372
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Bacteriophage biosensors for antibiotic-resistant bacteria

, &

References

  • CDC. Diseases/pathogens associated with antimicrobial resistance/antibiotic resistance threats in the United States. 2013. Available from: www.cdc.gov/drugresistance/diseasesconnectedar.html;www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf
  • Singh A, Poshtiban S, Evoy S. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 2013;13(2):1763-86
  • Smartt A, Xu T, Jegier P, et al. Pathogen detection using engineered bacteriophages. Anal Bioanal Chem 2012;402(10):3127-46
  • Kutter E, Sulakvelidze A. Introduction. In: Kutter E, Sulakvelidze A, editors, Bacteriophage: biology and applications. CRC Press; Boca Raton, FL, USA: 2005. p. 1-4
  • Thevenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 2001;16(1-2):121-31
  • Shinde SB, Fernandes CB, Patravale VB. Recent trends in in-vitro nanodiagnostics for detection of pathogens. J Control Release 2012;159(2):164-80
  • Wang Y-X, Ye Z-Z, Si C-Y, Ying Y-B. Application of aptamer based biosensors for detection of pathogenic microorganisms. Chin J Anal Chem 2012;40(4):634-42
  • Ravindranath SP, Wang Y, Irudayaraj J. SERS driven cross-platform based multiplex pathogen detection. Sens Actuators B Chem 2011;152(2):183-90
  • Goodchild S, Love T, Hopkins N, Mayers C. Engineering antibodies for biosensor technologies. Adv Appl Microbiol 2006;58:185-226
  • Olsen EV, Pathirana ST, Samoylov AM, et al. Specific and selective biosensor for Salmonella and its detection in the environment. J Microbiol Methods 2003;53(2):273-85
  • Nanduri V, Sorokulova IB, Samoylov AM, et al. Phage as a molecular recognition element in biosensors immobilized by physical adsorption. Biosens Bioelectron 2007;22(6):986-92
  • Petrenko VA, Vodyanoy VJ. Phage display for detection of biological threat agents. J Microbiol Methods 2003;53(2):253-62
  • Petrenko VA, Smith GP. Phages from landscape libraries as substitute antibodies. Protein Eng 2000;13(8):589-92
  • Olofsson L, Ankarloo J, Andersson PO, Nicholls IA. Filamentous bacteriophage stability in non-aqueous media. Chem Biol 2001;8(7):661-71
  • Singh A, Arya SK, Glass N, et al. Bacteriophage tailspike proteins as molecular probes for sensitive and selective bacterial detection. Biosens Bioelectron 2010;26(1):131-8
  • Singh A, Glass N, Tolba M, et al. Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens. Biosens Bioelectron 2009;24(12):3645-51
  • Gervals L, Gel M, Allain B, et al. Immobilization of biotinylated bacteriophages on biosensor surfaces. Sens Actuators B Chem 2007;125(2):615-21
  • Tolba M, Minikh O, Brovko LY, et al. Oriented immobilization of bacteriophages for biosensor applications. Appl Environ Microbiol 2010;76(2):528-35
  • Tawil N, Sacher E, Mandeville R, Meunier M. Strategies for the immobilization of bacteriophages on gold surfaces monitored by surface plasmon resonance and surface morphology. J Phys Chem C 2013;117(13):6686-91
  • Chen X, Lenhert S, Hirtz M, et al. Langmuir-blodgett patterning: a bottom up way to build mesostructures over large areas. Acc Chem Res 2007;40(6):393-401
  • Olsen E, Vainrub A, Vodyanoy V. Acoustic wave (TSM) biosensors: weighing bacteria. In: Zourob M, Elwary S, Turner A, editors. Principles of bacterial detection: biosensors, recognition receptors and microsystems. Springer; NY, USA: 2008
  • Lakshmanan RS, Guntupalli R, Hu J, et al. Phage immobilized magnetoelastic sensor for the detection of Salmonella typhimurium. J Microbiol Methods 2007;71(1):55-60
  • Lakshmanan RS, Guntupalli R, Hu J, et al. Detection of Salmonella typhimurium in fat free milk using a phage immobilized magnetoelastic sensor. Sens Actuators B Chem 2007;126(2):544-50
  • Olsen EV, Sorokulova IB, Petrenko VA, et al. Affinity-selected filamentous bacteriophage as a probe for acoustic wave biodetectors of Salmonella typhimurium. Biosens Bioelectron 2006;21(8):1434-42
  • Olsen EV, Sykora JC, Sorokulova IB, et al. Phage fusion proteins as bioselective receptors for piezoelectric sensors. ECS Trans 2007;2(19):9-25
  • Sorokulova IB, Olsen EV, Chen IH, et al. Landscape phage probes for Salmonella typhimurium. J Microbiol Methods 2005;63(1):55-72
  • Li S, Li Y, Chen H, et al. Direct detection of Salmonella typhimurium on fresh produce using phage-based magnetoelastic biosensors. Biosens Bioelectron 2010;26(4):1313-19
  • Hosseinidoust Z, Van de Ven TGM, Tufenkji N. Bacterial capture efficiency and antimicrobial activity of phage-functionalized model surfaces. Langmuir 2011;27(9):5472-80
  • Shen W, Lakshmanan RS, Mathison LC, et al. Phage coated magnetoelastic micro-biosensors for real-time detection of Bacillus anthracis spores. Sens Actuators B Chem 2009;137(2):501-6
  • Balasubramanian S, Sorokulova IB, Vodyanoy VJ, Simonian AL. Lytic phage as a specific and selective probe for detection of Staphylococcus aureus – A surface plasmon resonance spectroscopic study. Biosens Bioelectron 2007;22(6):948-55
  • Guntupalli R, Sorokulova I, Olsen E, et al. Detection and identification of methicillin resistant and sensitive strains of Staphylococcus aureus using tandem measurements. J Microbiol Methods 2012;90(3):182-91
  • Vainrub A, Pustovyy O, Vodyanoy V. Resolution of 90 nm (lambda/5) in an optical transmission microscope with an annular condenser. Opt Lett 2006;31(19):2855-7
  • Tawil N, Sacher E, Mandeville R, Meunier M. Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosen Bioelectron 2012;37(1):24-9
  • Hirsh DC, Martin LD. Rapid detection of Salmonella spp. by using Felix-O1 bacteriophage and high-performance liquid chromatography. Appl Environ Microbiol 1983;45(1):260-4
  • Hirsh DC, Martin LD. Detection of Salmonella spp. in milk by using Felix-O1 bacteriophage and high-pressure liquid chromatography. Appl Environ Microbiol 1983;46(5):1243-5
  • Stewart GS, Jassim SA, Denyer SP, et al. The specific and sensitive detection of bacterial pathogens within 4 h using bacteriophage amplification. J Appl Microbiol 1998;84(5):777-83
  • Bhowmick T, Mirrett S, Reller LB, et al. Controlled multicenter evaluation of a bacteriophage-based method for rapid detection of Staphylococcus aureus in positive blood cultures. J Clin Microbiol 2013;51(4):1226-30
  • McNerney R, Mallard K, Urassa HM, et al. Colorimetric phage-based assay for detection of rifampin-resistant Mycobacterium tuberculosis. J Clin Microbiol 2007;45(4):1330-2
  • Reiman RW, Atchley DH, Voorhees KJ. Indirect detection of Bacillus anthracis using real-time PCR to detect amplified gamma phage DNA. J Microbiol Methods 2007;68(3):651-3
  • Abshire TG, Brown JE, Ezzell JW. Production and validation of the use of gamma phage for identification of Bacillus anthracis. J Clin Microbiol 2005;43(9):4780-8
  • Goodridge L, Griffiths M. Reporter bacteriophage assays as a means to detect foodborne pathogenic bacteria. Food Res Int 2002;35(9):863-70
  • Schofield DA, Sharp NJ, Westwater C. Phage-based platforms for the clinical detection of human bacterial pathogens. Bacteriophage 2012;2(2):105-283
  • Bardarov S Jr, Dou H, Eisenach K, et al. Detection and drug-susceptibility testing of M. tuberculosis from sputum samples using luciferase reporter phage: comparison with the Mycobacteria Growth Indicator Tube (MGIT) system. Diagn Microbiol Infect Dis 2003;45(1):53-61
  • Dusthackeer A, Kumar V, Subbian S, et al. Construction and evaluation of luciferase reporter phages for the detection of active and non-replicating tubercle bacilli. J Microbiol Methods 2008;73(1):18-25
  • Rondon L, Piuri M, Jacobs WR Jr, et al. Evaluation of fluoromycobacteriophages for detecting drug resistance in Mycobacterium tuberculosis. J Clin Microbiol 2011;49(5):1838-42
  • Piuri M, Jacobs WR Jr, Hatfull GF. Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis. PLoS ONE 2009;4(3):e4870
  • Schuch R, Nelson D, Fischetti VA. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 2002;418(6900):884-9
  • Fujinami Y, Hirai Y, Sakai I, et al. Sensitive detection of Bacillus anthracis using a binding protein originating from gamma-phage. Microbiol Immunol 2007;51(2):163-9
  • Sainathrao S, Mohan KV, Atreya C. Gamma-phage lysin PlyG sequence-based synthetic peptides coupled with Qdot-nanocrystals are useful for developing detection methods for Bacillus anthracis by using its surrogates, B. anthracis-Sterne and B. cereus-4342. BMC Biotechnol 2009;9:67
  • Griffith J, Manning M, Dunn K. Filamentous bacteriophage contract into hollow spherical particles upon exposure to a chloroform-water interface. Cell 1981;23(3):747-53
  • Guntupalli R, Sorokulova I, Olsen E, et al. Biosensor for detection of antibiotic resistant Staphylococcus bacteria. J Vis Exp 2013(75):e50474
  • Guntupalli R, Sorokulova I, Long R, et al. Phage langmuir monolayers and langmuir-blodgett films. Colloids Surf B Biointerfaces 2011;82(1):182-9
  • Albay A, Kisa O, Baylan O, Doganci L. The evaluation of FASTPlaqueTB test for the rapid diagnosis of tuberculosis. Diagn Microbiol Infect Dis 2003;46(3):211-15
  • Albert H, Trollip A, Seaman T, Mole RJ. Simple, phage-based (FASTPplaque) technology to determine rifampicin resistance of Mycobacterium tuberculosis directly from sputum. Int J Tuberc Lung Dis 2004;8(9):1114-19
  • Guntupalli R, Lakshmanan RS, Hu J, et al. Rapid and sensitive magnetoelastic biosensors for the detection of Salmonella typhimurium in a mixed microbial population. J Microbiol Methods 2007;70(1):112-18
  • Guntupalli R, Sorokulova I, Krumnow A, et al. Real-time optical detection of methicillin-resistant Staphylococcus aureus using lytic phage probes. Biosens Bioelectron 2008;24(1):151-4
  • Rodriguez-Cerrato V, Garcia P, Del Prado G, et al. In vitro interactions of LytA, the major pneumococcal autolysin, with two bacteriophage lytic enzymes (Cpl-1 and Pal), cefotaxime and moxifloxacin against antibiotic-susceptible and -resistant Streptococcus pneumoniae strains. J Antimicrob Chemother 2007;60(5):1159-62
  • Mole RJ, Maskell TWOC. Phage as a diagnostic –the use of phage in TB diagnosis. J Chem Technol Biotechnol 2001;76(7):683-8
  • Chen LK, Liu YL, Hu A, et al. Potential of bacteriophage PhiAB2 as an environmental biocontrol agent for the control of multidrug-resistant Acinetobacter baumannii. BMC Microbiol 2013;13:154
  • Popova AV, Zhilenkov EL, Myakinina VP, et al. Isolation and characterization of wide host range lytic bacteriophage AP22 infecting Acinetobacter baumannii. FEMS Microbiol Lett 2012;332(1):40-6
  • Lin NT, Chiou PY, Chang KC, et al. Isolation and characterization of phi AB2: a novel bacteriophage of Acinetobacter baumannii. Res Microbiol 2010;161(4):308-14
  • Piekarowicz A, Klyz A, Majchrzak M, et al. Characterization of the dsDNA prophage sequences in the genome of Neisseria gonorrhoeae and visualization of productive bacteriophage. BMC Microbiol 2007;7:66
  • Cary SG, Hunter DH. Isolation of bacteriophages active against Neisseria meningitidis. J Virol 1967;1(3):538-42
  • Cheng Q, Nelson D, Zhu S, Fischetti VA. Removal of group B streptococci colonizing the vagina and oropharynx of mice with a bacteriophage lytic enzyme. Antimicrob Agents Chemother 2005;49(1):111-17
  • Hsu CR, Lin TL, Pan YJ, et al. Isolation of a bacteriophage specific for a new capsular type of klebsiella pneumoniae and characterization of its polysaccharide depolymerase. PLoS ONE 2013;8(8):e70092
  • Drulis-Kawa Z, Mackiewicz P, Kesik-Szeloch A, et al. Isolation and characterisation of KP34–a novel phiKMV-like bacteriophage for Klebsiella pneumoniae. Appl Microbiol Biotechnol 2011;90(4):1333-45
  • Otawa K, Hirakata Y, Kaku M, Nakai Y. Bacteriophage control of vancomycin-resistant enterococci in cattle compost. J Appl Microbiol 2012;113(3):499-507
  • Rashel M, Uchiyama J, Ujihara T, et al. Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11. J Infect Dis 2007;196(8):1237-47

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.