238
Views
44
CrossRef citations to date
0
Altmetric
Review

Protein biomarkers for amyotrophic lateral sclerosis

&
Pages 249-262 | Published online: 09 Jan 2014

References

  • Mitchell JD, Borasio GD. Amyotrophic lateral sclerosis. Lancet369, 2031–2041 (2007).
  • Baek WS, Desai NP. ALS: pitfalls in the diagnosis. Pract. Neurol.7, 74–81 (2007).
  • Schymick JC, Talbot K, Traynor BJ. Genetics of sporadic amyotrophic lateral sclerosis. Hum. Mol. Genet.16, 233–242 (2007).
  • Majoor-Krakauer D, Willems PJ, Hofman A. Genetic epidemiology of amyotrophic lateral sclerosis. Clin. Genet.63, 83–101 (2003).
  • Kunst CB. Complex genetics of amyotrophic lateral sclerosis. Am. J. Hum. Genet.75, 933–947 (2004).
  • Valentine JS, Doucette PA, Zittin Potter S. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu. Rev. Biochem.74, 563–593 (2005).
  • Bowser R, Cudkowicz M, Kaddurah-Daouk R. Biomarkers for amyotrophic lateral sclerosis. Expert Rev. Mol. Diagn.6, 387–398 (2006).
  • Cudkowicz M, Qureshi M, Shefner J. Measures and markers in amyotrophic lateral sclerosis. NeuroRx1, 273–283 (2004).
  • Ince P, Stout N, Shaw P et al. Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathol. Appl. Neurobiol.19, 291–299 (1993).
  • Alexianu ME, Ho BK, Mohamed AH et al. The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann. Neurol.36, 846–858 (1994).
  • Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N. Engl. J. Med.344, 1688–1700 (2001).
  • Neumann M, Sampathu DM, Kwong LK et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science314, 130–133 (2006).
  • Mackenzie IR, Bigio EH, Ince PG et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann. Neurol.61, 427–434 (2007).
  • Neumann M, Kwong LK, Sampathu DM et al. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch. Neurol.64, 1389–1394 (2007).
  • Nystrom T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J.24, 1311–1317 (2005).
  • Gruzman A, Wood WL, Alpert E et al. Common molecular signature in SOD1 for both sporadic and familial amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA104, 12524–12529 (2007).
  • Rakhit R, Robertson J, Vande Velde C et al. An immunological epitope selective for pathological monomer-misfolded SOD1 in ALS. Nature Med.13, 754–759 (2007).
  • Sunderland T, Gur RE, Arnold SE. The use of biomarkers in the elderly: current and future challenges. Biol. Psychiatry58, 272–276 (2005).
  • Shaw LM, Korecka M, Clark CM et al. Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat. Rev. Drug Discovery6, 295–303 (2007).
  • Gil J, Preux P-M, Alioum A et al. Disease progression and survivial in ALS: first multi-state model approach. Amyotroph. Lateral Scler.8, 224–229 (2007).
  • O’toole O, Traynor BJ, Brennan P et al. Epidemiology and clinical features of amyotrophic lateral sclerosis in Ireland between 1995 and 2004. J. Neurol. Neurosurg. Psychiatry79, 30–32 (2008).
  • Kolarcik C, Bowser R. Plasma and cerebrospinal fluid-based protein biomarkers for motor neuron disease. Mol. Diagn. Ther.10, 281–292 (2006).
  • Katz R. Biomarkers and surrogate markers: an FDA perspective. NeuroRx1, 189–195 (2004).
  • Ranganathan S, Nicoll GC, Henry S et al. Comparative proteomic profiling of cerebrospinal fluid between living and post mortem ALS and control subjects. Amyotroph. Lateral Scler.3, 1–7 (2007).
  • Leigh PN, Simmons A, Williams S et al. Imaging: MRS/MRI/PET/SPECT: summary. Amyotroph. Lateral Scler. Other Motor Neuron. Disord.3(Suppl. 1), S75–S80 (2002).
  • Hu S, Loo JA, Wong DT. Human body fluid proteome analysis. Proteomics6, 6326–6353 (2006).
  • Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci.7, 41–53 (2006).
  • Adachi J, Kumar C, Zhang Y et al. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol.7, R80 (2006).
  • West-Nielsen M, Hogdall EV, Marchiori E et al. Sample handling for mass spectrometric proteomic investigations of human sera. Anal. Chem.77, 5114–5123 (2005).
  • Ranganathan S, Polshyna A, Nicholl G et al. Assessment of protein stability in cerebrospinal fluid using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry protein profiling. Clin. Proteom.2, 91–101 (2006).
  • Marouga R, David S, Hawkins E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal. Chim. Acta382, 669–678 (2005).
  • Anderson K, Potter A, Baban D et al. Protein expression changes in spinal muscular atrophy revealed with a novel antibody array technology. Brain126, 2052–2064 (2003).
  • Connor JR, Mitchell RM, Lee SY et al. Biomarkers in ALS patients stratified by HFE genotype. Soc. Neurosci. Abstr. (2007).
  • McDonald WH, Yates JR III. Shotgun proteomics and biomarker discovery. Dis. Markers18, 99–105 (2002).
  • Ramstrom M, Ivonin I, Johansson A et al. Cerebrospinal fluid protein patterns in neurodegenerative disease revealed by liquid chromatography–Fourier transform ion cyclotron resonance mass spectrometry. Proteomics4, 4010–4018 (2004).
  • Comuzzi B, Sadar MD. Proteomic analyses to identify novel therapeutic targets for the treatment of advanced prostate cancer. Cellscience3, 61–81 (2006).
  • Wong JW, Sullivan MJ, Cagney G. Computational methods for the comparative quantification of proteins in label-free LCn-MS experiments. Brief. Bioinform. (2007).
  • Elahi E, Kumm J, Ronaghi M. Global genetic analysis. J. Biochem. Mol. Biol.37, 11–27 (2004).
  • van Es MA, van Vaught PW Blauw HM et al.ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study. Lancet Neurol.6, 869–877 (2007).
  • Schymick JC, Scholz SW, Fung HC et al. Genome-wide genotyping in amyotrophic lateral sclerosis and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol.6, 322–328 (2007).
  • Kasperaviciute D, Weale ME, Shianna KV et al. Large-scale pathways-based association study in amyotrophic lateral sclerosis. Brain130, 2292–2301 (2007).
  • Dunckley T, Huentelman MJ, Craig DW et al. Whole-genome analysis of sporadic amyotrophic lateral sclerosis. N. Engl. J. Med.357, 775–788 (2007).
  • van Es MA, van Vught PW, Blauw HM et al. Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis. Nat. Genet.40, 29–31 (2008).
  • Bilic E, Bilic E, Rudan I et al. Comparison of the growth hormone, IGF-1 and insulin in cerebrospinal fluid and serum between patients with motor neuron disease and healthy controls. Eur. J. Neurol.13, 1340–1345 (2006).
  • Hosback S, Hardiman O, Nolan CM et al. Circulating insulin-like growth factors and related binding proteins are selectively altered in amyotrophic lateral sclerosis and multiple sclerosis. Growth Horm. IGF Res.17, 472–479 (2007).
  • Johansson A, Larsson A, Nygren I et al. Increased serum and cerebrospinal fluid FGF-2 levels in amyotrophic lateral sclerosis. Neuroreport14, 1867–1869 (2003).
  • Ilzecka J, Stelmasiak Z. Brain-derived neurotrophic factor is not altered in the serum and cerebrospinal fluid of amyotrophic lateral sclerosis patients. Neurol. Sci.22, 473–474 (2002).
  • Brettschneider J, Widl K, Schattauer D et al. Cerebrospinal fluid erythropoietin (EPO) in amyotrophic lateral sclerosis. Neurosci. Lett.416, 257–260 (2007).
  • Brettschneider J, Widl K, Ehrenreich H et al. Erythropoietin in the cerebrospinal fluid in neurodegenerative diseases. Neurosci. Lett.404, 347–351 (2006).
  • Cronin S, Greenway MJ, Ennis S et al. Elevated serum angiogenin levels in ALS. Neurology67, 1833–1836 (2006).
  • Nygren I, Larsson A, Johansson A et al. VEGF is increased in serum but not in spinal cord from patients with amyotrophic lateral sclerosis. Neuroreport13, 2199–2201 (2002).
  • Devos D, Moreau C, Lassalle P et al. Low levels of the vascular endothelial growth factor in CSF from early ALS patients. Neurology62, 2127–2129 (2004).
  • Moreau C, Devos D, Brunaud-Danel V et al. Paradoxical response of VEGF expression to hypoxia in CSF of patients with ALS. J. Neurol. Neurosurg. Psychiatry77, 255–257 (2006).
  • Ilzecka J. Decreased serum endoglin level in patients with amyotrophic lateral sclerosis: a preliminary report. Scand. J. Clin. Lab. Invest.12, 1–5 (2007).
  • Smirnova IV, Festoff BW. Alterations in serum thrombospondin in patients with amyotrophic lateral sclerosis. J. Neurol. Sci.127, 207–213 (1994).
  • Ilzecka J, Stelmasiak Z, Dobosz B. Interleukin-1β converting enzyme/caspase-1 (ICE/caspase-1) and soluble APO-1/Fas/CD 95 receptor in amyotrophic lateral sclerosis patients. Acta Neurol. Scand.103, 255–258 (2001).
  • Poloni M, Facchetti D, Mai R et al. Circulating levels of tumour necrosis factor-alpha and its soluble receptors are increased in the blood of patients with amyotrophic lateral sclerosis. Neurosci. Lett.287, 211–214 (2000).
  • Rentzos M, Nikolaou C, Rombos A et al. RANTES levels are elevated in serum and cerebrospinal fluid in patients with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron. Disord.8, 283–287 (2007).
  • Rentzos M, Michalopoulou M, Nikolaou C et al. Serum levels of soluble intercellular adhesion molecule-1 (s-ICAM-1) and soluble endothelial leukocyte adhesion molecule-1(s-ELAM-1) in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron. Disord.6, 118–121 (2005).
  • Ilzecka J. Cerebrospinal fluid Flt3 ligand level in patients with amyotrophic lateral sclerosis. Acta Neurol. Scand.114, 205–209 (2006).
  • Wilms H, Sievers J, Dengler R et al. Intrathecal synthesis of monocyte chemoattractant protein-1 (MCP-1) in amyotrophic lateral sclerosis: further evidence for microglial activation in neurodegeneration. J. Neuroimmunol.144, 139–142 (2003).
  • Baron P, Bussini S, Cardin V et al. Production of monocyte chemoattractant protein-1 in amyotrophic lateral sclerosis. Muscle Nerve32, 541–544 (2005).
  • Moreau C, Devos D, Brunaud-Danel V et al. Elevated IL-6 and TNF-α levels in patients with ALS: inflammation or hypoxia? Neurology65, 1958–1960 (2005).
  • Ono S, Hu J, Shimizu N et al. Increased interleukin-6 of skin and serum in amyotrophic lateral sclerosis. J. Neurol. Sci.187, 27–34 (2001).
  • Houi K, Kobayashi T, Kato S et al. Increased plasma TGF-β1 in patients with amyotrophic lateral sclerosis. Acta Neurol. Scand.106, 299–301 (2002).
  • Ilzecka J, Stelmasiak Z, Dobosz B. Transforming growth factor-β 1 (TGF-β 1) in patients with amyotrophic lateral sclerosis. Cytokine20, 239–243 (2002).
  • Sussmuth SD, Tumani H, Ecker D et al. Amyotrophic lateral sclerosis: disease stage related changes of tau protein and S100 β in cerebrospinal fluid and creatine kinase in serum. Neurosci. Lett.353, 57–60 (2003).
  • Beuche W, Yushchenko M, Mader M et al. Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. Neuroreport11, 3419–3422 (2000).
  • Ono S, Imai T, Shimizu N et al. Decreased plasma levels of fibronectin in amyotrophic lateral sclerosis. Acta Neurol. Scand.101, 391–394 (2000).
  • Houi K, Kobayashi T, Kato S et al. Serum type IV collagen increases with duration of amyotrophic lateral sclerosis. Muscle Nerve23, 430–432 (2000).
  • Otto M, Bahn E, Wiltfang J et al. Decrease of S100 β protein in serum of patients with amyotrophic lateral sclerosis. Neurosci. Lett.240, 171–173 (1998).
  • Ihara Y, Mori A, Hayabara T et al. Superoxide dismutase and free radicals in sporadic amyotrophic lateral sclerosis: relationship to clinical data. J. Neurol. Sci.134, 51–56 (1995).
  • Grundstrom E, Lindholm D, Johansson A et al. GDNF but not BDNF is increased in cerebrospinal fluid in amyotrophic lateral sclerosis. Neuroreport11, 1781–1783 (2000).
  • Kuncl RW, Bilak MM, Bilak SR et al. Pigment epithelium-derived factor is elevated in CSF of patients with amyotrophic lateral sclerosis. J. Neurochem.81, 178–184 (2002).
  • Kern MA, Friese M, Grundstrom E et al. Amyotrophic lateral sclerosis: evidence for intact hepatocyte growth factor/MET signalling axis. Cytokine15, 315–319 (2001).
  • Tsuboi Y, Kakimoto K, Akatsu H et al. Hepatocyte growth factor in cerebrospinal fluid in neurologic disease. Acta Neurol. Scand.106, 99–103 (2002).
  • Pirttila T, Vanhatalo S, Turpeinen U et al. Cerebrospinal fluid insulin-like growth factor-1, insulin growth factor binding protein-2 or nitric oxide are not increased in MS or ALS. Acta Neurol. Scand.109, 337–341 (2004).
  • Ilzecka J. Cerebrospinal fluid vascular endothelial growth factor in patients with amyotrophic lateral sclerosis. Clin. Neurol. Neurosurg.106, 289–293 (2004).
  • Nagata T, Nagano I, Shiote M et al. Elevation of MCP-1 and MCP-1/VEGF ratio in cerebrospinal fluid of ALS patients Neurol. Res.29, 772–776 (2007).
  • Nagata T, Nagano I, Shiote M et al. Elevation of MCP-1 and MCP-1/VEGF ratio in cerebrospinal fluid of ALS patients Neurol. Res.29, 772–776 (2007).
  • Sekizawa T, Openshaw H, Ohbo K et al. Cerebrospinal fluid interleukin 6 in amyotrophic lateral sclerosis: immunological parameter and comparison with inflammatory and non-inflammatory central nervous system diseases. J. Neurol. Sci.154, 194–199 (1998).
  • Sjogren M, Davidsson P, Wallin A et al. Decreased CSF-β-amyloid 42 in Alzheimer’s disease and amyotrophic lateral sclerosis may reflect mismetabolism of β-amyloid induced by disparate mechanisms. Dement. Geriatr. Cogn. Disord.13, 112–118 (2002).
  • Jimenez-Jimenez FJ, Hernanz A, Medina-Acebron S et al. Tau protein concentrations in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neurol. Scand.111, 114–117 (2005).
  • Brettschneider J, Petzold A, Sussmuth SD et al. Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology66, 852–856 (2006).
  • Zetterberg H, Jacobsson J, Rosengren L et al. Cerebrospinal fluid neurofilament light levels in amyotrophic lateral sclerosis: impact of SOD1 genotype. Eur. J. Neurol.14, 1329–1333 (2007).
  • Norgren N, Rosengren L, Stigbrand T. Elevated neurofilament levels in neurological diseases. Brain Res.987, 25–31 (2003).
  • Rosengren LE, Karlsson JE, Karlsson JO et al. Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J. Neurochem.67, 2013–2018 (1996).
  • Ranganathan S, Williams E, Ganchev P et al. Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J. Neurochem.95, 1461–1471 (2005).
  • Pasinetti GM, Ungar LH, Lange DJ et al. Identification of potential CSF biomarkers in ALS. Neurology66, 1218–1222 (2006).
  • Lorenzl S, Albers DS, LeWitt PA et al. Tissue inhibitors of matrix metalloproteinases are elevated in cerebrospinal fluid of neurodegenerative diseases. J. Neurol. Sci.207, 71–76 (2003).
  • Jacobsson J, Jonsson PA, Andersen PM et al. Superoxide dismutase in CSF from amyotrophic lateral sclerosis patients with and without CuZn-superoxide dismutase mutations. Brain124, 1461–1466 (2001).
  • Ilzecka J. Decreased cerebrospinal fluid cytochrome c levels in patients with amyotrophic lateral sclerosis. Scand. J. Clin. Lab. Invest.67, 264–269 (2007).
  • Matsuishi T, Nagamitsu S, Shoji H et al. Increased cerebrospinal fluid levels of substance P in patients with amyotrophic lateral sclerosis. Short communication. Neural. Transm.106, 943–948 (1999).
  • Lacomblez L, Doppler V, Beucler I et al. APOE: a potential marker of disease progression in ALS. Neurology58, 1112–1114 (2002).
  • Borroni B, Premi E, Di Luca M et al. Combined biomarkers for early Alzheimer disease diagnosis. Curr. Med. Chem.14, 1171–1178 (2007).
  • Ray S, Britschgi M, Herbert C et al. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nature Med.13, 1359–1362 (2007).
  • Jiang YM, Yamamoto M, Kobayashi Y et al. Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis. Ann. Neurol.57, 236–251 (2005).
  • Malaspina A, Kaushik N, de Belleroche J. Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. J. Neurochem.77, 132–145 (2001).
  • Wang XS, Simmons Z, Liu W et al. Differential expression of genes in amyotrophic lateral sclerosis revealed by profiling the post mortem cortex. Amyotroph. Lateral Scler.7, 201–210 (2006).
  • Dangond F, Hwang D, Camelo S et al. Molecular signature of late-stage human ALS revealed by expression profiling of postmortem spinal cord gray matter. Physiol. Genomics16, 229–239 (2004).
  • Kay A, Petzold A, Kerr M et al. Decreased cerebrospinal fluid apolipoprotein E after subarachnoid hemorrhage: correlation with injury severity and clinical outcome. Stroke34, 637–642 (2003).
  • Russman AN, Lederman RJ, Calabrese LH et al. Multifocal varicella–zoster virus vasculopathy without rash. Arch. Neurol.60, 1607–1609 (2003).
  • Gruener N, Gozlan O, Goldstein T et al. Iron, transferrin, and ferritin in cerebrospinal fluid of children. Clin. Chem.37, 263–265 (1991).
  • Lejon V, Robays J, N’Siesi FX et al. Treatment failure related to intrathecal immunoglobulin M (IgM) synthesis, cerebrospinal fluid IgM, and interleukin-10 in patients with hemolymphatic-stage sleeping sickness. Clin. Vaccine Immunol.14, 732–737 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.