115
Views
8
CrossRef citations to date
0
Altmetric
Review

Analysis of organelles within the nervous system: impact on brain and organelle functions

, &
Pages 333-351 | Published online: 09 Jan 2014

References

  • Au CE, Bell AW, Gilchrist A et al. Organellar proteomics to create the cell map. Curr. Opin. Cell Biol.19, 376–385 (2007).
  • Dreger M. Proteome analysis at the level of subcellular structures. Eur. J. Biochem.270, 589–599 (2003).
  • Hearing VJ. Biogenesis of pigment granules: a sensitive way to regulate melanocyte function. J. Dermatol. Sci.37, 3–14 (2005).
  • Dreger M. Subcellular proteomics. Mass Spectrom. Rev.22, 27–56 (2003).
  • Huber LA, Pfaller K, Vietor I. Organelle proteomics: implications for subcellular fractionation in proteomics. Circ. Res.92, 962–968 (2003).
  • Tribl F, Marcus K, Bringmann G et al. Proteomics of the human brain: sub-proteomes might hold the key to handle brain complexity. J. Neural Transm.113, 1041–1054 (2006).
  • Fountoulakis M. Application of proteomics technologies in the investigation of the brain. Mass Spectrom. Rev.23, 231–258 (2004).
  • Fountoulakis M, Hardmeier R, Hoger H, Lubec G. Postmortem changes in the level of brain proteins. Exp. Neurol.167, 86–94 (2001).
  • Graham JM, Rickwood D. Subcellular Fractionation: A Practical Approach. Graham JM, Rickwood D (Eds). Oxford University Press, NY, USA (1997).
  • Yates JR III, Gilchrist A, Howell KE, Bergeron JJ. Proteomics of organelles and large cellular structures. Nat. Rev. Mol. Cell Biol.6, 702–714 (2005).
  • Pasquali C, Fialka I, Huber LA. Subcellular fractionation, electromigration analysis and mapping of organelles. J. Chromatogr. B Biomed. Sci. Appl.722, 89–102 (1999).
  • Whittaker VP. The application of subcellular fractionation techniques to the study of brain function. Prog. Biophys. Mol. Biol.15, 39–96 (1965).
  • Pertoft H. Fractionation of cells and subcellular particles with Percoll. J. Biochem. Biophys. Methods44, 1–30 (2000).
  • Bolton VN, Braude PR. Preparation of human spermatozoa for in vitro fertilization by isopycnic centrifugation on self-generating density gradients. Arch. Androl.13, 167–176 (1984).
  • Kushimoto T, Basrur V, Valencia J et al. A model for melanosome biogenesis based on the purification and analysis of early melanosomes. Proc. Natl Acad. Sci. USA98, 10698–10703 (2001).
  • Howell KE, Gruenberg J, Ito A, Palade GE. Immuno-isolation of subcellular components. Prog. Clin. Biol. Res.270, 77–90 (1988).
  • Luzio JP, Mullock BM, Branch WJ, Richardson PJ. Immunoaffinity techniques for the purification and functional assessment of subcellular organelles. Prog. Clin. Biol. Res.270, 91–100 (1988).
  • Richardson PJ, Luzio JP. Immunoaffinity purification of membrane fractions from mammalian cells. Subcell. Biochem.12, 221–241 (1988).
  • Schindler J, Jung S, Niedner-Schatteburg G, Friauf E, Nothwang HG. Enrichment of integral membrane proteins from small amounts of brain tissue. J. Neural Transm.113, 995–1013 (2006).
  • Tribl F, Gerlach M, Marcus K et al. “Subcellular proteomics” of neuromelanin granules isolated from the human brain. Mol. Cell. Proteomics4, 945–957 (2005).
  • Robinson JM, Takizawa T, Vandre DD, Burry RW. Ultrasmall immunogold particles: important probes for immunocytochemistry. Microsc. Res. Tech.42, 13–23 (1998).
  • Bagshaw RD, Mahuran DJ, Callahan JW. Lysosomal membrane proteomics and biogenesis of lysosomes. Mol. Neurobiol.32, 27–42 (2005).
  • Murray JW, Bananis E, Wolkoff AW. Immunofluorescence microchamber technique for characterizing isolated organelles. Anal. Biochem.305, 55–67 (2002).
  • Lottspeich F. Proteome analysis: a pathway to the functional analysis of proteins. Angew. Chem. Int. Ed. Engl.38, 2476–2492 (1999).
  • Kellner R, Lottspeich F, Meyer HE. Microcharacterization of Proteins. Wiley-VCH, Weinheim, Germany (1999).
  • Aebersold R, Goodlett DR. Mass spectrometry in proteomics. Chem. Rev.101, 269–295 (2001).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature422, 198–207 (2003).
  • Meyer HE, Hoffmann-Posorske E, Korte H, Heilmeyer LM Jr. Sequence analysis of phosphoserine-containing peptides. Modification for picomolar sensitivity. FEBS Lett.204, 61–66 (1986).
  • Larsen MR, Roepstorff P. Mass spectrometric identification of proteins and characterization of their post-translational modifications in proteome analysis. Fresenius J. Anal. Chem.366, 677–690 (2000).
  • Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik26, 231–243 (1975).
  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem.250, 4007–4021 (1975).
  • Klose J, Nock C, Herrmann M et al. Genetic analysis of the mouse brain proteome. Nat. Genet.30, 385–393 (2002).
  • Kaindl AM, Sifringer M, Zabel C et al. Acute and long-term proteome changes induced by oxidative stress in the developing brain. Cell Death Differ.13(7), 1097–1109 (2005).
  • Palacino JJ, Sagi D, Goldberg MS et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem.279, 18614–18622 (2004).
  • Santoni V, Molloy M, Rabilloud T. Membrane proteins and proteomics: un amour impossible? Electrophoresis21, 1054–1070 (2000).
  • Zahedi RP, Meisinger C, Sickmann A. Two-dimensional benzyldimethyl-nhexadecylammonium chloride/SDS-PAGE for membrane proteomics. Proteomics5, 3581–3588 (2005).
  • Hartinger J, Stenius K, Hogemann D, Jahn R. 16-BAC/SDS-PAGE: a two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins. Anal. Biochem.240, 126–133 (1996).
  • Helling S, Schmitt E, Joppich C et al. 2-D differential membrane proteome analysis of scarce protein samples. Proteomics6, 4506–4513 (2006).
  • Tribl F, Lohaus C, Dombert T et al. Towards multi-dimensional liquid chromatography separation of proteins using fluorescence and isotope-coded protein labeling for quantitative proteomics. Proteomics8(6), 1204–1211(2008).
  • Wolters DA, Washburn MP, Yates JR III. An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem.73, 5683–5690 (2001).
  • Lüking A, Cahill DJ, Mullner S. Protein biochips: a new and versatile platform technology for molecular medicine. Drug Discov. Today10, 789–794 (2005).
  • Wingren C, Borrebaeck CA. Antibody microarray analysis of directly labelled complex proteomes. Curr. Opin. Biotechnol.19(1), 55–61 (2008).
  • Kusnezow W, Syagailo YV, Goychuk I, Hoheisel JD, Wild DG. Antibody microarrays: the crucial impact of mass transport on assay kinetics and sensitivity. Expert Rev. Mol. Diagn.6, 111–124 (2006).
  • Kusnezow W, Syagailo YV, Ruffer S et al. Optimal design of microarray immunoassays to compensate for kinetic limitations: theory and experiment. Mol. Cell. Proteomics5, 1681–1696 (2006).
  • Bertone P, Snyder M. Advances in functional protein microarray technology. FEBS J.272, 5400–5411 (2005).
  • Ong S-E, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol.1, 252–262 (2005).
  • Wu WW, Wang G, Baek SJ, Shen RF. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel-or LC-MALDI TOF/TOF. J. Proteome Res.5, 651–658 (2006).
  • Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis18, 2071–2077 (1997).
  • Gygi SP, Rist B, Gerber SA et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17, 994–999 (1999).
  • Schmidt A, Kellermann J, Lottspeich F. A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics5, 4–15 (2005).
  • Olsen JV, Andersen JR, Nielsen PA et al. HysTag – a novel proteomic quantification tool applied to differential display analysis of membrane proteins from distinct areas of mouse brain. Mol. Cell. Proteomics3, 82–92 (2004).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics3, 1154–1169 (2004).
  • Wiese S, Reidegeld KA, Meyer HE, Warscheid B. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics7, 340–350 (2007).
  • Ong SE, Blagoev B, Kratchmarova I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics1, 376–386 (2002).
  • Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass spectrometry in proteomics: a critical review. Anal. BioAnal. Chem.389, 1017–1031 (2007).
  • Mueller LN, Brusniak MY, Mani DR, Aebersold R. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J. Proteome Res.7, 51–61 (2008).
  • Liu H, Sadygov RG, Yates JR III. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem.76, 4193–4201 (2004)
  • Bondarenko PV, Chelius D, Shaler TA. Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. Anal. Chem.74, 4741–4749 (2002).
  • Andersen JS, Wilkinson CJ, Mayor T et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature426, 570–574 (2003).
  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA100, 6940–6945 (2003).
  • Barnidge DR, Dratz EA, Martin T et al. Absolute quantification of the G protein-coupled receptor rhodopsin by LC/MS/MS using proteolysis product peptides and synthetic peptide standards. Anal. Chem.75, 445–451 (2003).
  • Dunkley TP, Watson R, Griffin JL, Dupree P, Lilley KS. Localization of organelle proteins by isotope tagging (LOPIT). Mol. Cell. Proteomics3, 1128–1134 (2004).
  • Foster LJ, de Hoog CL, Zhang Y et al. A mammalian organelle map by protein correlation profiling. Cell125, 187–199 (2006).
  • Wiese S, Gronemeyer T, Ofman R et al. Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol. Cell. Proteomics6, 2045–2057 (2007).
  • Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science291, 2364–2369 (2001).
  • Helenius A, Aebi M. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem.73, 1019–1049 (2004).
  • Qian M, Sleat DE, Zheng H, Moore D, Lobel P. Proteomics analysis of serum from mutant mice reveals lysosomal proteins selectively transported by each of the two mannose 6-phosphate receptors. Mol. Cell. Proteomics7, 58–70 (2008).
  • Yamashita K, Hara-Kuge S, Ohkura T. Intracellular lectins associated with N-linked glycoprotein traffic. Biochim. Biophys. Acta1473, 147–160 (1999).
  • David V, Hochstenbach F, Rajagopalan S, Brenner MB. Interaction with newly synthesized and retained proteins in the endoplasmic reticulum suggests a chaperone function for human integral membrane protein IP90 (calnexin). J. Biol. Chem.268, 9585–9592 (1993).
  • Sleat DE, Lobel P. Ligand binding specificities of the two mannose 6-phosphate receptors. J. Biol. Chem.272, 731–738 (1997).
  • Sakuraba H, Sawada M, Matsuzawa F et al. Molecular pathologies of and enzyme replacement therapies for lysosomal diseases. CNS Neurol. Disord. Drug Targets5, 401–413 (2006).
  • Morelle W, Michalsky JC. The mass spectrometric analysis of glycoproteins and their glycan structures. Curr. Anal. Chem.1, 29–57 (2005).
  • Monzo A, Bonn GK, Guttman A. Lectin-immobilization strategies for affinity purification and separation of glycoconjugates. Trends Analyt. Chem.26, 423–432 (2007).
  • Sharon N, Lis H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology14, R53–R62 (2004).
  • Herbert B. Advances in protein solubilisation for two-dimensional electrophoresis. Electrophoresis20, 660–663 (1999).
  • Chambers G, Lawrie L, Cash P, Murray GI. Proteomics: a new approach to the study of disease. J. Pathol.192, 280–288 (2000).
  • Binz PA, Hochstrasser DF, Appel RD. Mass spectrometry-based proteomics: current status and potential use in clinical chemistry. Clin. Chem. Lab. Med.41, 1540–1551 (2003).
  • Davidsson P, Brinkmalm A, Karlsson G et al. Clinical mass spectrometry in neuroscience. Proteomics and peptidomics. Cell. Mol. Biol. (Noisy-le-grand)49, 681–688 (2003).
  • Wu CC, Yates JR III. The application of mass spectrometry to membrane proteomics. Nat. Biotechnol.21, 262–267 (2003).
  • Choudhary J, Grant SG. Proteomics in postgenomic neuroscience: the end of the beginning. Nat. Neurosci.7, 440–445 (2004).
  • Marcus K, Schmidt O, Schäfer H et al. Proteomics – application to the brain. Int. Rev. Neurobiol.61, 285–311 (2004).
  • Paulson L, Persson R, Karlsson G et al. Proteomics and peptidomics in neuroscience. Experience of capabilities and limitations in a neurochemical laboratory. J. Mass Spectrom.40, 202–213 (2005).
  • Sudhof TC. Synaptic vesicles: an organelle comes of age. Cell127, 671–673 (2006).
  • Palkovits M. Topography of chemically identified neurons in the central nervous system: progress in 1977–1979. Med. Biol.58, 188–227 (1980).
  • Salio C, Lossi L, Ferrini F, Merighi A. Neuropeptides as synaptic transmitters. Cell Tissue Res.326, 583–598 (2006).
  • Sudhof TC. Membrane fusion as a team effort. Proc. Natl Acad. Sci. USA104, 13541–13542 (2007).
  • Sudhof TC. The synaptic vesicle cycle. Annu. Rev. Neurosci.27, 509–547 (2004).
  • Blondeau F, Ritter B, Allaire PD et al. Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc. Natl Acad. Sci. USA101, 3833–3838 (2004).
  • Burre J, Volknandt W. The synaptic vesicle proteome. J. Neurochem.101, 1448–1462 (2007).
  • Takamori S, Holt M, Stenius K et al. Molecular anatomy of a trafficking organelle. Cell127, 831–846 (2006).
  • Burre J, Beckhaus T, Corvey C, et al. Synaptic vesicle proteins under conditions of rest and activation: analysis by 2-D difference gel electrophoresis. Electrophoresis27, 3488–3496 (2006).
  • Shimazaki Y, Nishiki T, Omori A et al. Phosphorylation of 25-κDa synaptosome-associated protein. Possible involvement in protein kinase C-mediated regulation of neurotransmitter release. J. Biol. Chem.271, 14548–14553 (1996).
  • Schindler J, Lewandrowski U, Sickmann A, Friauf E. Aqueous polymer two-phase systems for the proteomic analysis of plasma membranes from minute brain samples. J. Proteome Res.7, 432–442 (2008).
  • Schindler J, Lewandrowski U, Sickmann A, Friauf E, Nothwang HG. Proteomic analysis of brain plasma membranes isolated by affinity two-phase partitioning. Mol. Cell. Proteomics5, 390–400 (2006).
  • Chen P, Li X, Sun Y et al. Proteomic analysis of rat hippocampal plasma membrane: characterization of potential neuronal-specific plasma membrane proteins. J. Neurochem.98, 1126–1140 (2006).
  • Nielsen PA, Olsen JV, Podtelejnikov AV et al. Proteomic mapping of brain plasma membrane proteins. Mol. Cell. Proteomics4, 402–408 (2005).
  • Jang JH, Hanash S. Profiling of the cell surface proteome. Proteomics3, 1947–1954 (2003).
  • Zhao Y, Zhang W, Kho Y, Zhao Y. Proteomic analysis of integral plasma membrane proteins. Anal. Chem.76, 1817–1823 (2004).
  • Flanagan SD, Barondes SH. Affinity partitioning. A method for purification of proteins using specific polymer-ligands in aqueous polymer two-phase systems. J. Biol. Chem.250, 1484–1489 (1975).
  • Flanagan SD, Taylor P, Barondes SH. Affinity partitioning of acetylcholine receptor enriched membranes and their purification. Nature254, 441–443 (1975).
  • Persson A, Jergil B. The purification of membranes by affinity partitioning. FASEB J.9, 1304–1310 (1995).
  • Roy I, Mondal K, Gupta MN. Leveraging protein purification strategies in proteomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.849, 32–42 (2007).
  • Olsen JV, Nielsen PA, Andersen JR, Mann M, Wisniewski JR. Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: mapping of neurotransmitter receptors and ion channels. Brain Res.1134, 95–106 (2007).
  • Grimm J, Mueller A, Hefti F, Rosenthal A. Molecular basis for catecholaminergic neuron diversity. Proc. Natl Acad. Sci. USA101, 13891–13896 (2004).
  • Prokai L, Zharikova AD, Stevens SM Jr. Effect of chronic morphine exposure on the synaptic plasma-membrane subproteome of rats: a quantitative protein profiling study based on isotope-coded affinity tags and liquid chromatography/mass spectrometry. J. Mass Spectrom.40, 169–175 (2005).
  • Vercauteren FG, Flores G, Ma W et al. An organelle proteomic method to study neurotransmission-related proteins, applied to a neurodevelopmental model of schizophrenia. Proteomics7, 3569–3579 (2007).
  • Jia JY, Lamer S, Schumann M et al. Quantitative proteomics analysis of detergent-resistant membranes from chemical synapses: evidence for cholesterol as spatial organizer of synaptic vesicle cycling. Mol. Cell. Proteomics5, 2060–2071 (2006).
  • Siekevitz P. The postsynaptic density: a possible role in long-lasting effects in the central nervous system. Proc. Natl Acad. Sci. USA82, 3494–3498 (1985).
  • Walsh MJ, Kuruc N. The postsynaptic density: constituent and associated proteins characterized by electrophoresis, immunoblotting, and peptide sequencing. J. Neurochem.59, 667–678 (1992).
  • Liu SH, Cheng HH, Huang SY, Yiu PC, Chang YC. Studying the protein organization of the postsynaptic density by a novel solid phase-and chemical cross-linking-based technology. Mol. Cell. Proteomics5, 1019–1032 (2006).
  • Chang CW, Peng SC, Cheng WY et al. Studying the protein–protein interactions in the postsynaptic density by means of immunoabsorption and chemical crosslinking. Proteomics Clin. Appl.1, 1499–1512 (2007).
  • Sheng M, Kim E. The Shank family of scaffold proteins. J. Cell. Sci.113(Pt 11), 1851–1856 (2000).
  • Kim E, Sheng M. PDZ domain proteins of synapses. Nat. Rev. Neurosci.5, 771–781 (2004).
  • Gundelfinger ED, Boeckers TM, Baron MK, Bowie JU. A role for zinc in postsynaptic density asSAMbly and plasticity? Trends Biochem. Sci.31, 366–373 (2006).
  • Shen K, Teruel MN, Subramanian K, Meyer T. CaMKIIb functions as an F-actin targeting module that localizes CaMKIIα/β heterooligomers to dendritic spines. Neuron21, 593–606 (1998).
  • Cheng D, Hoogenraad CC, Rush J et al. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol. Cell. Proteomics5, 1158–1170 (2006).
  • Dosemeci A, Makusky AJ, Jankowska-Stephens E et al. Composition of the synaptic PSD-95 complex. Mol. Cell. Proteomics6, 1749–1760 (2007).
  • Li K, Hornshaw MP, van Minnen J et al. Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins. J. Proteome Res.4, 725–733 (2005).
  • Dosemeci A, Tao-Cheng JH, Vinade L, Jaffe H. Preparation of postsynaptic density fraction from hippocampal slices and proteomic analysis. Biochem. Biophys. Res. Commun.339, 687–694 (2006).
  • Peng J, Kim MJ, Cheng D et al. Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J. Biol. Chem.279, 21003–21011 (2004).
  • Dosemeci A, Tao-Cheng JH, Vinade L et al. Glutamate-induced transient modification of the postsynaptic density. Proc. Natl Acad. Sci. USA98, 10428–10432 (2001).
  • Toni N, Buchs PA, Nikonenko I et al. Remodeling of synaptic membranes after induction of long-term potentiation. J. Neurosci.21, 6245–6251 (2001).
  • Dunaevsky A, Tashiro A, Majewska A, Mason C, Yuste R. Developmental regulation of spine motility in the mammalian central nervous system. Proc. Natl Acad. Sci. USA96, 13438–13443 (1999).
  • Engert F, Bonhoeffer T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature399, 66–70 (1999).
  • Buckby LE, Mummery R, Crompton MR, Beesley PW, Empson RM. Comparison of neuroplastin and synaptic marker protein expression in acute and cultured organotypic hippocampal slices from rat. Brain Res. Dev. Brain Res.150, 1–7 (2004).
  • Shen K, Meyer T. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science284, 162–166 (1999).
  • Giese KP, Fedorov NB, Filipkowski RK, Silva AJ. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science279, 870–873 (1998).
  • Elgersma Y, Fedorov NB, Ikonen S et al. Inhibitory autophosphorylation of CaMKII controls PSD association, plasticity, and learning. Neuron36, 493–505 (2002).
  • Trinidad JC, Specht CG, Thalhammer A, Schoepfer R, Burlingame AL. Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol. Cell. Proteomics5, 914–922 (2006).
  • Matus A. Actin-based plasticity in dendritic spines. Science290, 754–758 (2000).
  • Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature402, 421–425 (1999).
  • Tribl F, Marcus K, Meyer HE et al. Subcellular proteomics reveals neuromelanin granules to be a lysosome-related organelle. J. Neural Transm.113, 741–749 (2006).
  • Hu ZZ, Valencia JC, Huang H et al. Comparative bioinformatics analyses and profiling of lysosome-related organelle proteomes. Int. J. Mass Spectrom.259, 147–160 (2007).
  • Fedorow H, Tribl F, Halliday G et al. Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson’s disease. Prog. Neurobiol.75, 109–124 (2005).
  • Hirsch E, Graybiel AM, Agid YA. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature334, 345–348 (1988).
  • Fasano M, Bergamasco B, Lopiano L. Modifications of the iron-neuromelanin system in Parkinson’s disease. J. Neurochem.96, 909–916 (2006).
  • Fasano M, Giraudo S, Coha S, Bergamasco B, Lopiano L. Residual substantia nigra neuromelanin in Parkinson’s disease is cross-linked to α-synuclein. Neurochem. Int.42, 603–606 (2003).
  • Halliday GM, Ophof A, Broe M et al. α-synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson’s disease. Brain128(Pt 11), 2654–2664 (2005).
  • Tribl F, Arzberger T, Riederer P, Gerlach M. Tyrosinase is not detected in human catecholaminergic neurons by immunohistochemistry and western blot analysis. J. Neural Transm. Suppl.51–55 (2007).
  • Della Valle MC, Sleat DE, Sohar I et al. Demonstration of lysosomal localization for the mammalian ependymin-related protein using classical approaches combined with a novel density shift method. J. Biol. Chem.281, 35436–35445 (2006).
  • Burrow TA, Hopkin RJ, Leslie ND, Tinkle BT, Grabowski GA. Enzyme reconstitution/replacement therapy for lysosomal storage diseases. Curr. Opin. Pediatr.19, 628–635 (2007).
  • Journet A, Chapel A, Kieffer S, Roux F, Garin J. Proteomic analysis of human lysosomes: application to monocytic and breast cancer cells. Proteomics2, 1026–1040 (2002).
  • Sleat DE, Zheng H, Qian M, Lobel P. Identification of sites of mannose 6-phosphorylation on lysosomal proteins. Mol. Cell. Proteomics5, 686–701 (2006).
  • Sleat DE, Lackland H, Wang Y et al. The human brain mannose 6-phosphate glycoproteome: a complex mixture composed of multiple isoforms of many soluble lysosomal proteins. Proteomics5, 1520–1532 (2005).
  • Sleat DE, Donnelly RJ, Lackland H et al. Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis. Science277, 1802–1805 (1997).
  • Naureckiene S, Sleat DE, Lackland H et al. Identification of HE1 as the second gene of Niemann-Pick C disease. Science290, 2298–2301 (2000).
  • Mao L, Zabel C, Wacker MA, Nebrich G et al. Estimation of the mtDNA mutation rate in aging mice by proteome analysis and mathematical modeling. Exp. Gerontol.41, 11–24 (2006).
  • Harman D. The biologic clock: the mitochondria? J. Am. Geriatr. Soc.20, 145–147 (1972).
  • Linnane AW, Marzuki S, Ozawa T, Tanaka M. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet1, 642–645 (1989).
  • Schapira AH, Cooper JM, Dexter D et al. Mitochondrial complex I deficiency in Parkinson’s disease. J. Neurochem.54, 823–827 (1990).
  • Williams AC, Cartwright LS, Ramsden DB. Parkinson’s disease: the first common neurological disease due to auto-intoxication? QJM98, 215–226 (2005).
  • Jin J, Davis J, Zhu D et al. Identification of novel proteins affected by rotenone in mitochondria of dopaminergic cells. BMC Neurosci.8, 67 (2007).
  • Fu H, Li W, Liu Y et al. Mitochondrial proteomic analysis and characterization of the intracellular mechanisms of bis(7)-tacrine in protecting against glutamate-induced excitotoxicity in primary cultured neurons. J. Proteome Res.6, 2435–2446 (2007).
  • Wang H, Carlier PR, Ho WL et al. Effects of bis(7)-tacrine, a novel anti-Alzheimer’s agent, on rat brain AChE. Neuroreport10, 789–793 (1999).
  • Wiwatwattana N, Kumar A. Organelle DB: a cross-species database of protein localization and function. Nucleic Acids Res.33, D598–D604 (2005).
  • Wiwatwattana N, Landau CM, Cope GJ, Harp GA, Kumar A. Organelle DB: an updated resource of eukaryotic protein localization and function. Nucleic Acids Res.35, D810–D814 (2007).
  • Pierleoni A, Martelli PL, Fariselli P, Casadio R. eSLDB: eukaryotic subcellular localization database. Nucleic Acids Res.35, D208–D212 (2007).
  • Pierleoni A, Martelli PL, Fariselli P, Casadio R. BaCelLo: a balanced subcellular localization predictor. Bioinformatics22, E408–E416 (2006).
  • Shimko N, Liu L, Lang BF, Burger G. GOBASE: the organelle genome database. Nucleic Acids Res.29, 128–132 (2001).
  • Domon B, Aebersold R. Mass spectrometry and protein analysis. Science312, 212–217 (2006).
  • Gilchrist A, Au CE, Hiding J et al., Quantitative proteomics analysis of the secretory pathway. Cell127, 1265–1281 (2006).
  • Burre J, Beckhaus T, Schagger H et al. Analysis of the synaptic vesicle proteome using three gel-based protein separation techniques. Proteomics6, 6250–6262 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.