405
Views
51
CrossRef citations to date
0
Altmetric
Review

Polymer-based platforms by electric field-assisted techniques for tissue engineering and cancer therapy

, , &

References

  • Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotech 2011;6(1):13-22
  • Badylak SF, Weiss DJ, Caplan A, Macchiarini P. Engineered whole organs and complex tissues. Lancet 2012;379(9819):943-52
  • Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 2009;5(1):1-13
  • Hynes RO. The extracellular matrix: not just pretty fibrils. Science 2009;326(5957):1216-19
  • Rothman S. How is the balance between protein synthesis and degradation achieved? Theor Biol Med Model 2010;7:25
  • Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2006;22:287-309
  • Kelleher CM, Vacanti JP. Engineering extracellular matrix through nanotechnology. J R Soc Interface 2010;7(6):S717-29
  • Guarino V, Gloria A, Raucci MG, et al. Bio-inspired cell instructive composite platforms for bone regeneration. Inter Mat Rev 2012;57(5):256-75
  • Liu W, Thomopoulos S, Xia Y. Electrospun nanofibers for regenerative medicine. Adv Health Mater 2012;1(1):10-25
  • Agarwal S, Wendorff JH, Greiner A. Progress in the field of electrospinning for tissue engineering applications. Adv Mater 2009;21(32-33):3343-51
  • Burger C, Hsiao BS, Chu B. Nanofibrous materials and their applications. Ann Rev Mater Res 2006;36:333-68
  • Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 2009;61(12):1033-42
  • Kim HS, Yoo HS. MMPs-responsive release of DNA from electrospun nanofibrous matrix for local gene therapy: in vitro and in vivo evaluation. J Control Release 2010;145(3):264-71
  • Ma G, Liu Y, Peng C, et al. Paclitaxel loaded electrospun porous nanofibers as mat potential application for chemotherapy against prostate cancer. Carbohydr Polym 2011;86(2):505-12
  • Sung K, Lee CS. Factors influencing liquid breakup in electrohydrodynamic atomization. J Appl Phys 2004;96:3956-61
  • Chen DR, Pui DYH, Kaufman SL. Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 µm diameter range. J Aerosol Sci 1995;26(6):963-77
  • Hartman RPA, Brunner DJ, Camelot DMA, et al. Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet. J Aerosol Sci 1999;30(7):823-49
  • Yao J, Lim LK, Xie JW, et al. Characterization of electrospraying process for polymeric particle fabrication. J Aerosol Sci 2008;39:987-1002
  • Kim GH, Park JH. A PMMA optical diffuser fabricated using an electrospray method. Appl Phys Mater Sci Process 2007;86:347-51
  • Bohr A, Boetker JP, Rades T, et al. Application of spray-drying and electrospraying/electospinning for poorly water-soluble drugs: a particle engineering approach. Curr Pharm Des 2014;20(3):325-48
  • Wu Y, Clark RL. Electrohydrodynamic atomization: a versatile process for preparing materials for biomedical applications. J Biomater Sci Polymer Ed 2008;19:573-601
  • Jaworek A, Sobczyk AT. Electrospraying route to nanotechnology: an overview. J Electrost 2008;66:197-219
  • Ladd MR, Lee SJ, Stitzel JD, et al. Co-electrospun dual scaffolding system with potential for muscle–tendon junction tissue engineering. Biomaterials 2011;32(6):1549-59
  • Bonani W, Maniglio D, Motta A, et al. Biohybrid nanofiber constructs with anisotropic biomechanical properties. J Biomed Mater Res 2011;96B(2):276-86
  • Han T, Yarin AL, Reneker DH. Viscoelastic electrospun jets: initial stresses and elongational rheometry. Polymer (Guildf) 2008;49(6):1651-8
  • Reznik SN, Yarin AL, Zussman E, Bercovici L. Evolution of a compound droplet attached to a core-shell nozzle under the action of a strong electric field. Phys Fluids 2006;18:062101
  • Loscertales G, Barrero A, Guerrero I, et al. Micro/nano encapsulation via electrified coaxial liquid jets. Science 2002;295(5560):1695-8
  • Su Y, Su Q, Liu W, et al. Controlled release of bone morphogenetic protein and dexamethasone loaded in core–shell PLLACL–collagen fibers for use in bone tissue engineering. Acta Biomater 2012;8(2):763-71
  • Yarin AL. Coaxial electrospinning and emulsion electrospinning of core–shell fibers. Polym Adv Technol 2011;22(3):310-17
  • Han D, Steckl A. Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules. ACS Appl Mater Interfaces 2013;5(16):8241-5
  • Jha MK, Rahman MH, Rahman MM. Biphasic oral solid drug delivery system: a review. Int J Pharm Sci Res 2011;2(5):1108-15
  • Yu DG, Williams GR, Wang X, et al. Dual drug release nanocomposites prepared using a combination of electrospraying and electrospinning. RSC Adv 2013;3(14):4652-8
  • Wan Abdul Khodir WK, Guarino V, Alvarez-Perez MA, et al. Trapping tetracycline-loaded nanoparticles into polycaprolactone fiber networks for periodontal regeneration therapy. J Bioact Comp Pol 2013;28(3):258-73
  • Guarino V, Wan Abdul Khodir WK, Ambrosio L. Biodegradable micro and nanoparticles by electrospraying techniques. J Appl Biomat Funct Mat 2012;10(3):191-6
  • Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW. Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules 2008;9(8):2097-103
  • Stankus JJ, Soletti L, Fujimoto K, et al. Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization. Biomaterials 2007;28(17):2738-46
  • Kim DH, Provenzano PP, Smith CL, Levchenko A. Matrix nanotopography as a regulator of cell function. J Cell Biol 2012;197(3):351-60
  • Rim NG, Shin Choongsoo S, Shin H. Current approaches to electrospun nanofibers for tissue engineering. Biomed Mater 2013;8:014102
  • Guarino V, Cirillo V, Taddei P, et al. Tuning size scale and crystallinity of PCL electrospun fibres via solvent permittivity to address hMSC response. Macromol Biosci 2011;11(12):1694-705
  • Pham QP, Sharma U, Mikos AG. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 2006;7:2796-805
  • Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mat Res A 2003;67:531-7
  • Mo XM, Xu CY, Kotaki M, Ramakrishna S. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 2004;25:1883-90
  • Huang C, Chen R, Ke Q, et al. Electrospun collagen–chitosan–TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids Surface B 2011;82:307-15
  • Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 2007;28:1967-77
  • Wise JK, Yarin AL, Megaridis CM, Cho M. Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage. Tissue Eng A 2009;15:913-21
  • Huang C, Tang Y, Liu X, et al. Electrospinning of nanofibres with parallel line surface texture for improvement of nerve cell growth. Soft Matter 2011;7:10812-17
  • Kim YT, Haftel VK, Kumar S, Bellamkonda RV. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials 2008;29(21):3117-27
  • Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005;26(15):2603-10
  • Corey JM, Lin DY, Mycek KB, et al. Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J Biomed Mater Res A 2007;83(3):636-45
  • Kim DH, Mitchel JA, Bellamkonda RV. Topography, cell response, and nerve regeneration. Annu Rev Biomed Eng 2010;12:203-31
  • Aviss KJ, Gough JE, Downes S. Aligned electrospun polymer fibres for skeletal muscle regeneration. Eur Cell Mater 2010;19:193-204
  • Cirillo V, Guarino V, Alvarez-Perez MA, et al. Optimization of fully aligned bioactive electrospun fibers for “in vitro” nerve guidance. J Mater Sci Mater Med 2014. [Epub ahead of print]
  • Sell SA, Wolfe PS, Garg K, et al. The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polymers 2010;2:522-53
  • Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules 2002;3:232-8
  • Boland ED, Espy PG, Bowlin GL. Tissue engineering scaffolds. In: Wnek GE, Bowlin GL, editors. Encyclopedia of biomaterials and biomedical engineering. Informa Healthcare; London, UK: 2004. p. 1-7
  • He W, Yong T, Teo WE, et al. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering. Tissue Eng 2005;11:1574-88
  • Alvarez-Perez MA, Guarino V, Cirillo V, Ambrosio L. Influence of gelatin cues in PCL electrospun membranes on nerve outgrowth. Biomacromolecules 2010;11:2238-46
  • Guarino V, Alvarez-Perez MA, Cirillo V. Ambrosio L. hMSC interaction with PCL and PCL/gelatin platforms: a comparative study on films and electrospun membranes. J Bioact Compat Pol 2011;26(2):144-60
  • Duca L, Floquet N, Aliz AJP, et al. Elastin as a matrikine. Crit Rev Oncol Hematol 2004;49:235-44
  • Nivison-Smith L, Rnjak J, Weiss AS. Synthetic human elastin microfibers: stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications. Acta Biomater 2010;6:354-9
  • Kovacina JR, Wise SG, Li Z, et al. Electrospun synthetic human elastin: collagen composite scaffolds for dermal tissue engineering. Acta Biomater 2012;8:3714-22
  • McManus MC, Boland ED, Simpson DG, et al. Electrospun fibrinogen: Feasibility as a tissue engineering scaffold in a rat cell culture model. J Biomed Mater Res 2007;81(2):299-309
  • McManus MC, Boland ED, Koo HP, et al. Mechanical properties of electrospun fibrinogen structures. Acta Biomater 2006;2:19-28
  • McManus MC, Sell SA, Bowen WC, et al. Electrospun fibrinogen-polydioxanone composite matrix: potential for in situ urologic tissue engineering. J Eng Fiber Fabr 2008;3:12-21
  • Sell SA, Francis MP, Garg K, et al. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications. Biomed Mater 2008;3(4):045001
  • Zhang Q, Yan S, Li M. Silk fibroin based porous materials. Materials 2009;2:2276-95
  • Zhang JG, Mo XM. Current research on electrospinning of silk fibroin and its blends with natural and synthetic biodegradable polymers. Front Mater Sci 2013;7(2):129-42
  • Guimard NK, Gomeb N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci 2007;32(8-9):876-921
  • Guarino V, Alvarez-Perez MA, Borriello A, et al. Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration. Adv Healthc Mater 2013;2(1):218-27
  • Mozafari M, Mehraien M, Vashaee D, Tayebi L. Electroconductive nanocomposite scaffolds: a new strategy into tissue engineering and regenerative medicine. 2012. Available from: http://dx.doi.org/10.5772/51058
  • Borriello A, Guarino V, Schiavo L, et al. Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle. J Mater Sci Mater Med 2011;22:1053-62
  • Spinks GM, Mottaghitalab V, Bahrami-Samani M, et al. Carbon nanotube reinforced polyaniline fibres for high strength artificial muscles. Adv Mater 2006;18:637-40
  • George PM, Lyckman AW, LaVan DA, et al. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 2005;26:3511-19
  • Ludwig KA, Uram JD, Yang J, et al. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophen) (PEDOT) film. J Neural Eng 2006;3:59-70
  • Chen Y. Elling, Lee Y, Chong SC. A fast sensitive and label free electrochemical DNA sensor. J Phys Conf Ser 2006;34:204-9
  • Gautier C, Cougnon C, Pilard JF, Casse N. Label-free detection of DNA hybridization based on EIS investigation of conducting properties of functional polythiophene matrix. J Electroanal Chem 2006;587:276-83
  • Jing X, Wang Y, Wu D, Qiang J. Sonochemical synthesis of polyaniline nanofibers. Ultrason Sonochem 2007;14:75-80
  • Prabhakaran Molamma P, Ghasemi-Mobarakeh L, Jin G, Ramakrishna S. Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J Biosci Bioeng 2011;112(5):501-7
  • Li J, He A, Zheng J, Han CC. Gelatin and gelatin-hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions. Biomacromolecules 2006;7:2243-7
  • Dillon DR, Tenneti KK, Li CY, et al. On the structure and morphology of polyvinylidene fluoride–nanoclay nanocomposites. Polymer (Guildf) 2006;47:1678-88
  • Gupta D, Venugopal J, Mitra S, et al. Nanostructured biocomposite substrates by electrospinning and electrspraying for the mineralization of osteoblasts. Biomaterials 2009;30:2085-94
  • Weber N, Lee YS, Shanmugasundaram S, et al. Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Acta Biomater 2010;6:3550-6
  • Chong EJ, Phan TT, Lim IJ, et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 2007;3:321-30
  • Stevens MM, George JH. Exploring and engineering the cell surface interface. Science 2005;310(5751):1135-8
  • Wang C, Tang Z, Zhao Y, et al. Three-dimensional in vitro cancer models: a short review. Biofabrication 2014;6(2):022001 (9pp)
  • Bin Kim J, Stein R, O’Hare MJ. Three-dimensional in vitro tissue culture models of breast cancer – a review. Breast Cancer Res Treat 2004;85(2):281-91
  • Dangles V, Validire P, Wertheimer M, et al. Impact of human bladder cancer cell architecture on autologous T-lymphocyte activation. Int J Cancer 2002;98(1):51-6
  • Lottner C, Knuechel R, Bernhardt G, Brunner H. Distribution and subcellular localization of a water-soluble hematoporphyrin-platinum(II) complex in human bladder cancer cells. Cancer Lett 2004;215(2):167-77
  • Zaman MH. The role of engineering approaches in analysing cancer invasion and metastasis. Nat Rev Cancer 2013;13(8):596-603
  • Sahai E. Mechanisms of cancer cell invasion. Curr Opin Genet Dev 2005;15(1):87-96
  • Zahir N, Weaver V M. Death in the third dimension: apoptosis regulation and tissue architecture. Curr Opin Genet Dev 2004;14(1):71-80
  • Sivaraman A, Leach JK, Townsend S, et al. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr Drug Metab 2005;6(6):569-91
  • Borriello L, Declerck YA. Tumor microenvironment and therapeutic resistance process. Med Sci 2014;30(4):445-51
  • Pampaloni F, Stelzer EHK, Leicht S, Marcello M. Madin–Darby canine kidney cells are increased in aerobic glycolysis when cultured on flat and stiff collagen-coated surfaces rather than in physiological 3D cultures. Proteomics 2010;10(19):3394-413
  • Loessner D, Stok KS, Lutolf MP, et al. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 2010;31(32):8494-506
  • Ridky TW, Chow JM, Wong DJ, Khavari PA. Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia. Nat Med 2010;16(12):1450-5
  • Li CL, Tian T, Nan KJ, et al. Survival advantages of multicellular spheroids versus monolayers of HepG2 cells in vitro. Oncol Rep 2008;20(6):1465-71
  • Hutmacher DW, Loessner D, Rizzi S, et al. Can tissue engineering concepts advance tumor biology research? Trends Biotechnol 2010;28(3):125-33
  • Partanen J I, Nieminen AI, Mäkelä TP, Klefstrom J. Suppression of oncogenic properties of c-Myc by LKB1-controlled epithelial organization. Proc Natl Acad Sci USA 2007;104(37):14694-9
  • Shimony N, Avrahami I, Gorodetsky R. A 3D rotary renal and mesenchymal stem cell culture model unveils cell death mechanisms induced by matrix deficiency and low shear stress. Nephrol Dial Transplant 2008;23(6):2071-80
  • Hehlgans S, Lange I, Eke I, Cordes N. 3D cell cultures of human head and neck squamous cell carcinoma cells are radiosensitized by the focal adhesion kinase inhibitor TAE226. Radiother Oncol 2009;92(3):371-8
  • Feder-Mengus C, Ghosh S, Reschner A, et al. New dimensions in tumor immunology: what does 3D culture reveal? Trends Mol Med 2008;14(8):333-40
  • Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nature Rev Mol Cell Biol 2006;7(3):211-24
  • Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am 2004;86(7):1541-58
  • Kim JB, Stein R, O’Hare MJ. Three-dimensional in vitro tissue culture models of breast cancer – a review. Breast Cancer Res Treat 2004;85(3):281-91
  • Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012;196(4):395-406
  • Martins A, Reis RL, Neves NM. Electrospinning: processing technique for tissue engineering scaffolding. Int Mater Rev 2008;53(5):257-73
  • Nichol JW, Khademhosseini A. Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 2009;5(7):1312-19
  • Hartman O, Zhang C, Adams EL, et al. Microfabricated electrospun collagen membranes for 3-D cancer models and drug screening applications. Biomacromolecules 2009;10(8):2019-32
  • Hartman O, Zhang C, Adams EL, et al. Biofunctionalization of electrospun PCL-based scaffolds with perlecan domain IV peptide to create a 3-D pharmacokinetic cancer model. Biomaterials 2010;31(21):5700-18
  • Saha S, Duan X, Wu L, et al. Electrospun fibrous scaffolds promote breast cancer cell alignment and epithelial−mesenchymal transition. Langmuir 2012;28(4):2028-34
  • Agudelo-Garcia PA, De Jesus JK, et al. Glioma Cell Migration on Three-dimensional Nanofiber Scaffolds Is Regulated by Substrate Topography and Abolished by Inhibition of STAT3 Signaling. Neoplasia 2011;13(9):831-40
  • Girard YK, Wang C, Ravi S, et al. A 3D fibrous scaffold inducing tumoroids: a platform for anticancer drug development. PLoS One 2013;8(10):e75345
  • Zamani M, Prabhakaran MP, Ramakrishna S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomedicine 2013;8(1):2997-3017
  • Liu D, Liu S, Jing X, et al. Necrosis of cervical carcinoma by dichloroacetate released from electrospun polylactide mats. Biomaterials 2013;33(17):4362-9
  • Xie C, Li X, Luo X, et al. Release modulation and cytotoxicity of hydroxycamptothecin-loaded electrospun fibers with 2-hydroxypropyl-beta-cyclodextrin inoculations. Int J Pharm 2010;391(1–2):55-64
  • Shao S, Li L, Yang G, et al. Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers. Int J Pharm 2011;421(2):310-20
  • Zeng J, Yang L, Liang Q, et al. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J Control Release 2005;105(1–2):43-51
  • Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 2008;29(13):1989-2006
  • Jaworek A. Electrostatic micro- and nanoencapsulation and electroemulsification: a brief review. J Microencapsul 2008;25(7):443-68
  • Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater 2004;16(14):1151-70
  • Wu Y, MacKay JA, McDaniel J R, et al. Fabrication of elastin-like polypeptide nanoparticles for drug delivery by electrospraying. Biomacromolecules 2009;10(1):19-24
  • Pires LR, Guarino V, Oliveira MJ, et al. Loading poly(trimethylene carbonate – co – ϵ-caprolactone) fibers with ibuprofen towards nerve regeneration. J Tissue Eng Regen Med 2013;http://dx.doi.org/10.1002/term.1792
  • Shi P, Zuo Y, Li X, et al. Gentamicin-impregnated chitosan/nanohydroxyapatite/ethyl cellulose microspheres granules for chronic osteomyelitis therapy. J Biomed Mater Res A 2010;93(3):1020-31
  • Shi P, Zuo Y, Zou Q, et al. Improved properties of incorporated chitosan film with ethyl cellulose microspheres for controlled release. Int J Pharm 2009;375(1-2):67-74
  • Xu Y, Hanna MA. Electrosprayed bovine serum albumin-loaded tripolyphosphate cross-linked chitosan capsules: synthesis and characterization. J Microencapsul 2007;24(2):143-51
  • Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv 2010;7(4):429-44
  • Rujitanaroj PO, Pimpha N, Supaphol P. Wound-dressing materials with anti-bacterial activity from electrospun gelatin fiber mats containing silver nano-particles. Polymer (Guildf) 2008;49(21):4723-32
  • Park H, Kim PH, Hwang T, et al. Fabrication of cross-linked alginate beads using electrospraying for adenovirus delivery. Int J Pharm 2012;427(2):417-25
  • Ranganath SH, Kee I, Krantz WB, et al. Hydrogel matrix entrapping PLGA-paclitaxel microspheres: drug delivery with near zero-order release and implantability advantages for malignant brain tumour chemotherapy. Pharm Res 2009;26(9):2101-14
  • Xie J, Marijnissen JC, Wang CH. Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro. Biomaterials 2006;27(17):3321-32
  • Xie J, Tan JC, Wang CH. Biodegradable films developed by electrospray deposition for sustained drug delivery. J Pharm Sci 2008;97(8):3109-22
  • Ding L, Lee T, Wang CH. Fabrication of monodispersed Taxol-loaded particles using electrohydrodynamic atomization. J Control Release 2005;102(2):395-413
  • Arya N, Chakraborty S, Dube N, Katti DS. Electrospraying: a facile technique for synthesis of chitosan-based micro/nanospheres for drug delivery applications. J Biomed Mater Res B Appl Biomater 2009;88(1):17-31
  • Smith LA, Liu X, Ma PX. Tissue engineering with nano-fibrous scaffolds soft matter. 2008;4(11):2144-9
  • Guarino V, Causa F, Ambrosio L. Bioactive scaffolds for bone and ligament tissue. Exp Rev Bio Dev 2007;4(3):405-18
  • Subbiah T, Bhat GS, Tock RW, et al. Electrospinning of nanofibers. J Appl Polym Sci 2005;96(2):557-69
  • Yue H, Wei W, Yue Z, et al. Particle size affects the cellular response in macrophages. Eur J Pharm Sci 2010;41(5):650-7
  • Badami AS, Kreke MR, Thompson MS, et al. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 2006;27(4):596-606
  • Stupp SI, Donners JJJM, Li LS, Mata A. Expanding frontiers in biomaterials. MRS Bull 2005;30(11):864-73
  • Charest JL, Garcıa AJ, King WP. 2007;Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries. Biomaterials 2007;28(13):2202-10
  • Gauvin R, Khademosseini A. Microscale technologies and modular approaches for tissue engineering: moving toward the fabrication of complex functional structures. ACS Nano 2011;28:4258e64
  • Luciani A, Guarino V, Ambrosio L, Netti A. Solvent and melting induced microsphere sintering techniques: a comparative study of morphology and mechanical properties. J Mater Sci Mater Med 2011;22(9):2019-28
  • Lavenus S, Pilet P, Guicheux J, et al. Behaviour of mesenchymal stem cells, fibroblasts and osteoblasts on smooth surfaces. Acta Biomater 2011;7(4):1525-34
  • Park A, Cima LG. In vitro cell response to differences in poly-L-lactide crystallinity. J Biomed Mater Res 1996;31(1):117-30
  • Guaccio A, Borselli C, Oliviero O, Netti PA. Oxygen consumption of chondrocytes in agarose and collagen gels: a comparative analysis. Biomaterials 2008;29(10):1484-93
  • Guaccio A, Guarino V, Alvarez- Perez MA, et al. Influence of electrospun fiber mesh size on Hmsc oxygen metabolism in 3D collagen matrices: experimental and theoretical evidences. Biotechnol Bioeng 2011;108(8):1965-76
  • Hashi CK, Zhu Y, Yang GY, et al. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci USA 2007;104:11915
  • Skidan I, Steiniger SC. In vivo models for cancer stem cell research: a practical guide for frequently used animal models and available biomarkers. J Physiol Pharmacol 2014;65(2):157-69
  • Muranen T, Selfors LM, Worster DT, et al. Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell 2012;21(2):227-39
  • Celli JP, Rizvi I, Blanden AR, et al. An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models. Sci Rep 2014;4:3751 (10pp)
  • Fong ELS, Cherradi SEL, Burdett E. Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. PNAS 2013;110(16):6500-5
  • Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumour progression by enhancing integrin signalling. Cell 2009;139(5):891-906
  • Baker EL, Lu J, Yu D, et al. Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential. Biophys J 2010;99(7):2048-57
  • Wang F, Li Z, Tamama K, et al. Fabrication and characterization of prosurvival growth factor releasing. anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation. Biomacromolecules 2009;10(9):2609-18
  • Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW. The three- dimensional vascularization of growth factor-releasing hybrid scaffold of polycaprolactone/collagen fibers and hyaluronic acid hydrogel. Biomaterials 2011;32(32):8108-17
  • Hadjiargyrou M, Chiu JB. Enhanced composite electrospun nanofiber scaffolds for use in drug delivery. Expert Opin Drug Deliv 2008;5(10):1093-106
  • Li C, Vepari C, Jin HJ, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006;27(16):3115-24
  • Chew SY, Wen J, Yim EK, Leong KW. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 2005;6(4):2017-24
  • Reichert JC, Quent VM, Burke LJ, et al. Mineralized human primary osteoblast matrices as a model system to analyse interactions of prostate cancer cells with the bone microenvironment. Biomaterials 2010;31(31):7928-36
  • Yildirim ED, Pappas D, Guceri S, Sun W. Enhanced cellular functions on polycaprolactone tissue scaffolds by O2 plasma surface modification. Plasma Process Polym 2011;8(3):256-67
  • Zhan J, Singh A, Zhang Z, et al. Multifunctional aliphatic polyester nanofibers for tissue engineering. Biomatter 2012;2(4):202-12
  • Braghirolli DI, Steffens S, Pranke P. Electrospinning for regenerative medicine: a review of the main topics. Drug Discov Today 2014;19(6):743-53
  • Volpato FZ, Almodovar J, Erickson K, et al.2 bioactivity using heparin-based nanoparticles, and their delivery from electrospun chitosan fibers. Acta Biomater 2012;8(4):1551-9
  • Zou J, Yang Y, Liu Y, et al. Release kinetics and cellular profiles for βFGF-loaded electrospun fibers: effect of the conjugation density and molecular weight of heparin. Polymer (Guildf) 2011;52(15):3357-67
  • Domvri K, Zarogoulidis P, Darwiche K, et al. Molecular Targeted Drugs and Biomarkers in NSCLC, the Evolving Role of Individualized Therapy. J Cancer 2013;4(9):736-54
  • Mayol L, Borzacchiello A, Guarino V, et al. Design of electrosprayed poly (L-lactide-co-glycolide) non spherical microdevices for sustained drug release. J Mat Sci Mat in Med 2014;25(2):383-90
  • Luo H, Lu L, Yang F, et al. Nasopharyngeal Cancer-specific therapy based on fusion peptide-functionalized lipid nanoparticles. ACS Nano 2014;8(5):4334-47
  • Wei P, Zhang L, Lu Y, et al. C 60 (Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy. Nanotechnology 2010;21(49):495101 (11pp)
  • Kim HS, Yoo HS. In vitro and in vivo epidermal growth factor gene therapy for diabetic ulcers with electrospun fibrous meshes. Acta Biomater 2013;9(7):7371-73780
  • Somia N, Verma IM. Gene therapy: trials and tribulations. Nat Rev Genet 2000;1(2):91-9
  • Pichon C, Billiet L. Midoux P. Chemical vectors for gene delivery: uptake and intracellular trafficking. Curr Opin Biotechnol 2010;21(5):640-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.