280
Views
8
CrossRef citations to date
0
Altmetric
Review

Colorectal tissue engineering: prerequisites, current status and perspectives

, , , , , & show all
Pages 501-507 | Published online: 09 Jan 2014

References

  • Langer R, Vacanti JP. Tissue engineering. Science 260(5110), 920–926 (1993).
  • Baquey C, Dupuy B. Organes Artificiels Hybrides: Concepts et Developpement: BIOMAT 88. Centre hospitalo-universitaire Xavier Arnozan, Bordeaux, 18–19 October 1988. Editions de l’Institut National de la Sante et de la Recherche Medicale, Paris, France (1989).
  • Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367(9518), 1241–1246 (2006).
  • Rabkin E, Schoen FJ. Cardiovascular tissue engineering. Cardiovasc. Pathol. 11(6), 305–317 (2002).
  • Freed LE, Guilak F, Guo XE et al. Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling. Tissue Eng. 12(12), 3285–3305 (2006).
  • Riha GM, Lin PH, Lumsden AB, Yao Q, Chen C. Review: application of stem cells for vascular tissue engineering. Tissue Eng. 11(9-10), 1535–1552 (2005).
  • Baker SC, Southgate J. Towards control of smooth muscle cell differentiation in synthetic 3D scaffolds. Biomaterials 29(23), 3357–3366 (2008).
  • Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99(1), 31–68 (1982).
  • Boudreau N, Myers C, Bissell MJ. From laminin to lamin: regulation of tissue-specific gene expression by the ECM. Trends Cell Biol. 5(1), 1–4 (1995).
  • Ingber D. Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis. J. Cell. Biochem. 47(3), 236–241 (1991).
  • Contieri E, Magnifico G, Ruotolo C, Petrocelli MP, Di Prisco B, Salvatore G. The use of prosthetic material in the repair of gastric and colonic gaps in the rat. Chir. Patol. Sper. 28(2), 80–86 (1980).
  • Oh DS, Manning MM, Emmanuel J, Broyles SE, Stone HH. Repair of full-thickness defects in alimentary tract wall with patches of expanded polytetrafluoroethylene. Ann. Surg. 235(5), 708–711; discussion 711 (2002).
  • Choi RS, Riegler M, Pothoulakis C et al. Studies of brush border enzymes, basement membrane components, and electrophysiology of tissue-engineered neointestine. J. Pediatr. Surg. 33(7), 991–996; discussion 996 (1998).
  • Kaihara S, Kim SS, Kim BS, Mooney D, Tanaka K, Vacanti JP. Long-term follow-up of tissue-engineered intestine after anastomosis to native small bowel. Transplantation 69(9), 1927–1932 (2000).
  • Kim SS, Kaihara S, Benvenuto MS et al. Effects of anastomosis of tissue-engineered neointestine to native small bowel. J. Surg. Res. 87(1), 6–13 (1999).
  • Organ GM, Mooney DJ, Hansen LK, Schloo B, Vacanti JP. Transplantation of enterocytes utilizing polymer-cell constructs to produce a neointestine. Transplant. Proc. 24(6), 3009–3011 (1992).
  • Sala FG, Kunisaki SM, Ochoa ER, Vacanti J, Grikscheit TC. Tissue-engineered small intestine and stomach form from autologous tissue in a preclinical large animal model. J. Surg. Res. 156(2), 205–212 (2009).
  • Grikscheit TC, Ochoa ER, Ramsanahie A et al. Tissue-engineered large intestine resembles native colon with appropriate in vitro physiology and architecture. Ann. Surg. 238(1), 35–41 (2003).
  • Grikscheit TC, Ogilvie JB, Ochoa ER, Alsberg E, Mooney D, Vacanti JP. Tissue-engineered colon exhibits function in vivo. Surgery 132(2), 200–204 (2002).
  • Henne-Bruns D, Kreischer HP, Schmiegelow P, Kremer B. Reinforcement of colon anastomoses with polyglycolic acid mesh: an experimental study. Eur. Surg. Res. 22(4), 224–230 (1990).
  • Marescaux JF, Aprahamian M, Mutter D et al. Prevention of anastomosis leakage: an artificial connective tissue. Br. J. Surg. 78(4), 440–444 (1991).
  • Mutter D, Aprahamian M, Damge C, Sonzini P, Marescaux J. Biomaterial supports for colonic wall defect healing. An experimental study in the rat. Biomaterials 17(14), 1411–1415 (1996).
  • Nocca D, Aggarwal R, Deneve E et al. Use of collagen wrap from bovine origin for the management of colic perforation. Preliminary study in a pig model. J. Laparoendosc. Adv. Surg. Tech. A 19(1), 79–83 (2009).
  • Ozel SK, Kazez A, Akpolat N. Does a fibrin–collagen patch support early anastomotic healing in the colon? An experimental study. Tech. Coloproctol. 10(3), 233–236 (2006).
  • Badylak S, Meurling S, Chen M, Spievack A, Simmons-Byrd A. Resorbable bioscaffold for esophageal repair in a dog model. J. Pediatr. Surg. 35(7), 1097–1103 (2000).
  • Rosen M, Ponsky J, Petras R, Fanning A, Brody F, Duperier F. Small intestinal submucosa as a bioscaffold for biliary tract regeneration. Surgery 132(3), 480–486 (2002).
  • De La Fuente SG, Gottfried MR, Lawson DC, Harris MB, Mantyh CR, Pappas TN. Evaluation of porcine-derived small intestine submucosa as a biodegradable graft for gastrointestinal healing. J. Gastrointest. Surg. 7(1), 96–101 (2003).
  • Ueno T, Oga A, Takahashi T, Pappas TN. Small intestinal submucosa (SIS) in the repair of a cecal wound in unprepared bowel in rats. J. Gastrointest. Surg. 11(7), 918–922 (2007).
  • Hoeppner J, Crnogorac V, Marjanovic G et al. Small intestinal submucosa as a bioscaffold for tissue regeneration in defects of the colonic wall. J. Gastrointest. Surg. 13(1), 113–119 (2009).
  • Badylak S, Kokini K, Tullius B, Whitson B. Strength over time of a resorbable bioscaffold for body wall repair in a dog model. J. Surg. Res. 99(2), 282–287 (2001).
  • Record RD, Hillegonds D, Simmons C et al. In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials 22(19), 2653–2659 (2001).
  • Badylak SF, Vorp DA, Spievack AR et al. Esophageal reconstruction with ECM and muscle tissue in a dog model. J. Surg. Res. 128(1), 87–97 (2005).
  • Raghavan D, Kropp BP, Lin HK, Zhang Y, Cowan R, Madihally SV. Physical characteristics of small intestinal submucosa scaffolds are location-dependent. J. Biomed. Mater. Res. A 73(1), 90–96 (2005).
  • Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials 12(3), 292–304 (1991).
  • Yoon JJ, Park TG. Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. J. Biomed. Mater. Res. 55(3), 401–408 (2001).
  • Xue L, Greisler HP. Biomaterials in the development and future of vascular grafts. J. Vasc. Surg. 37(2), 472–480 (2003).
  • Lawrence BJ, Maase EL, Lin HK, Madihally SV. Multilayer composite scaffolds with mechanical properties similar to small intestinal submucosa. J. Biomed. Mater. Res. A 88(3), 634–643 (2009).
  • Badylak SF, Vorp DA, Spievack AR et al. Esophageal reconstruction with ECM and muscle tissue in a dog model. J. Surg. Res. 128(1), 87–97 (2005).
  • Wei RQ, Tan B, Tan MY et al. Grafts of porcine small intestinal submucosa with cultured autologous oral mucosal epithelial cells for esophageal repair in a canine model. Exp. Biol. Med. (Maywood) 234(4), 453–461 (2009).
  • Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J. Pediatr. Surg. 23(1 Pt 2), 3–9 (1988).
  • Föllmann W, Weber S, Birkner S. Primary cell cultures of bovine colon epithelium: isolation and cell culture of colonocytes. Toxicol. In Vitro 14(5), 435–445 (2000).
  • Grossmann J, Walther K, Artinger M et al. Progress on isolation and short-term ex-vivo culture of highly purified non-apoptotic human intestinal epithelial cells (IEC). Eur. J. Cell Biol. 82(5), 262–270 (2003).
  • Wilhelm A, Jahns F, Böcker S, Mothes H, Greulich KO, Glei M. Culturing explanted colon crypts highly improves viability of primary non-transformed human colon epithelial cells. Toxicol. In Vitro 26(1), 133–141 (2012).
  • Chopra DP, Dombkowski AA, Stemmer PM, Parker GC. Intestinal epithelial cells in vitro. Stem Cells Dev. 19(1), 131–142 (2010).
  • Nakase Y, Hagiwara A, Nakamura T et al. Tissue engineering of small intestinal tissue using collagen sponge scaffolds seeded with smooth muscle cells. Tissue Eng. 12(2), 403–412 (2006).
  • Qin HH, Dunn JC. Small intestinal submucosa seeded with intestinal smooth muscle cells in a rodent jejunal interposition model. J. Surg. Res. 171(1), e21–e26 (2011).
  • Raghavan S, Lam MT, Foster LL et al. Bioengineered three-dimensional physiological model of colonic longitudinal smooth muscle in vitro. Tissue Eng. Part C. Methods 16(5), 999–1009 (2010).
  • Raghavan S, Gilmont RR, Miyasaka EA et al. Successful implantation of bioengineered, intrinsically innervated, human internal anal sphincter. Gastroenterology 141(1), 310–319 (2011).
  • Read TE, Andujar JE, Caushaj PF et al. Neoadjuvant therapy for rectal cancer: histologic response of the primary tumor predicts nodal status. Dis. Colon Rectum 47(6), 825–831 (2004).
  • Påhlman L, Bohe M, Cedermark B et al. The Swedish rectal cancer registry. Br. J. Surg. 94(10), 1285–1292 (2007).
  • Peeters KC, van de Velde CJ, Leer JW et al. Late side effects of short-course preoperative radiotherapy combined with total mesorectal excision for rectal cancer: increased bowel dysfunction in irradiated patients – a Dutch colorectal cancer group study. J. Clin. Oncol. 23(25), 6199–6206 (2005).
  • Marijnen CA, van de Velde CJ, Putter H et al. Impact of short-term preoperative radiotherapy on health-related quality of life and sexual functioning in primary rectal cancer: report of a multicenter randomized trial. J. Clin. Oncol. 23(9), 1847–1858 (2005).
  • Marks JH, Valsdottir EB, DeNittis A et al. Transanal endoscopic microsurgery for the treatment of rectal cancer: comparison of wound complication rates with and without neoadjuvant radiation therapy. Surg. Endosc. 23(5), 1081–1087 (2009).
  • Perez RO. Predicting response to neoadjuvant treatment for rectal cancer: a step toward individualized medicine. Dis. Colon Rectum 54(9), 1057–1058 (2011).
  • Ito M, Sugito M, Kobayashi A, Nishizawa Y, Tsunoda Y, Saito N. Relationship between multiple numbers of stapler firings during rectal division and anastomotic leakage after laparoscopic rectal resection. Int. J. Colorectal Dis. 23(7), 703–707 (2008).
  • Matthiessen P, Hallböök O, Andersson M, Rutegård J, Sjödahl R. Risk factors for anastomotic leakage after anterior resection of the rectum. Colorectal Dis. 6(6), 462–469 (2004).
  • Stumpf M, Klinge U, Wilms A et al. Changes of the extracellular matrix as a risk factor for anastomotic leakage after large bowel surgery. Surgery 137(2), 229–234 (2005).
  • Lohsiriwat V. Persistent perineal sinus: incidence, pathogenesis, risk factors, and management. Surg. Today 39(3), 189–193 (2009).
  • Garcia-Olmo D, Garcia-Arranz M, Herreros D. Expanded adipose-derived stem cells for the treatment of complex perianal fistula including Crohn’s disease. Expert Opin. Biol. Ther. 8(9), 1417–1423 (2008).
  • Garcia-Olmo D, Herreros D, Pascual I et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a Phase II clinical trial. Dis. Colon Rectum 52(1), 79–86 (2009).
  • Meagher AP, Farouk R, Dozois RR, Kelly KA, Pemberton JH. J ileal pouch–anal anastomosis for chronic ulcerative colitis: complications and long-term outcome in 1310 patients. Br. J. Surg. 85(6), 800–803 (1998).
  • Ståhlberg D, Gullberg K, Liljeqvist L, Hellers G, Löfberg R. Pouchitis following pelvic pouch operation for ulcerative colitis. Incidence, cumulative risk, and risk factors. Dis. Colon Rectum 39(9), 1012–1018 (1996).
  • Fonkalsrud EW, Bustorff-Silva J. Reconstruction for chronic dysfunction of ileoanal pouches. Ann. Surg. 229(2), 197–204 (1999).
  • Shepherd NA. The pelvic ileal reservoir: apocalypse later? BMJ 301(6757), 886–887 (1990).
  • Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am. J. Anat. 141(4), 537–561 (1974).
  • Barker N, van Es JH, Kuipers J et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165), 1003–1007 (2007).
  • Zuk PA, Zhu M, Ashjian P et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13(12), 4279–4295 (2002).
  • Andoh A, Bamba S, Fujiyama Y, Brittan M, Wright NA. Colonic subepithelial myofibroblasts in mucosal inflammation and repair: contribution of bone marrow-derived stem cells to the gut regenerative response. J. Gastroenterol. 40(12), 1089–1099 (2005).
  • Tadauchi A, Narita Y, Kagami H, Niwa Y, Ueda M, Goto H. Novel cell-based therapeutic strategy for ischemic colitis with use of bone marrow-derived mononuclear cells in rats. Dis. Colon Rectum 52(8), 1443–1451 (2009).
  • Adas G, Arikan S, Karatepe O et al. Mesenchymal stem cells improve the healing of ischemic colonic anastomoses (experimental study). Langenbecks. Arch. Surg. 396(1), 115–126 (2011).
  • Hori Y, Nakamura T, Kimura D et al. Experimental study on tissue engineering of the small intestine by mesenchymal stem cell seeding. J. Surg. Res. 102(2), 156–160 (2002).
  • Sîrbu-Boeti MP, Chivu M, Pâslaru LL et al. Transplantation of mesenchymal stem cells cultured on biomatrix support induces repairing of digestive tract defects, in animal model. Chirurgia (Bucur) 104(1), 55–65 (2009).
  • Trebol Lopez J, Georgiev Hristov T, García-Arranz M, García-Olmo D. Stem cell therapy for digestive tract diseases: current state and future perspectives. Stem Cells Dev. 20(7), 1113–1129 (2011).
  • Du XF, Kwon SK, Song JJ, Cho CG, Park SW. Tracheal reconstruction by mesenchymal stem cells with small intestine submucosa in rabbits. Int. J. Pediatr. Otorhinolaryngol. 76(3), 345–351 (2012).
  • Ma L, Yang Y, Sikka SC et al. Adipose tissue-derived stem cell-seeded small intestinal submucosa for tunica albuginea grafting and reconstruction. Proc. Natl Acad. Sci. USA 109(6), 2090–2095 (2012).
  • Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J. Surg. Res. 133(2), 185–192 (2006).
  • Citgez B, Cengiz AN, Akgun I et al. Effects of chitosan on healing and strength of colonic anastomosis in rats. Acta Cir. Bras. 27(10), 707–712 (2012).
  • Lauto A. Integration of extracellular matrix with chitosan adhesive film for sutureless tissue fixation. Lasers Surg. Med. 41(5), 366–371 (2009).
  • Lauto A, Mawad D, Barton M, Gupta A, Piller SC, Hook J. Photochemical tissue bonding with chitosan adhesive films. Biomed. Eng. Online 9, 47 (2010).
  • Rosenthal R, Günzel D, Finger C et al. The effect of chitosan on transcellular and paracellular mechanisms in the intestinal epithelial barrier. Biomaterials 33(9), 2791–2800 (2012).
  • Zakhem E, Raghavan S, Gilmont RR, Bitar KN. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering. Biomaterials 33(19), 4810–4817 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.