135
Views
23
CrossRef citations to date
0
Altmetric
Review

Adipose proteome analysis: focus on mediators of insulin resistance

&
Pages 827-839 | Published online: 09 Jan 2014

References

  • Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the united states, 1999–2004. JAMA295(13), 1549–1555 (2006).
  • Shaw J. Epidemiology of childhood type 2 diabetes and obesity. Pediatr. Diabetes8(Suppl.) 97–115 (2007).
  • Shimomura I, Hammer RE, Richardson JA et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev.12(20), 3182–3194 (1998).
  • Moitra J, Mason MM, Olive M et al. Life without white fat: a transgenic mouse. Genes Dev.12(20), 3168–3181 (1998).
  • Seip M, Trygstad O. Generalized lipodystrophy, congenital and acquired (lipoatrophy). Acta Paediatr. Suppl.413, 2–28 (1996).
  • Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ. Res.96(9), 939–949 (2005).
  • Savage DB, Petersen KF, Shulman GI. Mechanisms of insulin resistance in humans and possible links with inflammation. Hypertension45(5), 828–833 (2005).
  • Hotamisligil GS. Inflammation and metabolic disorders. Nature444(7121), 860–867 (2006).
  • Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology132(6), 2169–2180 (2007).
  • Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol. Rev.87(2), 507–520 (2007).
  • Delarue J, Magnan C. Free fatty acids and insulin resistance. Curr. Opin. Clin. Nutr. Metab. Care10(2), 142–148 (2007).
  • Giorgino F, Laviola L, Eriksson JW. Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. Acta Physiol. Scand.183(1), 13–30 (2005).
  • Gesta S, Bluher M, Yamamoto Y et al. Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc. Natl Acad. Sci. USA103(17), 6676–6681 (2006).
  • Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell. Biol.7(12), 885–896 (2006).
  • Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab.7(5), 410–420 (2008).
  • Kim S, Huang LW, Snow KJ et al. A mouse model of conditional lipodystrophy. Proc. Natl Acad. Sci. USA104(42), 16627–16632 (2007).
  • Anand A, Chada K. In vivo modulation of Hmgic reduces obesity. Nat. Genet.24(4), 377–380 (2000).
  • Danforth E Jr. Failure of adipocyte differentiation causes Type II diabetes mellitus? Nat. Genet.26(1), 13 (2000).
  • Garg A, Misra A. Lipodystrophies: rare disorders causing metabolic syndrome. Endocrinol. Metab. Clin. North Am.33(2), 305–331 (2004).
  • Leow MK, Addy CL, Mantzoros CS. Clinical review 159: human immunodeficiency virus/highly active antiretroviral therapy-associated metabolic syndrome: clinical presentation, pathophysiology and therapeutic strategies. J. Clin. Endocrinol. Metab.88(5), 1961–1976 (2003).
  • Wang MY, Grayburn P, Chen S, Ravazzola M, Orci L, Unger RH. Adipogenic capacity and the susceptibility to Type 2 diabetes and metabolic syndrome. Proc. Natl Acad. Sci. USA105(16), 6139–6144 (2008).
  • Kim JY, van de Wall E, Laplante M et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest.117(9), 2621–2637 (2007).
  • Hammarstedt A, Andersson CX, Rotter Sopasakis V, Smith U. The effect of PPARγ ligands on the adipose tissue in insulin resistance. Prostaglandins Leukot. Essent. Fatty Acids73(1), 65–75 (2005).
  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature372(6505), 425–432 (1994).
  • Zhang J, Wu Y, Zhang Y, Leroith D, Bernlohr DA, Chen X. The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol. Endocrinol.22(6), 1416–1426 (2008).
  • Wang ZV, Scherer PE. Adiponectin, cardiovascular function and hypertension. Hypertension51(1), 8–14 (2008).
  • Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol.6(10), 772–783 (2006).
  • Maeda N, Shimomura I, Kishida K et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med.8(7), 731–737 (2002).
  • Minokoshi Y, Kim YB, Peroni OD et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature415(6869), 339–343 (2002).
  • Steinberg GR, Rush JW, Dyck DJ. AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment. Am. J. Physiol. Endocrinol. Metab.284(3), E648–E654 (2003).
  • Yamauchi T, Kamon J, Minokoshi Y et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med.8(11), 1288–1295 (2002).
  • Tomas E, Tsao TS, Saha AK et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl Acad. Sci. USA99(25), 16309–16313 (2002).
  • Chen MB, McAinch AJ, Macaulay SL et al. Impaired activation of AMP-kinase and fatty acid oxidation by globular adiponectin in cultured human skeletal muscle of obese type 2 diabetics. J. Clin. Endocrinol. Metab.90(6), 3665–3672 (2005).
  • Nawrocki AR, Rajala MW, Tomas E et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. J. Biol. Chem.281(5), 2654–2660 (2006).
  • Iwaki M, Matsuda M, Maeda N et al. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes52(7), 1655–1663 (2003).
  • Steppan CM, Bailey ST, Bhat S et al. The hormone resistin links obesity to diabetes. Nature409(6818), 307–312 (2001).
  • Banerjee RR, Rangwala SM, Shapiro JS et al. Regulation of fasted blood glucose by resistin. Science303(5661), 1195–1198 (2004).
  • Steppan CM, Lazar MA. The current biology of resistin. J. Intern. Med.255(4), 439–447 (2004).
  • Yang Q, Graham TE, Mody N et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and Type 2 diabetes. Nature436(7049), 356–362 (2005).
  • Chen X, Cushman SW, Pannell LK, Hess S. Quantitative proteomic analysis of the secretory proteins from rat adipose cells using a 2D liquid chromatography-MS/MS approach. J. Proteome Res.4(2), 570–577 (2005).
  • Takebayashi K, Suetsugu M, Wakabayashi S, Aso Y, Inukai T. Retinol binding protein-4 levels and clinical features of type 2 diabetes patients. J. Clin. Endocrinol. Metab.92(7), 2712–2719 (2007).
  • Gavi S, Stuart LM, Kelly P et al. Retinol-binding protein 4 is associated with insulin resistance and body fat distribution in nonobese subjects without Type 2 diabetes. J. Clin. Endocrinol. Metab.92(5), 1886–1890 (2007).
  • Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest.112(12), 1796–1808 (2003).
  • Xu H, Barnes GT, Yang Q et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest.112(12), 1821–1830 (2003).
  • Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science259(5091), 87–91 (1993).
  • Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab.83(3), 847–850 (1998).
  • Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc. Natl Acad. Sci. USA100(12), 7265–7270 (2003).
  • Marette A. Molecular mechanisms of inflammation in obesity-linked insulin resistance. Int. J. Obes. Relat. Metab. Disord.27(Suppl. 3) S46–S48 (2003).
  • Feinstein R, Kanety H, Papa MZ, Lunenfeld B, Karasik A. Tumor necrosis factor-α suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J. Biol. Chem.268(35), 26055–26058 (1993).
  • Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of ser(307). J. Biol. Chem.275(12), 9047–9054 (2000).
  • Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J. Biol. Chem.277(2), 1531–1537 (2002).
  • Stephens JM, Pekala PH. Transcriptional repression of the GLUT4 and C/EBP genes in 3T3-L1 adipocytes by tumor necrosis factor-α. J. Biol. Chem.266(32), 21839–21845 (1991).
  • Steinberg GR, Michell BJ, van Denderen BJ et al. Tumor necrosis factor α-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metab.4(6), 465–474 (2006).
  • Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest.116(11), 3015–3025 (2006).
  • Gao Z, Zhang X, Zuberi A et al. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol. Endocrinol.18(8), 2024–2034 (2004).
  • Makowski L, Boord JB, Maeda K et al. Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat. Med.7(6), 699–705 (2001).
  • Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov.7(6), 489–503 (2008).
  • Hertzel AV, Smith LA, Berg AH et al. Lipid metabolism and adipokine levels in fatty acid-binding protein null and transgenic mice. Am. J. Physiol. Endocrinol. Metab.290(5), E814–E823 (2006).
  • Adachi J, Kumar C, Zhang Y, Mann M. In-depth analysis of the adipocyte proteome by mass spectrometry and bioinformatics. Mol. Cell. Proteomics6(7), 1257–1273 (2007).
  • Grimsrud PA, Picklo MJ S, Griffin TJ, Bernlohr DA. Carbonylation of adipose proteins in obesity and insulin resistance: Identification of adipocyte fatty acid-binding protein as a cellular target of 4-hydroxynonenal. Mol. Cell. Proteomics6(4), 624–637 (2007).
  • Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.19(3), 242–247 (2001).
  • Hu Q, Noll RJ, Li H et al. The orbitrap: a new mass spectrometer. J. Mass Spectrom.40(4), 430–443 (2005).
  • Chen CH. Review of a current role of mass spectrometry for proteome research. Anal. Chim. Acta624(1), 16–36 (2008).
  • Umar A, Jaremko M, Burgers PC, Luider TM, Foekens JA, Pasa-Tolic L. High-throughput proteomics of breast carcinoma cells: A focus on FTICR-MS. Expert Rev. Proteomics5(3), 445–455 (2008).
  • Zhou M, Veenstra T. Mass spectrometry: M/z 1983–2008. Biotechniques44(5), 667–668, 670 (2008).
  • Domon B, Aebersold R. Mass spectrometry and protein analysis. Science312(5771), 212–217 (2006).
  • Cox J, Mann M. Is proteomics the new genomics? Cell130(3), 395–398 (2007).
  • Cravatt BF, Simon GM, Yates JR 3rd. The biological impact of mass-spectrometry-based proteomics. Nature450(7172), 991–1000 (2007).
  • Yates JR 3rd. Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biomol. Struct.33297–33316 (2004).
  • Miyagi M, Rao KC. Proteolytic 18O-labeling strategies for quantitative proteomics. Mass Spectrom. Rev.26(1), 121–136 (2007).
  • Stewart II, Thomson T, Figeys D. 18O labeling: a tool for proteomics. Rapid Commun. Mass Spectrom.15(24), 2456–2465 (2001).
  • Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal. Chem.73(13), 2836–2842 (2001).
  • Sidhu RS. Two-dimensional electrophoretic analyses of proteins synthesized during differentiation of 3T3-L1 preadipocytes. J. Biol. Chem.254(21), 11111–11118 (1979).
  • Spiegelman BM, Frank M, Green H. Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerophosphate dehydrogenase and other differentiation-dependent proteins during adipocyte development. J. Biol. Chem.258(16), 10083–10089 (1983).
  • Kratchmarova I, Kalume DE, Blagoev B et al. A proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes. Mol. Cell. Proteomics1(3), 213–222 (2002).
  • Wang P, Mariman E, Keijer J et al. Profiling of the secreted proteins during 3T3-L1 adipocyte differentiation leads to the identification of novel adipokines. Cell. Mol. Life Sci.61(18), 2405–2417 (2004).
  • Hess S, Chen X. Applications of proteomics to the study of adipose tissue. Methods Mol. Biol.456131–456140 (2008).
  • Arner P. Resistin: yet another adipokine tells us that men are not mice. Diabetologia48(11), 2203–2205 (2005).
  • Alvarez-Llamas G, Szalowska E, de Vries MP et al. Characterization of the human visceral adipose tissue secretome. Mol. Cell. Proteomics6(4), 589–600 (2007).
  • Lim JM, Sherling D, Teo CF, Hausman DB, Lin D, Wells L. Defining the regulated secreted proteome of rodent adipocytes upon the induction of insulin resistance. J. Proteome Res.7(3), 1251–1263 (2008).
  • Zvonic S, Lefevre M, Kilroy G et al. Secretome of primary cultures of human adipose-derived stem cells: modulation of serpins by adipogenesis. Mol. Cell. Proteomics6(1), 18–28 (2007).
  • Celis JE, Moreira JM, Cabezon T et al. Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions. Mol. Cell. Proteomics4(4), 492–522 (2005).
  • Flower DR. The lipocalin protein family: structure and function. Biochem. J.318(Pt 1), 1–14 (1996).
  • Kjeldsen L, Bainton DF, Sengelov H, Borregaard N. Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils. Blood83(3), 799–807 (1994).
  • Flo TH, Smith KD, Sato S et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature432(7019), 917–921 (2004).
  • Berger T, Togawa A, Duncan GS et al. Lipocalin 2-deficient mice exhibit increased sensitivity to escherichia coli infection but not to ischemia–reperfusion injury. Proc. Natl Acad. Sci. USA103(6), 1834–1839 (2006).
  • Shen F, Hu Z, Goswami J, Gaffen SL. Identification of common transcriptional regulatory elements in interleukin-17 target genes. J. Biol. Chem.281(34), 24138–24148 (2006).
  • Garay-Rojas E, Harper M, Hraba-Renevey S, Kress M. An apparent autocrine mechanism amplifies the dexamethasone- and retinoic acid-induced expression of mouse lipocalin-encoding gene 24p3. Gene170(2), 173–180 (1996).
  • Yan QW, Yang Q, Mody N et al. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes (2007).
  • Wang Y, Lam KS, Kraegen EW et al. Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance and hyperglycemia in humans. Clin. Chem.53(1), 34–41 (2007).
  • Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol. Rev.75(3), 473–486 (1995).
  • Goldstein BJ. Insulin resistance as the core defect in Type 2 diabetes mellitus. Am. J. Cardiol.90(5A), 3G–10G (2002).
  • Zhang Y, Wolf-Yadlin A, Ross PL et al. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol. Cell. Proteomics4(9), 1240–1250 (2005).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics3(12), 1154–1169 (2004).
  • Schmelzle K, Kane S, Gridley S, Lienhard GE, White FM. Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes55(8), 2171–2179 (2006).
  • Ong SE, Blagoev B, Kratchmarova I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics1(5), 376–386 (2002).
  • Ibarrola N, Kalume DE, Gronborg M, Iwahori A, Pandey A. A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture. Anal. Chem.75(22), 6043–6049 (2003).
  • Bose R, Molina H, Patterson AS et al. Phosphoproteomic analysis of Her2/neu signaling and inhibition. Proc. Natl Acad. Sci. USA103(26), 9773–9778 (2006).
  • Park KS, Mohapatra DP, Misonou H, Trimmer JS. Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science313(5789), 976–979 (2006).
  • Zhang G, Spellman DS, Skolnik EY, Neubert TA. Quantitative phosphotyrosine proteomics of EphB2 signaling by stable isotope labeling with amino acids in cell culture (SILAC). J. Proteome Res.5(3), 581–588 (2006).
  • Kruger M, Kratchmarova I, Blagoev B, Tseng YH, Kahn CR, Mann M. Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc. Natl Acad. Sci. USA105(7), 2451–2456 (2008).
  • Schulze WX, Mann M. A novel proteomic screen for peptide–protein interactions. J. Biol. Chem.279(11), 10756–10764 (2004).
  • Sharma R, Yang Y, Sharma A, Awasthi S, Awasthi YC. Antioxidant role of glutathione S-transferases: protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid. Redox Signal.6(2), 289–300 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.