98
Views
14
CrossRef citations to date
0
Altmetric
Review

Interfacial biology of in-stent restenosis

, &
Pages 429-443 | Published online: 09 Jan 2014

References

  • Nair SV, McEwan JR. Angina pectoris: interventional therapies and treatment of restenosis. Int. J. Biochem. Cell Biol. 35(10), 1399–1406 (2003).
  • American Heart Association. 2001 Heart and Stroke Statistical Update. American Heart Association, TX, USA (2001).
  • Ruygrok PN, Webster MW, Ardill JJ et al. Vessel caliber and restenosis: a prospective clinical and angiographic study of NIR stent deployment in small and large coronary arteries in the same patient. Catheter. Cardiovasc. Interv. 59(2), 165–171 (2003).
  • Moreno R, Fernandez C, Alfonso F et al. Coronary stenting versus balloon angioplasty in small vessels – a meta-analysis from 11 randomized studies. J. Am. Coll. Cardiol. 43(11), 1964–1972 (2004).
  • Nikolsky E, Gruberg L, Pechersky S et al. Stent deployment failure: reasons, implications, and short- and long-term outcomes. Catheter. Cardiovasc. Interv. 59(3), 324–328 (2003).
  • Brodie BR, Cooper C, Jones M, Fitzgerald P, Cummins F. Is adjunctive balloon postdilatation necessary after coronary stent deployment? Final results from the POSTIT trial. Catheter. Cardovasc. Interv. 59(2), 184–192 (2003).
  • Ito Y, Muramatsu T, Tsukahara R et al. Is a vessel stretch during coronary stent deployment associated with restenosis? Am. J. Cardiol. 90(6A), 1 (2002).
  • Vernhet H, Demaria R, Juan JM, Oliva-Lauraire MC, Senac JP, Dauzat M. Arterial stenting and overdilation: does it change wall mechanics in small-caliber arteries? J. Endovasc. Ther.9(6), 855–862 (2002).
  • Muller-Hulsbeck S, Grimm J, Jahnke T, Haselbarth G, Heller M. Flow patterns from metallic vascular endoprostheses: in vitro results. Eur. Radiol. 11(5), 893–901 (2001).
  • Yu ZX, Tamai H, Kyo E et al. Comparison of the self-expanding radius stent and the balloon-expandable multilink stent for elective treatment of coronary stenoses: a serial analysis by intravascular ultrasound. Catheter. Cardiovasc. Interv. 56(1), 40–45 (2002).
  • Vernhet H, Demaria R, Perez-Martin A et al. Wall mechanics of the stented rabbit aorta: long-term study and correlation with histological findings. J. Endovasc. Ther. 10(3), 577–584 (2003).
  • Sudhir K, Hashimura K, Bobik A, Dilley RJ, Jennings GL, Little PJ. Mechanical strain stimulates a mitogenic response in coronary vascular smooth muscle cells via release of basic fibroblast growth factor. Am. J. Hypertens. 14, 1128–1134 (2001).
  • Virmani R, Farb A. Pathology of in-stent restenosis. Curr. Opin. Lipidol. 10(6), 499–506 (1999).
  • Virmani R. Self-expanding stent deployment strategies may be the key to reducing in-stent restenosis. Catheter. Cardiovasc. Interv. 56(4), 487–488 (2001).
  • Cafri C, Weinstein JM, Gilutz H, Kobal S, Ilia R. Low-pressure deployment of stents: short- and long-term outcome. Coron. Artery Dis. 12(4), 313–316 (2001).
  • Pan M, de Lezo JS, Medina A et al. Influence of stent treatment strategies in the long-term outcome of patients with long diffuse coronary lesions. Catheter. Cardiovasc. Interv. 58(3), 293–300 (2003).
  • Briguori C, Sarais C, Pagnotta P et al. In-stent restenosis in small coronary arteries – impact of strut thickness. J. Am. Coll. Cardiol. 40(3), 403–409 (2002).
  • Bunch TJ, Muhlestein JB, Anderson JL et al. Effects of statins on six-month survival and clinical restenosis frequency after coronary stent deployment. Am. J. Cardiol. 90(3), 299–304 (2002).
  • Dobesh PP, Stacy ZA, Ansara AJ, Enders JM. Drug-eluting stents: a mechanical and pharmacologic approach to coronary artery disease. Pharmacotherapy 24(11), 1554–1577 (2004).
  • Tanabe K, Serruys PW, Grube E et al. TAXUS III trial – in-stent restenosis treated with stent-based delivery of paclitaxel incorporated in a slow-release polymer formulation. Circulation 107(4), 559–564 (2003).
  • Silber S. When are drug-eluting stents effective? A critical analysis of the presently available data. Z. Kardiol. 93(9), 649–663 (2004).
  • Fajadet J, Morice MC, Bode C et al. Maintenance of long-term clinical benefit with sirolimus-eluting coronary stents – three-year results of the RAVEL trial. Circulation 111(8), 1044–1048 (2005).
  • Karthikeyan G, Bhargava B. Prevention of restenosis after coronary angioplasty. Curr. Opin. Cardiol. 19(5), 500–509 (2004).
  • Marchetti M. Drug-eluting stents: from evidences to policy. Exp. Rev. Med. Dev. 1(1), 49–63 (2004).
  • Park SJ, Shim WH, Ho DS et al. A paclitaxel-eluting stent for the prevention of coronary restenosis. N. Engl. J. Med. 348(16), 1537–1545 (2003).
  • Abizaid A, Costa MA, Blanchard D et al. Sirolimus-eluting stents inhibit neointimal hyperplasia in diabetic patients – insights from the RAVEL Trial. Eur. Heart J. 25(2), 107–112 (2004).
  • Farb A, Sangiorgi G, Carter AJ et al. Pathology of acute and chronic choronary stenting in humans. Circulation 99, 44–52 (1999).
  • Farb A, Weber DK, Weber MS, Kolodgie FK, Burke AP, Virmani R. Morphological predictors of restenosis after coronary stenting in humans. Circulation 105, 2974–2980 (2002).
  • Farb A, Burke AP, Kolodgie FD, Virmani R. Pathological mechanisms of fatal late coronary stent thrombosis in humans. Circulation 108(14), 1701–1706 (2003).
  • Farb A, Kolodgie FD, Hwang JY et al. Extracellular matrix changes in stented human coronary arteries. Circulation 110(8), 940–947 (2004).
  • Skowasch D, Jabs A, Andrie R et al. Pathogen burden, inflammation, proliferation and apoptosis in human in-stent restenosis – tissue characteristics compared to primary atherosclerosis. J. Vasc. Res. 41(6), 525–534 (2004).
  • Turley EA. Extracellular matrix remodeling multiple paradigms in vascular diseases. Circ. Res. 88, 2–4 (2001).
  • Chung IM, Gold HK, Schwartz SM, Ikari Y, Reidy MA, Wight TN. Enhanced extracellular matrix accumulation in restenosis of coronary arteries after stent deployment. J. Am. Coll. Cardiol. 40(12), 2072–2081 (2002).
  • Sakai T, Inoue S, Otsuka T et al. Cell cycle regulator expression after coronary stenting in humans – immunohistochemical examination. Jpn Heart J. 45(1), 133–145 (2004).
  • Peuster M, Fink C, Reckers J, Beerbaum P, von Schnakenburg C. Assessment of subacute inflammatory and proliferative response to coronary stenting in a porcine model by local gene expression studies and histomorphometry. Biomaterials 25(6), 957–963 (2004).
  • Bayes-Genis A, Campbell JH, Carlson PJ, Holmes DR, Schwartz RS. Macrophages, myofibroblasts and neointimal hyperplasia after coronary artery and repair. Atherosclerosis 163(1), 89–98 (2002).
  • Shoji M, Sata M, Fukuda D et al. Temporal and spatial characterization of cellular constituents during neointimal hyperplasia after vascular injury: potential contribution of bone-marrow-derived progenitors to arterial remodeling. Cardiovasc. Pathol. 13(6), 306–312 (2004).
  • Tuleta I, Jabs A, Andrie R et al. Dendritic cells contribute to in-stent restenosis: recruitment in early neointima formation after porcine aortic stent implantation and in human in-stent restenosis. J. Am. Coll. Cardiol. 43(5), 54A (2004).
  • Dirsch O, Dahmen U, Fan LM et al. Media remodeling – the result of stent induced media necrosis and repair. VASA-J. Vasc. Dis. 33(3), 125–129 (2004).
  • Virmani R, Liistro F, Stankovic G et al. Mechanism of late in-stent restenosis after implantation of a paclitaxel derivate-eluting polymer stent system in humans. Circulation 106, 2649–2651 (2002).
  • Gutensohn K, Beythien C, Bau J et al. In vitro analysis of diamond-like carbon coated stents: reduction of metal ion release, platelet activation and thrombogenicity. Thromb. Res. 99, 577–585 (2000).
  • Santin M, Mikhalovska L, Lloyd AW et al. In vitro host response assessment of biomaterials for cardiovascular stent manufacture. J. Mater. Sci. Mater. Med. 15, 473–477 (2004).
  • Del Rizzo DF, Yurkova N, Moon MC, Litchie B, Zahradka P. Platelet-derived growth factor-induced expression of c-fos in human vascular smooth muscle cells: implications for long-term graft patency. Ann. Thorac. Surg. 74, 90–95 (2002).
  • Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front. Biosci. 9, 283–289 (2004).
  • Welt FGP, Rogers C. Inflammation and restenosis in the stent era. Arterioscler. Thromb. Vasc. Biol. 22, 1769–1776 (2002).
  • Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature Insight 407, 249–257 (2000).
  • Pixley FJ, Stanley ER. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 14(11), 628–638 (2004).
  • Zhao Y, Glesne D, Huberman E. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc. Natl Acad. Sci. USA 100, 2426–2431 (2003).
  • Campbell JH, Mooney J, Sester D, Campbell GR. Differentiation of macrophages into myofibroblasts. J. Mol. Cell. Cardiol. 37(1), 326–327 (2004).
  • Wilcox JN, Okamoto E, Nakahara K, Vinten-Johansen J. Perivascular responses after angioplasty which may contribute to postangioplasty restenosis – a role for circulating myofibroblast precursors? Ann. NY Acad. Sci. 947, 68–92 (2001).
  • Davis TA, Lennon G. Mice with a regenerative wound healing capacity and an SLE autoimmune phenotype contain elevated numbers of circulating and marrow-derived macrophage progenitor cells. Blood Cells Mol. Dis. 34(1), 17–25 (2004).
  • Hu M, Sableman EE, Cao Y, Chang J, Hentz VR. Three-dimensional hyaluronic acid grafts promote healing and reduce scar formation in skin incision wounds. J. Biomed. Mater. Res. B Appl. Biomat. 67B(1), 586–592 (2003).
  • Rees MD, Hawkins CL, Davies MJ. Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulfates. Biochem. J. 381, 175–184 (2004).
  • Travis JA, Hughes MG, Wong JM, Wagner WD, Geary RL. Hyaluronan enhances contraction of collagen by smooth muscle cells and adventitial fibroblasts. Circ. Res. 88, 77–83 (2001).
  • Leite PF, Liberman M, de Brito FS, Laurindo FRM. Redox processes underlying the vascular repair reaction. World J. Surg. 28(3), 331–336 (2004).
  • Tanimoto K, Suzuki A, Ohno S et al. Effects of TGF-β on hyaluronan anabolism in fibroblasts derived from the synovial membrane of the rabbit temporomandibular joint. J. Dent. Res. 83(1), 40–44 (2004).
  • Stuhlmeier KM, Pollaschek C. Differential effect of transforming growth factor β (TGF-β) on the genes encoding hyaluronan synthases and utilization of the p38 MAPK pathway in TGF-β-induced hyaluronan synthase 1 activation. J. Biol. Chem. 279(10), 8753–8760 (2004).
  • Horton MR, Olman MA, Bao C et al. Regulation of plasminogen activator inhibitor-1 and urokinase by hyaluronan fragments in mouse macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 279(4), 707–715 (2000).
  • Mytar B, Siedlar M, Woloszyn M, Colizzi V, Zembala M. Cross-talk between human monocytes and cancer cells during reactive oxygen intermediates generation: the essential role of hyaluronan. Int. J. Cancer 94(5), 727–732 (2001).
  • Sugahara KN, Murai T, Nishinakamura H, Kawashima H, Saya H, Miyasaka M. Hyaluronan oligosaccharides induce CD44 cleavage and promote cell migration in CD44-expressing tumor cells. J. Biol. Chem. 278(34), 32259–32265 (2003).
  • Teder P, Vandivier RW, Jiang DH et al. Resolution of lung inflammation by CD44. Science 296(5565), 155–158 (2002).
  • Mummert ME, Mummert D, Edelbaum D, Hui F, Matsue H, Takashima A. Synthesis and surface expression of hyaluronan by dendritic cells and its potential role in antigen presentation. J. Immunol. 169(8), 4322–4331 (2002).
  • Linder S, Pinkowski W, Aepfelbacher M. Adhesion, cytoskeletal architecture and activation status of primary human macrophages on a diamond-like carbon coated surface. Biomaterials 23, 767–775 (2002).
  • Rhodes NP, Hunt JA, Williams DF. Macrophage subpopulation differentiation by stimulation with biomaterials. J. Biomed. Mater. Res. 37, 481–488 (1997).
  • Krettek A, Ostergren-Lunden G, Fager G, Rosmond C, Bondjers G, Lustig F. Expression of PDGF receptors and ligand-induced migration of partially differentiated human monocyte-derived macrophages. Influence of IFN-γ and TGF β. Atherosclerosis 156, 267–275 (2001).
  • Sudhir K, Hashimura K, Bobik A, Dilley RJ, Jennings GL, Little P. Mechanical strain stimulates a mitogenic response in coronary vascular smooth muscle cells via release of basic fibroblast growth factor. Am. J. Hypertens. 14, 1128–1134 (2001).
  • Palumbo R, Gaetano C, Melillo G, Toschi E, Remuzzi A, Capogrossi MC. Shear stress downregulation of platelet-derived growth factor receptor-b and matrix metalloproteinase-2 is associated with inhibition of smooth muscle cell invasion and migration. Circulation 102, 225 (2000).
  • Zhou RH, Lee TS, Tsou TC et al. Stent implantation activates Akt in the vessel wall role of mechanical stretch in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 23(11), 2015–2020 (2003).
  • Chiarugi P, Cirri P, Taddei ML et al. New perspectives in PDGF receptor downregulation: the main role of phosphotyrosine phosphatases. J. Cell Sci. 115(10), 2219–2232 (2002).
  • Cartel NJ, Post M. Abrogation of apoptosis through PDGF-BB-induced sulfated glycosaminoglycan synthesis and secretion. Am. J. Physiol. Lung Cell. Mol. Physiol. 288(2), 285–293 (2005).
  • Ferguson MWJ, O’Kane S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359(1445), 839–850 (2004).
  • Evanko SP, Johnson PY, Braun KR, Underhill CB, Dudhla J, Wight TN. Platelet-derived growth factor stimulates the formation of versican-hyaluronan aggregates and pericellular matrix expansion in arterial smooth muscle cells. Arch. Biochem. Biophys. 394(1), 29–38 (2001).
  • Yung S, Thomas GJ, Davies M. Induction of hyaluronan metabolism after mechanical injury of human peritoneal mesothelial cells in vitro. Kidney Int. 58(5), 1953–1962 (2000).
  • Santin M, Morris C, Harrison M, Mikhalovska L, Lloyd AW, Mikhalovsky S. Factors inducing in-stent restenosis: an in vitro model. Med. J. Malaysia 59(B), 93–94 (2004).
  • Velling T, Nilsson S, Stefansson A, Johansson S. β1-integrins induce phosphorylation of Akt on serine 473 independently of focal adhesion kinase and Src family kinases. EMBO reports 5, 901–905 (2004).
  • Velling T, Risteli J, Wennerberg K, Mosher DF, Johansson S. Polymerization of Type I and III collagens is dependent on fibronectin and enhanced by integrin α11β1 and α2β1. J. Biol. Chem. 277(40), 37377–37381 (2002).
  • Kingsley K, Rust WL, Huff JL, Smith RC, Plopper GE. PDGF-BB enhances expression of, and reduces adhesion to, laminin-5 in vascular smooth muscle cells. Biochem. Biophys. Res. Comm. 294, 1017–1022 (2002).
  • Kingsley K, Huff JL, Rust WL et al. ERK 1/2 mediates PDGF-BB stimulated vascular smooth muscle cell proliferation and migration on laminin-5. Biochem. Biophys. Res. Comm. 293, 1000–1006 (2002).
  • Doevendans PA, van Eys G. Smooth muscle cells on the move: the battle for actin. Cardivasc. Res. 54(3), 499–502 (2002).
  • Kramer J, Quensel C, Meding J, Cardoso MC, Leonhardt H. Indentification and characterization of novel smoothelin isoform in vascular smooth muscle. J. Vasc. Res. 38, 120–132 (2001).
  • Cuff CA, Kothapalli D, Azonobi I et al. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. J. Clin. Invest. 108(7), 1031–1040 (2001).
  • Fukuda D, Sata M, Tanaka K, Nagai R. Potent inhibitory effect of sirolimus on circulating vascular progenitor cells. Circulation 111(7), 926–931 (2005).
  • Han CI, Campbell GR, Campbell JH, Circulating bone marrow cells can contribute to neointimal formation. J. Vasc. Res. 38, 113–119 (2001).
  • Kocijan A, Milosev I, Pihlar B. The influence of complexing agent and proteins on the corrosion of stainless steels and their metal components. J. Mater. Sci. Mater. Med. 14, 69–77 (2003).
  • Shabalovskaya SA, Anderegg J, Laab F, Thiel PA, Rondelli G. Surface conditions of nitinol wires, tubing, and as-cast alloys, the effect of chemical etching, aging in boiling water, and heat treatment. J. Biomed. Mater. Res. B Appl. Biomater. 65B, 193–203 (2003).
  • Huang N, Yang P, Leng YX et al. Hemocompatibility of titanium oxide films. Biomaterials 24, 2177–2187 (2003).
  • Mikhalovska LI, Santin M, Denyer SP et al. Fibrinogen adsorption and platelet adhesion to metal and carbon coatings. Thromb. Haemost. 92, 1032–1039 (2004).
  • Antoniucci D, Bartorelli A, Valenti R et al. Clinical and angiographic outcome after coronary arterial stenting with the carbostent. Am. J. Cardiol. 85(7), 821–825 (2000).
  • Unverdorben M, Sippel B, Degenhardt R et al. Comparison of a silicon carbide-coated stent versus a noncoated stent in human beings: the Tenax versus Nir Stent Study’s long-term outcome. Am. Heart J. 145(4), 9–17 (2003).
  • Hanekamp C, Koolen J, Bonnier H et al. Randomized comparison of balloon angioplasty versus silicon carbon-coated stent implantation for de novo lesions in small coronary arteries. Am. J. Cardiol. 93(10) 1233–1237 (2004).
  • Kedev S, Guagliumi G, Valsechi O, Tespili M. Heparin-coated versus uncoated Palmaz-Schatz stent in native coronary circulation. A randomized study with blind angioscopic assessment. Int. J. Artif. Organs 25(5), 461–469 (2002).
  • Park SJ, Lee CW, Hong MK et al. Comparison of gold-coated NIR stents with uncoated NIR stents in patients with coronary artery disease. Am. J. Cardiol. 89(7), 872–877 (2002).
  • Grenadier E, Roguin A, Hertz I et al. Stenting very small coronary narrowings (< 2 mm) using the biocompatible phosphorylcholine-coated coronary stent. Catheter. Cardiovasc. Interv. 55(3), 303–308 (2002).
  • Castner DG, Ratner BD. Biomedical surface science: foundations to frontiers. Surf. Sci. 500, 28–60 (2002).
  • West NEJ, Ruygrok PN, Disco CMC et al. Clinical and angiographic predictors of restenosis after stent deployment in diabetic patients. Circulation 109(7), 867–873 (2004).
  • Gomma AH, Hirschfield GM, Gallimore JR, Lowe GDO, Pepys MB, Fox KM. Preprocedural inflammatory markers do not predict restenosis after successful coronary stenting. Am. Heart J. 147(6), 1071–1077 (2004).
  • Sousa EJ, Costa MA, Sousa AGMR. What is ‘the matter’ with restenosis in 2002? Circulation 105, 2932–2933 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.