481
Views
78
CrossRef citations to date
0
Altmetric
Review

Bioactive technologies for hemocompatibility

Pages 473-492 | Published online: 09 Jan 2014

References

  • Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25, 5681–5703 (2004).
  • Sefton MV, Gemmel CH. Nonthrombogenic treatments and strategies. In: Biomaterials Science, Second Edition. Ratner BD, Hoffman AS (Eds). Elsevier Academic Press, Amsterdam, Netherlands, 456–470 (2004).
  • Kidane AG, Salacinski H, Tiwari A, Bruckdorfer KR, Seifalian AM. Anticoagulant and antiplatelet agents: their clinical and device application(s) together with usages to engineer surfaces. Biomacromolecules 5, 798–813 (2004).
  • Mao C, Qiu Y, Sang H et al. Various approaches to modify biomaterial surfaces for improving hemocompatibility. Adv. Colloid Interface Sci. 110, 5–17 (2004).
  • Sharma CP. Blood-compatible materials: a perspective. J. Biomater. Appl. 15, 359–381 (2001).
  • Wendel HP, Ziemer G. Coating-techniques to improve the hemocompatibility of artificial devices used for extracorporeal circulation. Eur. J. Cardiothorac. Surg. 16, 342–350 (1999).
  • Morrissey JH. Tissue factor: an enzyme cofactor and a true receptor. Thromb. Haemost. 86, 66–74 (2001).
  • Kappelmayer J, Bernabei A, Edmunds LH Jr, Edgington TS, Colman RW. Tissue factor is expressed on monocytes during simulated extracorporeal circulation. Circ. Res. 72, 1075–1081 (1993).
  • Spijker HT, Graaff R, Boonstra PW, Busscher HJ, van Oeveren W. On the influence of flow conditions and wettability on blood material interactions. Biomaterials 24, 4717–4727 (2003).
  • Andrade JD, Hlady V. Protein adsorption and materials biocompatibility: a tutorial review and suggested hypotheses. Adv. Polymer Sci. 79, 1–63 (1986).
  • Munro MS, Quattrone AJ, Ellsworth SR, Kulkari P, Eberhart RC. Alkyl substituted polymers with enhanced albumin affinity. Trans. Am. Soc. Artif. Internal Organs 27, 499–503 (1981).
  • Matsuda T, Inoue K. New photoreactive surface modification technology for fabricated devices. Trans. Am. Soc. Artif. Internal Organs 36, M161–M164 (1990).
  • Francois P, Vaudaux P, Nurdin N, Mathieu HJ, Descouts P, Lew DP. Physical and biological effects of a surface coating procedure on polyurethane catheters. Biomaterials 17, 667–678 (1996).
  • Harris JM. Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Application. Plenum Press, NY, USA (1992).
  • Alcantar NA, Aydil ES, Israelachvili JN. Polyethylene glycol-coated biocompatible surfaces. J. Biomed. Mater. Res. 51, 343–351 (2000).
  • Sheth SR, Leckband D. Measurements of attractive forces between proteins and end-grafted poly(ethylene glycol)chains. Proc. Natl Acad. Sci. USA 94, 8399–8404 (1997).
  • Sofia SJ, Merrill EW. Grafting of PEO to polymer surfaces using electron beam irradiation. J. Biomed. Mater. Res. 40, 153–163 (1998).
  • Shen M, Pan YV, Wagnr MS et al. Inhibition of monocyte adhesion and fibrinogen adsorption on glow discharge plasma deposited tetraethylene glycol dimethyl ether. J. Biomater. Sci. Polymer Ed. 12, 961–978 (2001).
  • Ward RS, White KA, Hu CB. Use of surface-modifying additives in the development of a new biomedical polyurethaneurea. In: Polyurethanes in Biomedical Engineering. Planck H, Egbers G, Syre I (Eds). Elservier, Amsterdam, Netherlands, 180–200 (1984).
  • Tsai CC, Deppisch RM, Forrestal LJ et al. Surface modifying additives for improved device-blood compatibility. ASAIO J. 40, M619–M624 (1994).
  • Gu YJ, Boonstra PW, Rijnsburger AA, Haan J, van Oeveren W. Cardiopulmonary bypass circuit treated with surface-modifying additives. A clinical evaluation of blood compatibility. Ann. Thorac. Surg. 65, 1342–1347 (1998).
  • Ward RS. Surface modification prior to surface formation: control of polymer surface properties via bulk composition. In: Medical Plastics and Biomaterials. PTG Scientists, CA, USA (1995).
  • Tang YW, Santerre JP, Labow RS, Taylor DG. Synthesis of surface-modifying macromolecules for use in segmented polyurethanes. J. Appl. Polymer Sci. 62(8), 1133–1145 (1996).
  • Amiji M, Park K. Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers. Biomaterials 13, 682–692 (1992).
  • Whitesides GM, Mathias JP, Seto CT. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).
  • Silver JH, Lin JC, Lim F, Tegoulia VA, Chaudhury MK, Cooper SL. Surface properties and hemocompatibility of alkyl-siloxane monolayers supported on silicone rubber: effect of alkyl chain length and ionic functionality. Biomaterials 20, 1533–1543 (1999).
  • Amos RA, Anderson B, Clapper DL et al. Biomaterial surface modification using photochemical coupling technology. In: Encyclopedic Handbook of Biomaterials and Bioengineering. Part A: Materials, Vol. 1. Wise DL, Trantolo DJ, Altobelli DE, Yaszemski MJ, Gresser JD, Schwartz ER (Eds). Marcel Dekker, NY, USA, 895–926 (1995).
  • Taton KS, Guire PE. Photoreactive self-assembling polyethers for biomedical coatings. Colloids Surf. B. Biointerfaces 24, 123–132 (2002).
  • Durrani AA, Hayward JA, Chapman D. Biomembranes as models for polymer surfaces II: the syntheses of reactive species for covalent coupling of phosphorylcholine to polymer surfaces. Biomaterials 7(2), 121–125 (1986).
  • Chapman D. Biomembranes and new hemocompatible materials. Langmuir 9, 39–45 (1993).
  • Orban JM, Faucher KM, Dluhy RA, Chaikof EL. Cytomimetic biomaterials. 4. In situ photopolymerization of phospholipids on an alkylated surface. Macromolecules 33, 4205–4212 (2000).
  • Lu JR, Murphy EF, Su TJ, Lewis AL, Stratford PW, Satija SK. Reduced protein adsorption on the surface of a chemically grafted phospholipid monolayer. Langmuir 17, 3382–3389 (2001).
  • Murphy EF, Lu JR, Brewer J, Russell J, Penfold J. The reduced adsorption of proteins at the phosphoryl choline incorporated polymer-water interface. Langmuir 15, 1313–1322 (1999).
  • Liu H, Faucher KM, Sun XL et al. A membrane-mimetic barrier for cell encapsulation. Langmuir 18, 1332–1339 (2002).
  • Liu JH, Jeng HL, Chung YC. Surface modification of polyethylene membranes using phosphorylcholine derivatives and their platelet compatibility. J. Appl. Polymer Sci.74, 2947–2954 (1999).
  • Ross EE, Bondurant B, Spratt T, Conboy JC, O’Brien DF, Saavedra SS. Formation of self-assembled, air-stable lipid bilayer membranes on solid supports. Langmuir 17, 2305–2307 (2001).
  • Kolusheva S, Kafri R, Katz M, Jelinek R. Rapid colorimetric detection of antibody-epitope recognition at a biomimetic membrane interface. J. Am. Chem. Soc. 123, 417–422 (2001).
  • Ueda T, Oshida H, Kurita K, Ishihara K, Nakabayashi N. Preparation of 2-methacryloyl oxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility. J. Polymer. 24, 1259 (1992).
  • Yoneyama T, Sugihara K, Ishihara K, Iwasakic Y, Nakabayashi N. The vascular prosthesis without pseudointima prepared by antithrombogenic phospholipid polymer. Biomaterials 23, 1455–1459 (2002).
  • Ishihara K, Fujita H, Yoneyama T, Iwasaki Y. Antithrombogenic polymer alloy composed of 2-methacryloyloxyethyl phosphorylcholine polymer and segmented polyurethane. J. Biomater. Sci. Polym. Ed. 11, 1183–1195 (2000).
  • Iwasaki Y, Tojo Y, Kurosaki T, Nakabayashi N. Reduced adhesion of blood cells to biodegradable polymers by introducing phosphorylcholine moieties. J. Biomed. Mater. Res. A 65A, 164–169 (2003).
  • Svedhem S, Dahlborg D, Ekeroth J, Kelly J, Hook F, Gold J. In situ peptide-modified supported lipid bilayers for controlled cell attachment. Langmuir 19, 6730–6736 (2003).
  • Regen SL, Kirszensztejn P, Singh A. Polymer-supported membranes. A new approach for modifying polymer surfaces. Macromolecules 16, 335–338 (1983).
  • Tegoulia VA, Rao W, Kalambur AT, Rabolt JF, Cooper SL. Surface properties, fibrinogen adsorption, and cellular interactions of a novel phosphorylcholine-containing self-assembled monolayer on gold. Langmuir 17, 1533–1543 (2001).
  • Lewis AL, Hughes PD, Kirkwood LC et al. Synthesis and characterisation of phosphorylcholine-based polymers useful for coating blood filtration devices. Biomaterials 21, 1847–1859 (2000).
  • Chung Y, Chiu YH, Wu YW, Tao YT. Self-assembled biomimetic monolayers using phospholipid containing disulfides. Biomaterials 26, 2313–2324 (2005).
  • Yianni YP. Biocompatible surfaces based upon biomembrane mimicry. In: Structural and Dynamic Properties of Lipids and Membranes. Quinn PJ, Cherry RJ (Eds). Portland Press Ltd, London, UK, 187–216 (1992).
  • Sinaÿ P. Sugars slide into heparin activity. Nature 398, 377–378 (1999).
  • Zehnder JL, Galli SJ. Mast-cell heparin demystified. Nature 400, 714–715 (1999).
  • Lever R, Page CP. Novel drug development opportunities for heparin. Nature Rev. Drug Discov. 1, 140–148 (2002).
  • Sun XL, Grande D, Baskaran S, Hanson SR, Chaikof EL. Glycosaminoglycan mimetic biomaterials. 4. Synthesis of sulfated lactose-based glycopolymers that exhibit anticoagulant activity. Biomacromolecules 3, 1065–1070 (2002).
  • Dal Park H, Won Kyu L, Ooya T, Park KD, Kim YH, Yui N. Anticoagulant activity of sulfonated polyrotaxanes as blood-compatible materials. J. Biomed. Mater. Res. 60, 186–190 (2002).
  • Bentolila A, Vlodavsky I, Ishai-Michaeli R, Kovalchuk O, Haloun C, Domb AJ. Poly(N-acryl amino acids): a new class of biologically active polyanions. J. Med. Chem. 43(13), 2591–2600 (2000).
  • Matsusaki M, Serizawa T, Kishida A, Endo T, Akashi M. Novel functional biodegradable polymer: synthesis and anticoagulant activity of poly(γ-glutamic acid)sulfonate (γ-PGA-sulfonate). Bioconjug. Chem.13, 23–28 (2002).
  • Jun Z, Youling Y, Kehua W, Jian S, Sicong L. Surface modification of segmented poly(ether urethane) by grafting sulfo ammonium zwitterionic monomer to improve hemocompatibilities. Colloids Surf. B. Biointerfaces 28, 1–9 (2003).
  • Kim YH, Han DK, Park KD, Kim SH. Negative cilia model for biocompatibility: sulfonated PEO-grafted polymers and tissues. Macromol. Symp. 118, 565–570 (1997).
  • Lin HB, Garcia-Echeverria C, Asakura S, Sun W, Mosher DF, Cooper SL. Endothelial cell adhesion on polyurethanes containing covalently attached RGD-peptides. Biomaterials 13, 905–914 (1992).
  • Lin HB, Zhao ZC, Garcia-Echeverria C, Rich DH, Cooper SL. Synthesis of a novel polyurethane copolymer containing covalently attached RGD peptide. J. Biomater. Sci. Polym. Ed. 3, 217–227 (1992).
  • Lin YS, Wang SS, Chung TW et al. Growth of endothelial cells on different concentrations of Gly-Arg-Gly-Asp photochemically grafted in polyethylene glycol modified polyurethane. Artif. Organs 25, 617–621 (2001).
  • Wang D, Ji J, Sun Y, Shen J, Feng L, Elisseeff JH. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth. Biomacromolecules 3, 1286–1295 (2002).
  • Wang D, Feng L, Ji J, Sun Y, Zhen X, Elisseeff JH. Novel human endothelial cell-engineered polyurethane biomaterials for cardiovascular biomedical applications. J. Biomed. Mater. Res. 65A, 498–510 (2003).
  • Guan JJ, Sacks MS, Beckman EJ, Wagner WRJ. Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine. J. Biomed. Mater. Res. 61, 493–503 (2002).
  • McClung WG, Clapper DL, Hu S-P, Brash JL. Adsorption of plasminogen from human plasma to lysine-containing surfaces. J. Biomed. Mater. Res. 49, 409–414 (2000).
  • McClung WG, Clapper DL, Hu S-P, Brash JL. Lysine-derivatized polyurethane as a clot lysing surface: conversion of adsorbed plasminogen to plasmin and clot lysis in vitro. Biomaterials 22, 1919–1924 (2001).
  • Aldenhoff YB, Blezer R, Lindhout T, Koole LH. Photo-immobilization of dipyridamole (Persantin®) at the surface of polyurethane biomaterials: reduction of in vitro thrombogenicity. Biomaterials 18, 167–172 (1997).
  • Aldenhoff YB, Koole LH. Platelet adhesion studies on dipyridamole coated polyurethane surfaces. Eur. Cell. Mater. 5, 61–67 (2003).
  • Phaneuf MD, Berceli SA, Bide MJ, Quist WC, Logerfo FW. Covalent linkage of recombinant hirudin to poly(ethylene terephthalate) (Dacron): creation of a novel antithrombin surface. Biomaterials 18, 755–765 (1997).
  • Wyers MC, Phaneuf MD, Rzucidlo EM, Contreras MA, Logerfo FW, Quist WC. In vivo assessment of a novel Dacron surface with covalently bound recombinant hirudin. Cardiovasc. Pathol. 8, 153–159 (1999).
  • Phaneuf MD, Berceli SA, Bide MJ et al. Covalent immobilization of hirudin improves the haemocompatibility of polylactide polyglycolide in vitro. Biomaterials 18, 1495–1502 (1997).
  • Phaneuf MD, Szycher M, Berceli SA, Dempsey DJ, Quist WC, Logerfo FW. Covalent linkage of recombinant hirudin to a novel ionic poly(carbonate) urethane polymer with protein binding sites: determination of surface antithrombin activity. Artif. Organs 22, 657–665 (1998).
  • Gott VL, Whiffen JD, Dutton RC. Heparin bonding on colloidal graphite surfaces. Science 142, 1297 (1963).
  • Leninger RI, Cooper CW, Falb RD, Grode GA. Nonthrombogenic plastic surfaces. Science 152, 1625–1626 (1966).
  • Larm O, Larsson R, Olsson P. A new non-thrombogenic surface prepared by selective covalent binding of heparin via a modified reducing terminal residue. Biomater. Med. Devices Artif. Organs 11, 161–173 (1983).
  • Kashiwagi T, Ito Y, Imanishi Y. Non-thrombogenicity of organic polymers by blending with alkylamine-heparin complexes. Biomaterials 14, 1145–1153 (1993).
  • Olander B, Wirse A, Albertsson AC. Silicone elastomer surface functionalized with primary amines and subsequently coupled with heparin. Biomacromolecules 4, 145–148 (2003).
  • Feyrer R, Harig F, Cesnjevar R et al. Bioline or safeline treatment of CPB circuits? Cardiovasc. Eng. 8, 1–2 (2003).
  • Tayama E, Hayashida N, Akasu K et al. Biocompatibility of heparin-coated extracorporeal bypass circuits: new heparin bonded bioline system. Artif. Organs 24(8), 618–623 (2000).
  • Johnell M, Elgue G, Larsson R, Larsson A, Thelin S, Siegbahn A. Coagulation, fibrinolysis, and cell activation in patients and shed mediastinal blood during coronary artery bypass grafting with a new heparin-coated surface. J. Thorac. Cardiovasc. Surg. 124(2), 321–32 (2002).
  • Johnell M. Monocytes, tissue factor and heparin-coated surfaces. Clinical and Experimental Studies. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine. Acta Univ. Ups. 1299, 65 (2003).
  • Cornelius RM, Sanchez J, Olsson P, Brash JL. Interactions of antithrombin and proteins in the plasma contact activation system with immobilized functional heparan. J. Biomed. Mater. Res. 67A, 475–483 (2003).
  • Kristensen EM, Rensmo H, Larsson R, Siegbahn H. Characterization of heparin surfaces using photoelectron spectroscopy and quartz crystal microbalance. Biomaterials 23, 4153–4159 (2003).
  • Johnell M, Larsson R, Siegbahn A. The influence of different heparin surface concentrations and antithrombin-binding capacity on inflammation and coagulation. Biomaterials 26, 1731–1739 (2005).
  • Sandhu S, Luthra A. Developments in Biointeracting Materials for Medical Application. Business Briefing: Medical Device Manufacturing and Technology. Touch Briefings, London, UK, 1–4 (2004).
  • Palanzo DA, Zarro DL, Manley NJ et al. Effect of carmeda® bioactive surface coating versus Trillium™ biopassive surface coating of the oxygenator on circulating platelet count drop during cardiopulmonary bypass. Perfusion 16, 279–283 (2001).
  • Cazzaniga A, Ranucci M, Isgro G et al. Trillium™ biopassive surface: a new biocompatible treatment for extracorporeal circulation circuits. Int. J. Artif. Organs 23, 319–324 (2000).
  • Wissink MJB, Beernink R, Pieper JS et al. Immobilization of heparin to EDC/NHS-crosslinked collagen. Characterization and in vitro evaluation. Biomaterials 22, 151–163 (2001).
  • Oliveira GB, Carvalho LB Jr, Silva MPC. Properties of carbodiimide treated heparin. Biomaterials 24, 4777–4783 (2003).
  • Wildevuur CR, Jansen PG, Bezemer PD et al. Clinical evaluation of Duraflo II® heparin treated extracorporeal circulation circuits (2nd version). The European working group on heparin coated extracorporeal circulation circuits. Eur. J. Cardiothorac. Surg. 11, 616–623 (1997).
  • Inui K, Shimazaki Y, Watanabe T. Effects of Duraflo II heparin-coated cardiopulmonary bypass circuits on the coagulation system, endothelial damage, and cytokine release in patients with cardiac operation employing aprotinin and steroids. Artif. Organs 23(12), 1107–1112 (1999).
  • Øvrum E, Tangen G, Øystese R, Ringdal MAL, Istad R. Heparin-coated circuits (Duraflo II) with reduced versus full anticoagulation during coronary artery bypass surgery. J. Card. Surg. 18, 140–146 (2003).
  • Ranucci M, Mazzucco A, Pessotto R et al. Heparin-coated circuits for high-risk patients: a multicenter, prospective, randomized trial. Ann. Thorac. Surg. 67, 994 –1000 (1999).
  • Grainger DW, Knutson K, Kim SW, Feijen J. Poly(dimethylsiloxane) poly(ethylene oxide) heparin block copolymers. II: surface characterisation and in vitro assessments. J. Biomed. Mater. Res. 24, 403–431 (1990).
  • Jee KS, Park HD, Park KD, Kim YH, Shin JW. Heparin conjugated polylactide as a blood compatible material. Biomacromolecules 5, 1877–1881 (2004).
  • Ferruti P. Ion-chelating polymers for medical applications. In: The Polymeric Materials Encyclopedia. Salamone JC (Ed.). CRC press, FL, USA, 5, 3334–3359 (1996).
  • Tanzi MC, Barzaghi B, Anouchinsky R, Bilenkis S, Penhasi A, Cohn D. Grafting reactions and heparin adsorption of poly(amidoamine)-grafted poly(urethane-amide)s. Biomaterials 13(7), 425–431 (1992).
  • Albanese A, Barbucci R, Belleville J et al. In vitro biocompatibility evaluation of a heparinizable material (PUPA), based on polyurethane and poly(amido-amine) components. Biomaterials 15(2), 129–136 (1994).
  • Petrini P, Tanzi MC, Visai L, Casolini F, Speziale P. Novel polyurethane-aminoamides: an in vitro study of the interaction with heparin. J. Biomater. Sci. Polym. Ed.11(4), 353–365 (2000).
  • Tanzi MC, Petrini P, Farè S. Advanced polyurethanes for blood contacting applications containing PIME as “smart” heparin-adsorbing moieties. In: Advanced Biomaterials for Medical Applications, NATO Science Series. Thomas DW (Ed.). Kluwer Acadademic Publishers, Dordrecht, The Netherlands, 51–66 (2004).
  • Ward RS, McCrea KR, Tian Y, Tanzi MC. Use of SFG to optimize a polyurethane with heparin binding sites incorporated during synthesis. Transactions 7th World Biomaterials Congress. Sydney, Australia, 433 (2004).
  • Frost MC, Reynolds MM, Meyerhoff ME. Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices. Biomaterials 26, 1685–1693 (2005).
  • Janvier G, Baquey C, Roth C, Benillan N, Belisle S, Hardy J-F. Extracorporeal circulation, hemocompatibility and biomaterials. Ann. Thorac. Surg. 62, 1926–1934 (1996).
  • Videm V, Mollnes TE, Bergh K. Heparin-coated cardiopulmonary bypass equipment. II. Mechanisms for reduced complement activation in vivo. J. Thorac. Cardiovasc. Surg. 117, 803–809 (1999).
  • Hofma SH, van Beusekom HM, Serruys PW, van der Giessen WJ. Recent developments in coated stents. Curr. Interv. Cardiol. Rep. 3, 28–36 (2001).
  • Lian F, He L, Colwell NS, Lollar P, Tollefsen DM. Anticoagulant activities of a monoclonal antibody that binds to exosite II of thrombin. Biochemistry 40, 8508–8513 (2001).

Websites

  • Cobe Cardiovascular, Inc. www.cobecv.com (Accessed June 2005)
  • Biocompatibles Intnl plc. www.biocompatibles.co.uk (Accessed June 2005)
  • Hemoteq, GmbH www.hemoteq.de (Accessed June 2005)
  • Carmeda AB, Carmeda US, www.carmeda.com (Accessed June 2005)
  • Medtronic World Headquarters, www.medtronic.com (Accessed June 2005)
  • Jostra, Maquet Cardiopulmonary AG www.jostra.de (Accessed June 2005)
  • Applied Ordnance Technology (AOT) www.aot.com (Accessed June 2005)
  • OMNIS Hospitalbedarf- Vertriebs-GmbH www.omnis.de (Accessed June 2005)
  • Corline Systems AB www.corline.se (Accessed June 2005)
  • Biointeractions Ltd. www.biointeractions.co.uk (Accessed June 2005)
  • Baxter Intnl, Inc. Healthcare Corp. www.baxter.com (Accessed June 2005)
  • The Polymer Technology group (PTG) www.polymertech.com (Accessed June 2005)
  • Applied Membrane Technology (AMT) www.appliedmembranetech.com (Accessed June 2005)
  • AST Products www.astp.com (Accessed June 2005)
  • Gish Biomedical, Inc. www.gishbiomedical.com (Accessed June 2005)
  • Hydromer, Inc. www.hydromer.com (Accessed June 2005)
  • MC3 Inc. www.mc3corp.com (Accessed June 2005)
  • Spire Corporation www.spirebiomedical.com (Accessed June 2005)
  • STS Biopolymers, Inc., now Angiotech Pharmaceuticals, Inc. www.angiotech.com (Accessed June 2005)
  • SurModics, Inc. www.surmodics.com (Accessed June 2005)
  • Surface Solutions Laboratories Inc. www.surfacesolutionslabs.com/ (Accessed June 2005)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.