924
Views
8
CrossRef citations to date
0
Altmetric
Editorial

Will amber inclusions provide the first glimpse of a Mesozoic proteome?

, &
Pages 1-4 | Published online: 09 Jan 2014

References

  • Woodward SR, Weyand NJ, Bunnell M. DNA sequence from Cretaceous period bone fragments. Science661, 229–232 (1994).
  • Hedges SB, Schweitzer MH. Detecting dinosaur DNA. Science268, 1191–1192 (1995).
  • Yin Z, Chen H, Wang Z et al. Sequence analysis of the cytochrome B gene fragment in a dinosaur egg. Yi Chuan Xue Bao23, 190–195 (1996).
  • Willerslev E, Cappellini E, Boomsma W et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science317, 111–114 (2007).
  • Bidle KD, Lee S, Marchant DR, Falkowski PG. Fossil genes and microbes in the oldest ice on earth. Proc. Natl Acad. Sci. USA104, 13455–13460 (2007).
  • Salamon M, Tuross N, Arensburg B, Weiner S. Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proc. Natl Acad. Sci. USA102, 13783–13788 (2005).
  • Vreeland RH, Rosenzweig WD, Powers DW. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature407, 897–900 (2000).
  • Matter P, Davidson FD, Wyckoff RW. The composition of fossil oyster shell proteins. Proc. Natl Acad. Sci. USA64, 970–972 (1969).
  • Weiner S, Lowenstam HA, Hood L. Characterization of 80-million-year-old mollusk shell proteins. Proc. Natl Acad. Sci. USA73, 2541–2545 (1976).
  • Akiyama M, Wyckoff RW. The total amino acid content of fossil pecten shells. Proc. Natl Acad. Sci. USA67, 1097–1100 (1970).
  • Asara JM, Schweitzer MH, Freimark LM, Phillips M, Cantley LC. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science316, 280–285 (2007).
  • Embery G, Milner A, Waddington RJ, Hall RC, Langley MS, Milan AM. The isolation and detection of non-collagenous proteins from the compact bone of the dinosaur Iguanodon. Connect. Tissue Res.41, 249–259 (2000).
  • Embery G, Milner AC, Waddington RJ, Hall RC, Langley MS, Milan AM. Identification of proteinaceous material in the bone of the dinosaur Iguanodon. Connect. Tissue Res.44, 41–46 (2003).
  • Schweitzer MH, Wittmeyer JL, Horner JR. Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to the present. Proc. Biol. Sci.274, 183–197 (2007).
  • Schweitzer MH, Wittmeyer JL, Horner JR, Toporski JK. Soft tissue vessels and cellular preservation in Tyrannosaurus rex. Science307, 1952–1955 (2005).
  • Kaye TG, Gaugler G, Sawlowicz Z. Dinosaurian soft tissues interpreted as bacterial biofilms. PLoS ONE3, 1–7 (2008).
  • Wick G, Kalischnig G, Maurer H, Mayerl C, Müller PU. Really old-palaeoimmunology: immunohistochemical analysis of extracellular matrix proteins in historic and prehistoric material. Exp. Gerontol.36, 1565–1579 (2001).
  • Poinar GO Jr, Marshall CJ, Buckley R. One hundred million years of chemical warfare by insects. J. Chem. Ecol.33, 1663–1669 (2007).
  • Smith J. On the discovery of fossil microscopic plants in the fossil amber of the Ayrshire coal field. Trans. Geol. Soc. Glasgow10, 318–322 (1896).
  • Schmidt AR, Ragazzi E, Coppellotti O, Roghi G. A microworld in Triassic amber. Nature444, 835 (2006).
  • Poinar GO, Waggoner BM, Bauer UC. Terrestrial soft-bodied protists and other microorganisms in Triassic amber. Science259, 222–224 (1993).
  • Poinar GO Jr, Chambers K, Buckley R. An Early Cretaceous angiosperm fossil of possible significance in rosid floral diversification. J. Bot. Res. Inst. Tex.2, 1183–1192 (2008).
  • Poinar GO Jr, Chambers K, Buckley R. Eoëpigynia burmensis gen. and sp. nov. an Early Cretaceous eudicot flower (Angiospermae) in Burmese amber. J. Bot. Res. Inst. Tex.1, 91–96 (2007).
  • Ramírez SR, Gravendeel B, Singer RB, Marshall CR, Pierce NE. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature448, 1042–1045 (2007).
  • Poinar GO Jr, Danforth BN. A fossil bee from Early Cretaceous Burmese amber. Science314, 614 (2006).
  • Grimaldi D. The co-radiations of pollinating insects and angiosperms in the Cretaceous. Ann. Missouri Bot. Gard.86, 373–406 (1999).
  • Hall JP, Robbins RK, Harvey DJ. Extinction and biogeography in the Caribbean: new evidence from a fossil riodinid butterfly in Dominican amber. Proc. Biol. Sci.271, 797–801 (2004).
  • Peñalver E, Grimaldi DA, Delclòs X. Early Cretaceous spider web with its prey. Science312(5781), 1761 (2006).
  • Penney D, Ortuno VM. Oldest true orb-weaving spider (Araneae: Araneidae). Biol. Lett.2, 447–450 (2006).
  • Dlussky GM. Ants (Hymenoptera, Formicidae) of Burmese amber. Paleontologicheskiy Zhurnal3, 83–89 (1996).
  • Poinar G Jr. First fossil record of nematode parasitism of ants: a 40 million year tale. Parasitology125, 457–459 (2002).
  • Azar D, Nel A. Fossil psychodoid flies and their relation to parasitic diseases. Mem. Inst. Oswaldo Cruz.98, 35–37 (2003).
  • Andrade Filho JD, Falcão AL, Brazil RP. A new phlebotomine fossil species Trichopygomyia killickorum sp. n. (Diptera: Psychodidae) found in the Dominican Republic amber. Parasite, 11, 71–73 (2004).
  • Andrade Filho JD, Galati EA, Falcão AL, Brazil RP. Description of Micropygomyia brandaoi sp. n. (Diptera: Psychodidae: Phlebotominae), a fossil phlebotomine from the Dominican Republic. Mem. Inst. Oswaldo Cruz.103, 344–346 (2008).
  • Poinar GO Jr. Plasmodium dominicana n. sp. (Plasmodiidae: Haemospororida) from tertiary Dominican amber. Systemic Parasitology61, 47–51 (2005).
  • Poinar GO Jr, Telford SR. Paleohamoproteus burmacis gen. n. (Haemospororidia: Plasmodiidae) from an Early Cretaceous biting midge (Diptera: Ceratopopgonidae). Parasitology131, 79–84 (2005).
  • Poinar GO Jr. Leptoconops nosopheris sp. n. (Diptera: Ceratopogonidae) and Paleotrypanosoma burmanicus gen. n. sp. n. (Kinetoplastida: Trypanosomatidae), a biting midge-trypanosome vector association from the Early Cretaceous. Mem. Inst. Oswaldo Cruz,103, 468–471 (2008).
  • Poinar GO Jr, Poinar R. Evidence of vector-borne disease of Early Cretaceous reptiles. Vector Borne Zoonotic Dis.4, 281–284 (2004).
  • Poinar GO Jr, Poinar R. What bugged the Dinosaurs?: Insects, Disease, and Death in the Cretaceous? Princeton University Press, NJ, USA, 264 (2008).
  • Poinar GO Jr, Hess R. Ultrastructure of a 40 million year old insect tissue. Science215, 1241–1242 (1982).
  • Edwards HG, Farwell DW, Villar SE. Raman microspectroscopic studies of amber resins with insect inclusions. Spectrochim. Acta A. Mol. Biomol. Spectrosc.68, 1089–1095 (2007).
  • DeSalle R, Gatesy J, Wheeler W, Grimaldi D. DNA sequences from a fossil termite in Oligo–Miocene amber and their phylogenetic implications. Science257, 1933–1936 (1992).
  • DeSalle R, Barcia M, Wray C. PCR jumping in clones of 30 million year old DNA fragments from amber preserved termites (Mastotermes electrodominicus). Experientia49, 906–909 (1993).
  • Cano RJ, Borucki MK, Higby-Schweitzer M, Poinar HN, Poinar GO Jr, Pollard KJ. Bacillus DNA in fossil bees: an ancient symbiosis? Appl. Environ. Microbiol.60, 2164–2167 (1994).
  • Cano RJ, Borucki MK. Revival and identification of bacterial spores in 25 to 40 million year old Dominican amber. Science268, 1060–1064 (1995).
  • Cano RJ, Poinar HN, Pieniazek NJ, Acra A, Poinar GO Jr. Amplification and sequencing of DNA from a 120–135-million-year-old weevil. Nature363, 536–538 (1993).
  • Austin JJ, Ross AJ, Smith AB, Fortey RA, Thomas RH. Problems of reproducibility: does geologically ancient DNA survive in amber preserved insects? Proc. Biol. Sci.264, 467–474 (1997).
  • Righetti PG, Boschetti E. The Proteominer and the Fortyniners: searching for gold nuggets in the proteomic arena. Mass Spectrom. Rev.27, 596–608 (2008).
  • Roux Dalvai F, Gonzalez de Peredo A, Simó C et al. Extensive analysis of the cytoplasmic proteome of human erythrocytes using the peptide ligand library technology and advanced mass spectrometry. Mol. Cell Proteomics7, 2254–2269 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.