disease: use in early diagnosis and evaluation of drug treatment. Expert Rev. Mol. Diagn.5(5), 661–672 (2005).
  • Blennow K, Hampel H. CSF markers for incipient Alzheimer’s disease. Lancet Neurol.2(10), 605–613 (2003).
  • Bouwman FH, Schoonenboom SN, van der Flier WM et al. CSF biomarkers and medial temporal lobe atrophy predict dementia in mild cognitive impairment. Neurobiol. Aging28(7), 1070–1074 (2007).
  • Brys M, Pirraglia E, Rich K et al. Prediction and longitudinal study of CSF biomarkers in mild cognitive impairment. Neurobiol. Aging PMID: 17889968 (2007) (Epub ahead of print).
  • Hansson O, Zetterberg H, Buchhave P et al. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol.5(3), 228–234 (2006).
  • Herukka SK, Helisalmi S, Hallikainen M et al. CSF Aβ42, Tau and phosphorylated Tau, APOE ε4 allele and MCI type in progressive MCI. Neurobiol. Aging28(4), 507–514 (2007).
  • Zetterberg H, Wahlund LO, Blennow K. Cerebrospinal fluid markers for prediction of Alzheimer’s disease. Neurosci. Lett.352(1), 67–69 (2003).
  • Skoog I, Davidsson P, Aevarsson O et al. Cerebrospinal fluid β-amyloid 42 is reduced before the onset of sporadic dementia: a population-based study in 85-year-olds. Dement. Geriatr. Cogn. Disord.15(3), 169–176 (2003).
  • Gustafson DR, Skoog I, Rosengren L, Zetterberg H, Blennow K. Cerebrospinal fluid β-amyloid 1-42 concentration may predict cognitive decline in older women. J. Neurol. Neurosurg. Psychiatry78(5), 461–464 (2007).
  • Stomrud E, Hansson O, Blennow K, Minthon L, Londos E. Cerebrospinal fluid biomarkers predict decline in subjective cognitive function over 3 years in healthy elderly. Dement. Geriatr. Cogn. Disord.24(2), 118–124 (2007).
  • Strozyk D, Blennow K, White LR, Launer LJ. CSF Aβ 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology60(4), 652–656 (2003).
  • Fagan AM, Mintun MA, Mach RH et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Ann. Neurol.59(3), 512–519 (2006).
  • Forsberg A, Engler H, Almkvist O et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol. Aging PMID: 17499392 (2007) (Epub ahead of print).
  • Fagan AM, Roe CM, Xiong C et al. Cerebrospinal fluid tau/β-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch. Neurol.64(3), 343–349 (2007).
  • Vanderstichele H, Blennow K, D’Heuvaert ND et al. Development of a specific diagnostic test for measurement of β-amyloid(1-42) in CSF. In: Progress in Alzheimer’s and Parkinson’s Diseases. Fisher A, Hanin I, Yoshida M (Eds). Plenum Press, NY, USA 773–778 (1998).
  • Sergeant N, Bombois S, Ghestem A et al. Truncated β-amyloid peptide species in pre-clinical Alzheimer’s disease as new targets for the vaccination approach. J. Neurochem.85(6), 1581–1591 (2003).
  • Portelius E, Westman-Brinkmalm A, Zetterberg H, Blennow K. Determination of β-amyloid peptide signatures in cerebrospinal fluid using immunoprecipitation-mass spectrometry. J. Proteome Res.5(4), 1010–1016 (2006).
  • Vanderstichele H, De Meyer G, Andreasen N et al. Amino-truncated β-amyloid42 peptides in cerebrospinal fluid and prediction of progression of mild cognitive impairment. Clin. Chem.51(9), 1650–1660 (2005).
  • Irizarry MC. Biomarkers of Alzheimer disease in plasma. NeuroRx1(2), 226–234 (2004).
  • Sobow T, Flirski M, Kloszewska I, Liberski PP. Plasma levels of αβ peptides are altered in amnestic mild cognitive impairment but not in sporadic Alzheimer’s disease. Acta Neurobiol. Exp. (Wars.)65(2), 117–124 (2005).
  • Mayeux R, Honig LS, Tang MX et al. Plasma A[β]40 and A[β]42 and Alzheimer’s disease: relation to age, mortality, and risk. Neurology61(9), 1185–1190 (2003).
  • Graff-Radford NR, Crook JE, Lucas J et al. Association of low plasma Aβ42/Aβ40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Arch. Neurol.64(3), 354–362 (2007).
  • van Oijen M, Hofman A, Soares HD, Koudstaal PJ, Breteler MM. Plasma Aβ(1-40) and Aβ(1-42) and the risk of dementia: a prospective case-cohort study. Lancet Neurol.5(8), 655–660 (2006).
  • Kuo YM, Emmerling MR, Lampert HC et al. High levels of circulating Aβ42 are sequestered by plasma proteins in Alzheimer’s disease. Biochem. Biophys. Res. Commun.257(3), 787–791 (1999).
  • Mehta PD, Pirttila T, Patrick BA, Barshatzky M, Mehta SP. Amyloid β protein 1-40 and 1-42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease. Neurosci. Lett.304(1–2), 102–106 (2001).
  • Fukuyama R, Mizuno T, Mori S et al. Age-dependent change in the levels of Aβ40 and Aβ42 in cerebrospinal fluid from control subjects, and a decrease in the ratio of Aβ42 to Aβ40 level in cerebrospinal fluid from Alzheimer’s disease patients. Eur. Neurol.43(3), 155–160 (2000).
  • Kanai M, Matsubara E, Isoe K et al. Longitudinal study of cerebrospinal fluid levels of tau, A β1–40, and A β1–42(43) in Alzheimer’s disease: a study in Japan. Ann. Neurol.44(1), 17–26 (1998).
  • Lewczuk P, Esselmann H, Otto M et al. Neurochemical diagnosis of Alzheimer’s dementia by CSF Aβ42, Aβ42/Aβ40 ratio and total tau. Neurobiol. Aging25(3), 273–281 (2004).
  • Lewczuk P, Esselmann H, Groemer TW et al. Amyloid β peptides in cerebrospinal fluid as profiled with surface enhanced laser desorption/ionization time-of-flight mass spectrometry: evidence of novel biomarkers in Alzheimer’s disease. Biol. Psychiatry55, 524–530 (2004).
  • Shoji M, Matsubara E, Kanai M et al. Combination assay of CSF tau, Aβ 1-40 and Aβ 1-42(43) as a biochemical marker of Alzheimer’s disease. J. Neurol. Sci.158(2), 134–140 (1998).
  • Mehta PD, Pirttila T. Increased cerebrospinal fluid A β38/A β42 ratio in Alzheimer disease. Neurodegener. Dis.2(5), 242–245 (2005).
  • Schoonenboom NS, Mulder C, Van Kamp GJ et al. Amyloid β 38, 40, and 42 species in cerebrospinal fluid: more of the same? Ann. Neurol.58(1), 139–142 (2005).
  • Hansson O, Zetterberg H, Buchhave P et al. Prediction of Alzheimer’s disease using the CSF Aβ42/Aβ40 ratio in patients with mild cognitive impairment. Dement. Geriatr. Cogn. Disord.23(5), 316–320 (2007).
  • Wiltfang J, Esselmann H, Bibl M et al. Highly conserved and disease-specific patterns of carboxyterminally truncated Aβ peptides 1-37/38/39 in addition to 1-40/42 in Alzheimer’s disease and in patients withzz chronic neuroinflammation. J. Neurochem.81(3), 481–496 (2002).
  • Höglund K, Hansson O, Buchhave P et al. Prediction of Alzheimer’s disease using a CSF pattern of C-terminally truncated β-amyloid peptides. Neurodegener. Dis. PMID: 18309230 (2008) (Epub ahead of print).
  • Bibl M, Esselmann H, Otto M et al. Cerebrospinal fluid amyloid β peptide patterns in Alzheimer’s disease patients and nondemented controls depend on sample pretreatment: indication of carrier-mediated epitope masking of amyloid β peptides. Electrophoresis25(17), 2912–2918 (2004).
  • Simonsen AH, Hansson SF, Ruetschi U et al. Amyloid β1-40 quantification in CSF: comparison between chromatographic and immunochemical methods. Dement. Geriatr. Cogn. Disord.23(4), 246–250 (2007).
  • Rangachari V, Moore BD, Reed DK et al. Amyloid-β(1-42) rapidly forms protofibrils and oligomers by distinct pathways in low concentrations of sodium dodecylsulfate. Biochemistry46(43), 12451–12462 (2007).
  • Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G. Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta1502(1), 139–144 (2000).
  • Bibl M, Mollenhauer B, Esselmann H et al. CSF amyloid-β-peptides in Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease dementia. Brain129(Pt 5), 1177–1187 (2006).
  • Walsh DM, Klyubin I, Shankar GM et al. The role of cell-derived oligomers of Aβ in Alzheimer’s disease and avenues for therapeutic intervention. Biochem. Soc. Trans.33(Pt 5), 1087–1090 (2005).
  • Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ. Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: a potent role for trimers. J. Physiol.572(Pt 2), 477–492 (2006).
  • Lesne S, Koh MT, Kotilinek L et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature440(7082), 352–357 (2006).
  • Podlisny MB, Ostaszewski BL, Squazzo SL et al. Aggregation of secreted amyloid β-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J. Biol. Chem.270(16), 9564–9570 (1995).
  • Walsh DM, Townsend M, Podlisny MB et al. Certain inhibitors of synthetic amyloid β-peptide (Aβ) fibrillogenesis block oligomerization of natural Aβ and thereby rescue long-term potentiation. J. Neurosci.25(10), 2455–2462 (2005).
  • Georganopoulou DG, Chang L, Nam JM et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc. Natl Acad. Sci. USA102(7), 2273–2276 (2005).
  • Santos AN, Torkler S, Nowak D et al. Detection of amyloid-β oligomers in human cerebrospinal fluid by flow cytometry and fluorescence resonance energy transfer. J. Alzheimers Dis.11(1), 117–125 (2007).
  • Bohrmann B, Tjernberg L, Kuner P et al. Endogenous proteins controlling amyloid β-peptide polymerization. Possible implications for β-amyloid formation in the central nervous system and in peripheral tissues. J. Biol. Chem.274(23), 15990–15995 (1999).
  • Strittmatter WJ, Saunders AM, Schmechel D et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA90(5), 1977–1981 (1993).
  • Strittmatter WJ, Weisgraber KH, Huang DY et al. Binding of human apolipoprotein E to synthetic amyloid β peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc. Natl Acad. Sci. USA90(17), 8098–8102 (1993).
  • Ghiso J, Matsubara E, Koudinov A et al. The cerebrospinal-fluid soluble form of Alzheimer’s amyloid β is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem. J.293 ( Pt 1), 27–30 (1993).
  • Matsubara E, Frangione B, Ghiso J. Characterization of apolipoprotein J–Alzheimer’s A β interaction. J. Biol. Chem.270(13), 7563–7567 (1995).
  • Strittmatter WJ, Huang DY, Bhasin R, Roses AD, Goldgaber D. Avid binding of β A amyloid peptide to its own precursor. Exp. Neurol.122(2), 327–334 (1993).
  • Deane R, Wu Z, Sagare A et al. LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron43(3), 333–344 (2004).
  • Kanekiyo T, Ban T, Aritake K et al. Lipocalin-type prostaglandin D synthase/β-trace is a major amyloid β-chaperone in human cerebrospinal fluid. Proc. Natl Acad. Sci. USA104(15), 6412–6417 (2007).
  • Portelius E, Tran AJ, Andreasson U et al. Characterization of amyloid β peptides in cerebrospinal fluid by an automated immunoprecipitation procedure followed by mass spectrometry. J. Proteome Res.6(11), 4433–4439 (2007).
  • Ackermann BL, Berna MJ. Coupling immunoaffinity techniques with MS for quantitative analysis of low-abundance protein biomarkers. Expert Rev. Proteomics4(2), 175–186 (2007).
  • Nelson RW, Krone JR, Bieber AL, Williams P. Mass spectrometric immunoassay. Anal. Chem.67(7), 1153–1158 (1995).
  • Hutchens TW, Yip T-T. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun. Mass Spectrom.7(7), 576–580 (1993).
  • Vigo-Pelfrey C, Lee D, Keim P, Lieberburg I, Schenk DB. Characterization of β-amyloid peptide from human cerebrospinal fluid. J. Neurochem.61(5), 1965–1968 (1993).
  • Davies H, Lomas L, Austen B. Profiling of amyloid β peptide variants using SELDI Protein Chip arrays. Biotechniques27(6), 1258–1261 (1999).
  • Frears ER, Stephens DJ, Walters CE, Davies H, Austen BM. The role of cholesterol in the biosynthesis of β-amyloid. Neuroreport10(8), 1699–1705 (1999).
  • Gelfanova V, Higgs RE, Dean RA et al. Quantitative analysis of amyloid-{β} peptides in cerebrospinal fluid using immunoprecipitation and MALDI-Tof mass spectrometry. Brief. Funct. Genomic. Proteomic.6(2), 149–158 (2007).
  • Lewczuk P, Esselmann H, Meyer M et al. The amyloid-β (Aβ) peptide pattern in cerebrospinal fluid in Alzheimer’s disease: evidence of a novel carboxyterminally elongated Aβ peptide. Rapid Commun. Mass Spectrom.17(12), 1291–1296 (2003).
  • Maddalena AS, Papassotiropoulos A, Gonzalez-Agosti C et al. Cerebrospinal Fluid Profile of Amyloid β Peptides in Patients with Alzheimer’s Disease Determined by Protein Biochip Technology. Neurodegener. Dis.1(4–5 ), 231–235 (2004).
  • Simonsen AH, McGuire J, Podust VN et al. Identification of a novel panel of cerebrospinal fluid biomarkers for Alzheimer’s disease. Neurobiol. Aging PMID: 17321007 (2007) (Epub ahead of print).
  • Portelius E, Zetterberg H, Andreasson U et al. An Alzheimer’s disease-specific β-amyloid fragment signature in cerebrospinal fluid. Neurosci. Lett.409(3), 215–219 (2006).
  • Andreasson U, Portelius E, Andersson ME, Blennow K, Zetterberg H. Aspects of β-amyloid as a biomarker for Alzheimer’s disease. Biomark. Med.1(1), 59–78 (2007).
  • Bradbury LE, LeBlanc JF, McCarthy DB. ProteinChip array-based amyloid β assays. Methods Mol. Biol.264, 245–257 (2004).
  • Maruyama K, Kametani F, Usami M, Yamao-Harigaya W, Tanaka K. “Secretase,” Alzheimer amyloid protein precursor secreting enzyme is not sequence-specific. Biochem. Biophys. Res. Commun.179(3), 1670–1676 (1991).
  • Sisodia SS. β-amyloid precursor protein cleavage by a membrane-bound protease. Proc. Natl Acad. Sci. USA89(13), 6075–6079 (1992).
  • Backstrom JR, Lim GP, Cullen MJ, Tokes ZA. Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-β peptide (1-40). J. Neurosci.16(24), 7910–7919 (1996).
  • Eckman EA, Reed DK, Eckman CB. Degradation of the Alzheimer’s amyloid β peptide by endothelin-converting enzyme. J. Biol. Chem.276(27), 24540–24548 (2001).
  • Roher AE, Kasunic TC, Woods AS et al. Proteolysis of A β peptide from Alzheimer disease brain by gelatinase A. Biochem. Biophys. Res. Commun.205(3), 1755–1761 (1994).
  • Tucker HM, Kihiko M, Caldwell JN et al. The plasmin system is induced by and degrades amyloid-β aggregates. J. Neurosci.20(11), 3937–3946 (2000).
  • Regnier FE, Riggs L, Zhang R et al. Comparative proteomics based on stable isotope labeling and affinity selection. J. Mass Spectrom.37(2), 133–145 (2002).
  • Pratt JM, Petty J, Riba-Garcia I et al. Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell Proteomics1(8), 579–591 (2002).
  • Gustavsson N, Greber B, Kreitler T et al. A proteomic method for the analysis of changes in protein concentrations in response to systemic perturbations using metabolic incorporation of stable isotopes and mass spectrometry. Proteomics5(14), 3563–3570 (2005).
  • Bateman RJ, Munsell LY, Morris JC et al. Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat. Med.12(7), 856–861 (2006).
  • Mueller SG, Weiner MW, Thal LJ et al. The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. N. Am.15(4), 869–877, xi–xii (2005).
  • Cummings JL, Doody R, Clark C. Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurology69(16), 1622–1634 (2007).
  • Howell S, Nalbantoglu J, Crine P. Neutral endopeptidase can hydrolyze β-amyloid(1-40) but shows no effect on β-amyloid precursor protein metabolism. Peptides16(4), 647–652 (1995).
  • Iwata N, Tsubuki S, Takaki Y et al. Identification of the major Aβ1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat. Med.6(2), 143–150 (2000).
  • Leissring MA, Farris W, Chang AY et al. Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron40(6), 1087–1093 (2003).
  • Van Nostrand WE, Porter M. Plasmin cleavage of the amyloid β-protein: alteration of secondary structure and stimulation of tissue plasminogen activator activity. Biochemistry38(35), 11570–11576 (1999).
  • Hu J, Igarashi A, Kamata M, Nakagawa H. Angiotensin-converting enzyme degrades Alzheimer amyloid β-peptide (A β); retards A β aggregation, deposition, fibril formation; and inhibits cytotoxicity. J. Biol. Chem.276(51), 47863–47868 (2001).
  • Mueller-Steiner S, Zhou Y, Arai H et al. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer’s disease. Neuron51(6), 703–714 (2006).
  • Beher D, Wrigley JD, Owens AP, Shearman MS. Generation of C-terminally truncated amyloid-β peptides is dependent on gamma-secretase activity. J. Neurochem.82(3), 563–575 (2002).
  • Fluhrer R, Multhaup G, Schlicksupp A et al. Identification of a β-secretase activity, which truncates amyloid β-peptide after its presenilin-dependent generation. J. Biol. Chem.278(8), 5531–5538 (2003).
  • Farzan M, Schnitzler CE, Vasilieva N, Leung D, Choe H. BACE2, a β -secretase homolog, cleaves at the β site and within the amyloid-β region of the amyloid-β precursor protein. Proc. Natl Acad. Sci. USA97(17), 9712–9717 (2000).
  • Blennow K, Nellgard B. Amyloid β 1-42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology62(1), 159; author reply 159–160 (2004).
  • Andreasen N, Hesse C, Davidsson P et al. Cerebrospinal fluid β-amyloid(1-42) in Alzheimer disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease. Arch. Neurol.56(6), 673–680 (1999).
  • Schoonenboom NS, Mulder C, Vanderstichele H et al. Effects of processing and storage conditions on amyloid β (1-42) and tau concentrations in cerebrospinal fluid: implications for use in clinical practice. Clin. Chem.51(1), 189–195 (2005).
  • Bateman RJ, Wen G, Morris JC, Holtzman DM. Fluctuations of CSF amyloid-β levels: implications for a diagnostic and therapeutic biomarker. Neurology68(9), 666–669 (2007).
  • Cohen SL. Ozone in ambient air as a source of adventitious oxidation. A mass spectrometric study. Anal. Chem.78(13), 4352–4362 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.