208
Views
27
CrossRef citations to date
0
Altmetric
Review

α-synuclein and Parkinson’s disease: a proteomic view

&
Pages 239-248 | Published online: 09 Jan 2014

References

  • Lang AE, Lozano AM. Parkinson’s disease. N. Engl. J. Med.339, 1044–1053 (1998).
  • Blandini F, Nappi G, Tassorelli C, Martignoni E. Functional changes of the basal ganglia circuitry in Parkinson’s disease. Progr. Neurobiol.62, 63–88 (2000).
  • Cookson MR. Pathways to Parkinsonism. Neuron37, 7–10 (2003).
  • Eriksen JL, Wszolek Z, Petrucelli L. Molecular pathogenesis of Parkinson disease. Arch. Neurol.62, 353–357 (2005).
  • Wood-Kaczmar A, Gandhi S, Wood NW. Understanding the molecular causes of Parkinson’s disease. Trends Mol. Med.12, 521–528 (2006).
  • Thomas B, Beal MF. Parkinson’s disease. Hum. Mol. Genet.16(Spec. No. 2), R183–R194 (2007).
  • Olanow CW. The pathogenesis of cell death in Parkinson’s disease – 2007. Mov. Disord.22(Suppl. 17), S335–S342 (2007).
  • McNaught KS, Olanow CW. Proteolytic stress: a unifying concept for the etiopathogenesis of Parkinson’s disease. Ann. Neurol.53(Suppl. 3), S73–S84 (2003).
  • Betarbet R, Sherer TB, Greenamyre JT. Ubiquitin–proteasome system and Parkinson’s diseases. Exp. Neurol.191(Suppl. 1), S17–S27 (2005).
  • Betarbet R, Canet-Aviles RM, Sherer TB et al. Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1, α-synuclein, and the ubiquitin–proteasome system. Neurobiol. Dis.22, 404–420 (2006).
  • McNaught KS, Olanow CW. Protein aggregation in the pathogenesis of familial and sporadic Parkinson’s disease. Neurobiol. Aging27, 530–545 (2006).
  • Lewy FH. Handbuch der Neurologie (3rd Edition). Lewandowsky M, Abelsdorff G (Eds). Springer, Berlin, Germany 920–933 (1912).
  • Spillantini MG, Schmidt ML, Lee VM et al. A-synuclein in Lewy bodies. Nature388, 839–840 (1997).
  • Goedert M. A-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci.2, 492–501 (2001).
  • Hirsch E, Graybiel A, Agid Y. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature334, 345–348 (1988).
  • Gibb WR. Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigrostriatal projections and differential neuronal susceptibility in Parkinson’s disease. Brain Res.581, 283–291 (1992).
  • Kastner A, Hirsch EC, Lejeune O et al. Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to their neuromelanin content? J. Neurochem.59, 1080–1089 (1992).
  • Youdim MB, Ben-Shachar D, Riederer P. The enigma of neuromelanin in Parkinson’s disease substantia nigra. J. Neural Transm. Suppl.43, 113–122 (1994).
  • Zecca L, Zucca FA, Wilms H, Sulzer D. Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci.26, 578–580 (2003).
  • Fedorow H, Tribl F, Halliday G et al. Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson’s disease. Progr. Neurobiol.75, 109–124 (2005).
  • Ostrerova N, Petrucelli L, Farrer M et al. α-synuclein shares physical and functional homology with 14-3-3 proteins. J. Neurosci.19, 5782–5791 (1999).
  • Kim TD, Paik SR, Yang CH, Kim J. Structural changes in α-synuclein affect its chaperone-like activity in vitro. Protein Sci.9, 2489–2496 (2000).
  • Steece-Collier K, Maries E, Kordower JH. Etiology of Parkinson’s disease: genetics and environment revisited. Proc. Natl Acad. Sci. USA99, 13972–13974 (2002).
  • Bussell R Jr, Eliezer D. A structural and functional role for 11-mer repeats in α-synuclein and other exchangeable lipid binding proteins. J. Mol. Biol.329, 763–778 (2003).
  • Bisaglia M, Tessari I, Pinato L et al. A topological model of the interaction between α-synuclein and sodium dodecyl sulfate micelles. Biochemistry44, 329–339 (2005).
  • Golbe LI. α-synuclein and Parkinson’s disease. Mov. Disord.14, 6–9 (1999).
  • Zhang Y, Dawson VL, Dawson TM. Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol. Dis.7, 240–250 (2000).
  • Lotharius J, Brundin P. Pathogenesis of Parkinson’s disease: dopamine, vesicles and α-synuclein. Nat. Rev. Neurosci.3, 932–942 (2002).
  • Bonifati V, Oostra BA, Heutink P. Unraveling the pathogenesis of Parkinson’s disease – the contribution of monogenic forms. Cell. Mol. Life Sci.61, 1729–1750 (2004).
  • Gasser T. Genetics of Parkinson’s disease. Curr. Opin. Neurol.18, 363–369 (2005).
  • Hardy J, Cai H, Cookson MR, Gwinn-Hardy K, Singleton A. Genetics of Parkinson’s disease and parkinsonism. Ann. Neurol.60, 389–398 (2006).
  • Polymeropoulos MH, Lavedan C, Leroy E et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science276, 2045–2047 (1997).
  • Krüger R, Kuhn W, Muller T et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat. Genet.18, 106–108 (1998).
  • Zarranz JJ, Alegre J, Gomez-Esteban JC et al. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol.55, 164–173 (2004).
  • Chartier-Harlin MC, Kachergus J, Roumier C et al. A-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet364, 1167–1169 (2004).
  • Ibanez P, Bonnet AM, Debarges B et al. Causal relation between α-synuclein gene duplication and familial Parkinson’s disease. Lancet364, 1169–1171 (2004).
  • Farrer M, Kachergus J, Forno L et al. Comparison of kindreds with parkinsonism and α-synuclein genomic multiplications. Ann. Neurol.55, 174–179 (2004).
  • Singleton AB, Farrer M, Johnson J et al. α-synuclein locus triplication causes Parkinson’s disease. Science302, 841 (2003).
  • Kanda S, Bishop JF, Eglitis MA, Yang Y, Mouradian MM. Enhanced vulnerability to oxidative stress by α-synuclein mutations and C-terminal truncation. Neuroscience97, 279–284 (2000).
  • Tabrizi SJ, Orth M, Wilkinson JM et al. Expression of mutant α-synuclein causes increased susceptibility to dopamine toxicity. Hum. Mol. Genet.9, 2683–2689 (2000).
  • Przedborski S, Jackson-Lewis VR. Free Radicals in Brain Pathophysiology. Poli G, Cadenas E, Packer L (Eds). Marcel Dekker, NY, USA 273–290 (2000).
  • Lee M, Hyun D, Halliwell B, Jenner P. Effect of the overexpression of wild type or mutant α-synuclein on cell susceptibility to insult. J. Neurochem.76, 998–1005 (2001).
  • Tanaka Y, Engelender S, Igarashi S et al. Inducible expression of mutant α-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum. Mol. Genet.10, 919–926 (2001).
  • Junn E, Mouradian MM. Human α-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neurosci. Lett.320, 146–150 (2002).
  • Xu J, Kao SY, Lee FJ et al. Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat. Med.8, 600–606 (2002).
  • Ischiropoulos H, Beckman JS. Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J. Clin. Invest.111, 163–169 (2003).
  • Maguire-Zeiss KA, Short DW, Federoff HJ. Synuclein, dopamine and oxidative stress: co-conspirators in Parkinson’s disease? Brain Res. Mol. Brain Res.134, 18–23 (2005).
  • Cookson MR, van der Brug M. Cell systems and the toxic mechanism(s) of α-synuclein. Exp. Neurol.209, 5–11 (2008).
  • Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Disc.3, 205–214 (2004).
  • Berg D, Youdim MB, Riederer P. Redox imbalance. Cell Tissue Res.318, 201–213 (2004).
  • Yu S, Uéda K, Chan P. α-synuclein and dopamine metabolism. Mol. Neurobiol.31, 243–254 (2005).
  • Fasano M, Bergamasco B, Lopiano L. Modifications of the iron-neuromelanin system in Parkinson’s disease. J. Neurochem.96, 909–916 (2006).
  • Fasano M, Bergamasco B, Lopiano L. Is neuromelanin changed in Parkinson’s disease? Investigations by magnetic spectroscopies. J. Neural Transm.113, 769–774 (2006).
  • Dodson MW, Guo M. Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Curr. Opin. Neurobiol.17, 331–337 (2007).
  • Zecca L, Gallorini M, Schünemann V et al. Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J. Neurochem.76, 1766–1773 (2001).
  • Volles MJ, Lee SJ, Rochet JC et al. Vesicle permeabilization by protofibrillar α-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry40, 7812–7819 (2001).
  • Volles MJ, Lansbury PT Jr. Vesicle permeabilization by protofibrillar α-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry41, 4595–4602 (2002).
  • Lashuel HA, Petre BM, Wall J et al. α-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol.322, 1089–1102 (2002).
  • Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr. Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science294, 1346–1349 (2001).
  • Rochet JC, Outeiro TF, Conway KA et al. Interactions among α-synuclein, dopamine, and biomembranes: some clues for understanding neurodegeneration in Parkinson’s disease. J. Mol. Neurosci.23, 23–24 (2004).
  • Montine TJ, Farris DB, Graham DG. Covalent crosslinking of neurofilament proteins by oxidized catechols as a potential mechanism of Lewy body formation. J. Neuropathol. Exp. Neurol.54, 311–319 (1995).
  • Hao R, MacDonald RG, Ebadi M, Schmit JC, Pfeiffer RF. Stable interaction between G-actin and neurofilament light subunit in dopaminergic neurons. Neurochem. Int.31, 825–834 (1997).
  • Fasano M, Giraudo S, Coha S, Bergamasco B, Lopiano L. Residual substantia nigra neuromelanin in Parkinson’s disease is cross-linked to α-synuclein. Neurochem. Int.42, 603–606 (2003).
  • Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res.318, 121–134 (2004).
  • Michell AW, Lewis SJG, Foltynie T, Barker RA. Biomarkers and Parkinson’s disease. Brain127, 1693–1705 (2004).
  • Rachakonda V, Pan TH, Le WD. Biomarkers of neurodegenerative disorders: how good are they? Cell Res.14, 347 (2004).
  • Dorsey ER, Holloway RG, Ravina BM. Biomarkers in Parkinson’s disease. Expert Rev. Neurother.6, 823–831 (2006).
  • Schulenborg T, Schmidt O, van Hall A et al. Proteomics in neurodegeneration – disease driven approaches. J. Neural Transm.113, 1055–1073 (2006).
  • Sheta EA, Appel SH, Goldknopf IL. 2D gel blood serum biomarkers reveal differential clinical proteomics of the neurodegenerative diseases. Expert Rev. Proteomics3, 45–62 (2006).
  • Fasano M, Bergamasco B, Lopiano L. The proteomic approach in Parkinson’s disease. Proteomics Clin. Appl.1, 1428–1435 (2007).
  • Jin J, Hulette C, Wang Y et al. Proteomic identification of a stress protein, mortalin/mthsp70/GRP75: relevance to Parkinson disease. Mol. Cell. Proteomics5, 1193–1204 (2006).
  • Basso M, Giraudo S, Lopiano L et al. Proteome analysis of mesencephalic tissues: evidence for Parkinson’s disease. Neurol. Sci.24, 155–156 (2003).
  • Basso M, Giraudo S, Corpillo D et al. Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics4, 3943–3952 (2004).
  • Tribl F, Gerlach M, Marcus K et al. “Subcellular proteomics” of neuromelanin granules isolated from the human brain. Mol. Cell. Proteomics4, 945–957 (2005).
  • Tribl F, Marcus K, Bringmann G et al. Proteomics of the human brain: sub-proteomes might hold the key to handle brain complexity. J. Neural Transm.113, 1041–1054 (2006).
  • Werner CJ, Heyny-von Haussen R, Mall G, Wolf S. Proteome analysis of human substantia nigra in Parkinson’s disease. Proteome Sci.6, 8 (2008).
  • Krapfenbauer K, Engidawork E, Cairns N, Fountoulakis M, Lubec G. Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res.967, 152–160 (2003).
  • Fang J, Nakamura T, Cho DH, Gu Z, Lipton SA. S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson’s disease. Proc. Natl Acad. Sci. USA104, 18742–18747 (2007).
  • Hattori F, Oikawa S. Peroxiredoxins in the central nervous system. Subcell. Biochem.44, 357–374 (2007).
  • Choi J, Sullards MC, Olzmann JA et al. Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J. Biol. Chem.281, 10816–10824 (2006).
  • Cohen N, Betts DR, Rechavi G, Amariglio N, Trakhtenbrot L. Clonal expansion and not cell interconversion is the basis for the neuroblast and nonneuronal types of the SK-N-SH neuroblastoma cell line. Cancer Genet. Cytogenet.143, 80–84 (2003).
  • Gomez-Santos C, Ferrer I, Santidrian AF et al. DA induces autophagic cell death and α-synuclein increase in human neuroblastoma SH-SY5Y cells. J. Neurosci. Res.73, 341–350 (2003).
  • Colapinto M, Mila S, Giraudo S et al. α-synuclein protects SH-SY5Y cells from dopamine toxicity. Biochem. Biophys. Res. Commun.349, 1294–1300 (2006).
  • Albani D, Peverelli E, Rametta R et al. Protective effect of TAT-delivered α-synuclein: relevance of the C-terminal domain and involvement of HSP70. FASEB J.18, 1713–1715 (2004).
  • Choi HS, Lee SH, Kim SY et al. Transduced Tat-α-synuclein protects against oxidative stress in vitro and in vivo. J. Biochem. Mol. Biol.39, 253–262 (2006).
  • Bonifati V, Rizzu P, van Baren MJ et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science299, 256–259 (2002).
  • Martinat C, Shendelman S, Jonason A et al. Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES-derived cell model of primary parkinsonism. PLoS Biol.2, E327 (2004).
  • Shendelman S, Jonason A, Martinat C, Leete T, Abeliovich A. DJ-1 is a redox-dependent molecular chaperone that inhibits α-synuclein aggregate formation. PLoS Biol.2, E362 (2004).
  • Xu J, Zhong N, Wang H et al. The Parkinson’s disease-associated DJ-1 protein is a transcriptional co-activator that protects against neuronal apoptosis. Hum. Mol. Genet.14, 1231–1241 (2005).
  • Zhou W, Freed CR. DJ-1 up-regulates glutathione synthesis during oxidative stress and inhibits A53T α-synuclein toxicity. J. Biol. Chem.280, 43150 (2005).
  • Zhou Y, Gu G, Goodlett DR et al. Analysis of α-synuclein-associated proteins by quantitative proteomics. J. Biol. Chem.279, 39155–39164 (2004).
  • Jin J, Li GJ, Davis J et al. Identification of novel proteins interacting with both α-synuclein and DJ-1. Mol. Cell Proteomics6, 845–859 (2007).
  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci.3, 1301–1306 (2000).
  • Liu J, Zhou Y, Wang Y, Fong H, Murray TM, Zhang J. Identification of proteins involved in microglial endocytosis of α-synuclein. J. Proteome Res.6, 3614–3627 (2007).
  • Chandra S, Gallardo G, Fernández-Chacón R, Schlüter OM, Südhof TC. A-synuclein cooperates with CSPa in preventing neurodegeneration. Cell123, 383–396 (2005).
  • Larsen KE, Schmitz Y, Troyer MD et al. α-synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. J. Neurosci.26, 11915–11922 (2006).
  • Mosharov EV, Staal RG, Bové J et al. α-synuclein overexpression increases cytosolic catecholamine concentration. J. Neurosci.26, 9304–9311 (2006).
  • Feany MB, Bender WW. A Drosophila model of Parkinson’s disease. Nature404, 394–398 (2000).
  • Cooper AA, Gitler AD, Cashikar A et al. α-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science313, 324–328 (2006).
  • Kuwahara T, Koyama A, Gengyo-Ando K et al. Familial Parkinson mutant α-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J. Biol. Chem.281, 334–340 (2006).
  • Ichibangase T, Saimaru H, Takamura N et al. Proteomics of Caenorhabditis elegans over-expressing human α-synuclein analyzed by fluorogenic derivatization-liquid chromatography/tandem mass spectrometry: identification of actin and several ribosomal proteins as negative markers at early Parkinson’s disease stages. Biomed. Chromatogr.22(3), 232–234 (2007).
  • Fulga TA, Elson-Schwab I, Khurana V et al. Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat. Cell Biol.9, 139–148 (2007).
  • Xun Z, Sowell RA, Kaufman TC, Clemmer DE. Protein expression in a Drosophila model of Parkinson’s disease. J. Proteome Res.6, 348–357 (2007).
  • Xun Z, Sowell RA, Kaufman TC, Clemmer DE. Lifetime proteomic profiling of an A30P α-synuclein Drosophila model of Parkinson’s disease. J. Proteome Res.6, 3729–3738 (2007).
  • Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron39, 889–909 (2003).
  • Palacino JJ, Sagi D, Goldberg MS et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem.279, 18614–18622 (2004).
  • Chung KK, Thomas B, Li X et al. S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science304, 1328–1331 (2004).
  • Goldberg MS, Fleming SM, Palacino JJ et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem.278, 43628–43635 (2003).
  • Fountoulakis M, Kossida S. Proteomics-driven progress in neurodegeneration research. Electrophoresis27, 1556–1573 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.