191
Views
34
CrossRef citations to date
0
Altmetric
Perspective

Degradable, drug-eluting stents: a new frontier for the treatment of coronary artery disease

&
Pages 667-671 | Published online: 09 Jan 2014

References

  • American Heart Association. Heart and Stroke Statistical Update. American Heart Association, TX, USA (2001).
  • Zimmer S, Jacobs B, Levy T, Robins J. Med Tech 101: The Medical Device Handbook. Deutsche Bank Securities, Inc., North America, 1–70 (2002).
  • Ozaki Y, Violaris AG, Serruys PW. New stent technologies. Prog. Cardiovasc. Dis. 39(2), 129–140 (1996).
  • Schatz RA, Baim DS, Leon M et al. Clincal experience with the Palmaz-Schatz coronary stent. Initial results of a multicenter study. Circulation 83, 148–161 (1991).
  • Babapulle MN, Eisenberg MJ. Coated stents for the prevention of restenosis: part II. Circulation 106(22), 2859–2866 (2002).
  • Babapulle MN, Eisenberg MJ. Coated stents for the prevention of restenosis: part I. Circulation 106(21), 2734–2740 (2002).
  • Gunn J, Cumberland D. Stent coatings and local drug delivery. State of the art. Eur. Heart J. 20(23), 1693–1700 (1999).
  • Hamon M, Lecluse E, Monassier JP, Grollier G, Potier JC. Pharmacological approaches to the prevention of restenosis after coronary angioplasty. Drugs Aging 13(4), 291–301 (1998).
  • Colombo A, Karvouni E. Biodegradable stents: fulfilling the mission and stepping away. Circulation 102(4), 371–373 (2000).
  • Tanguay JF, Zidar JP, Phillips HR III, Stack RS. Current status of biodegradable stents. Cardiol. Clin. 12(4), 699–713 (1994).
  • Rab ST, King SB, Roubin GS, Carlin S, Hearn JA, Douglas JSJ. Coronary aneurysms after stent placement: a suggestion of altered vessel wall healing in the presence of anti-inflammatory agents. J. Am. Coll. Cardiol. 18(6), 1524–1528 (1991).
  • Palmaz JC. Intravascular stents: tissue–stent interactions and design considerations. Am. J. Roentgenol. 160(3), 613–618 (1993).
  • Yang XM, Manninen H, Matsi P, Soimakallio S. Percutaneous endovascular stenting: development, investigation and application. Eur. J. Radiol. 13(3), 161–173 (1991).
  • Beck A. A new balloon-expandable plastic endoprosthesis. Initial report of experience with the malleable thermostent. Radiologe 30(7), 347–350 (1990).
  • Susawa T, Shiraki K, Shimizu AY. Biodegradable intracoronary stents in adult dogs. J. Am. Coll. Cardiol. 21(Suppl. 1), 483A (1993).
  • Yoklavich M, Thatcher G, Sasken H. Vessel healing response to bioabsorbable implant. Fifth World Biomaterials Congress. May–June, Toronto, Canada (1996).
  • Kulkarni RK, Pani KC, Neuman C, Leonard F. Polylactic acid for surgical implants. Arch. Surg. 93, 839–843 (1966).
  • Kulkarni RK, Moore EG, Hegyeli AF, Leonard F. Biodegradable poly(lactic acid) polymers. J. Biomed. Mater. Res. 5, 169–181 (1971).
  • Yolles S, Eldridge JE, Leafe TD, Woodland JHR, Blake DA, Meyer FJ. Long-acting delivery systems for narcotic antagonists. Adv. Exp. Med. Biol. 47, 177 (1973).
  • Suganuma J, Alexander H. Biological response of intramedullary bone to poly-l-lactic acid. J. Appl. Biomater. 4, 13–27 (1993).
  • Chu CR, Monosov AZ, Amiel D. In situ assessment of cell viability within biodegradable polylactic acid polymer matrices. Biomaterials 16(18), 1381–1384 (1995).
  • Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R. Novel approach to fabricate porous sponges of poly(d,l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17, 1417–1422 (1996).
  • Hooper KA, Macon ND, Kohn J. Comparative histological evaluation of new tyrosine-derived polymers and poly (l-lactic acid) as a function of polymer degradation. J. Biomed. Mater. Res. 41(3), 443–454 (1998).
  • Pariente JL, Kim BS, Atala A. In vitro biocompatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells. J. Biomed. Mater. Res. 55(1), 33–39 (2001).
  • Tamai H, Igaki K, Kyo E et al. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102(4), 399–404 (2000).
  • Tamai H. Preclinical studies with tranilast and a tyrosine kinase inhibitor delivered from a PLLA bioerodable stent. Transcatheter Cardiovascular Therapeutics. Washington DC, USA (2002).
  • Pendharkar SM, James K, Kohn J. Iodinated derivatives of tyrosine-based polycarbonates: new radio-opaque degradable biomaterials. Annual Meeting of the Society for Biomaterials. CA, USA. Society for Biomaterials, Minneapolis, MN, USA, 386 (1998).
  • Zeltinger J, Schmid E, Brandom D, Bolikal D, Pesnell A, Kohn J. Advances in the development of coronary stents. Biomaterials Forum 26(1), 8–24 (2004).
  • Di Mario C, Griffiths H, Goktekin O et al. Drug-eluting bioabsorbable magnesium stent. J. Int. Cardiol. 17, 391–395 (2004).

Patent

  • Kohn J, Bolikal D, Pendharkar SM. Radio-opaque polymer biomaterials. US Patent 6,475,477, issued 2002, assigned to Rutgers University.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.