125
Views
29
CrossRef citations to date
0
Altmetric
Review

Magnetoencephalography in presurgical epilepsy diagnosis

&
Pages 335-347 | Published online: 09 Jan 2014

References

  • Kwan P, Brodie MJ. Early identification of refractory epilepsy. N. Engl. J. Med.342(5), 314–319 (2000).
  • Clusmann H, Kral T, Schramm J. Present practice and perspective of evaluation and surgery for temporal lobe epilepsy. Zentralbl. Neurochir.67(4), 165–182 (2006).
  • Berg AT, Vickrey BG, Langfitt JT et al. The multicenter study of epilepsy surgery: recruitment and selection for surgery. Epilepsia44(11), 1425–1433 (2003).
  • Cohen-Gadol AA, Wilhelmi BG, Collignon F et al. Long-term outcome of epilepsy surgery among 399 patients with nonlesional seizure foci including mesial temporal lobe sclerosis. J. Neurosurg.104(4), 513–524 (2006).
  • Stern JM. Overview of treatment guidelines for epilepsy. Curr. Treat. Options Neurol.8(4), 280–288 (2006).
  • Rychlicki F, Zamponi N, Trignani R, Ricciuti RA, Iacoangeli M, Scerrati M. Vagus nerve stimulation: clinical experience in drug-resistant pediatric epileptic patients. Seizure15(7), 483–490 (2006).
  • Renfroe JB, Wheless JW. Earlier use of adjunctive vagus nerve stimulation therapy for refractory epilepsy. Neurology59(6 Suppl. 4), S26–S30 (2002).
  • Groesbeck DK, Bluml RM, Kossoff EH. Long-term use of the ketogenic diet in the treatment of epilepsy. Dev. Med. Child Neurol.48(12), 978–981 (2006).
  • Elger CE, Helmstaedter C, Kurthen M. Chronic epilepsy and cognition. Lancet Neurol.3(11), 663–672 (2004).
  • Cornaggia CM, Beghi M, Provenzi M, Beghi E. Correlation between cognition and behavior in epilepsy. Epilepsia47(s2), 34–39 (2006).
  • Stefan H, Schneider S, Abraham-Fuchs K et al. Magnetic source localization in focal epilepsy. Multichannel magnetoencephalography correlated with magnetic resonance brain imaging. Brain113(Pt 5), 1347–1359 (1990).
  • Cuffin BN, Cohen D. Comparison of the magnetoencephalogram and electroencephalogram. Electroencephalogr. Clin. Neurophysiol.47(2), 132–146 (1979).
  • Cohen D. Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science175(22), 664–666 (1972).
  • Barth DS, Sutherling W, Beatty J. Fast and slow magnetic phenomena in focal epileptic seizures. Science226(4676), 855–857 (1984).
  • Ioannides AA. Magnetoencephalography as a research tool in neuroscience: state of the art. Neuroscientist12(6), 524–544 (2006).
  • Barkley GL, Baumgartner C. MEG and EEG in epilepsy. J. Clin. Neurophysiol.20(3), 163–178 (2003).
  • Makela JP, Forss N, Jaaskelainen J, Kirveskari E, Korvenoja A, Paetau R. Magnetoencephalography in neurosurgery. Neurosurgery59(3), 493–511 (2006).
  • Baumgartner C. Controversies in clinical neurophysiology. MEG is superior to EEG in the localization of interictal epileptiform activity: con. Clin. Neurophysiol.115(5), 1010–1020 (2004).
  • Stefan H, Hummel C, Scheler G et al. Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain126(Pt 11), 2396–2405 (2003).
  • Vrba J, Robinson SE. SQUID sensor array configurations for magnetoencephalography applications. Supercond. Sci. Technol.15, R51–R89 (2002).
  • Vrba J, Robinson SE. Signal processing in magnetoencephalography. Methods25(2), 249–271 (2001).
  • Ahonen AI, Hamalainen MS, Ilmoniemi RJ et al. Sampling theory for neuromagnetic detector arrays. IEEE Trans. Biomed. Eng.40(9), 859–869 (1993).
  • Uusitalo MA, Ilmoniemi RJ. Signal-space projection method for separating MEG or EEG into components. Med. Biol. Eng. Comput.35(2), 135–140 (1997).
  • Fischer MJ, Scheler G, Stefan H. Utilization of magnetoencephalography results to obtain favourable outcomes in epilepsy surgery. Brain128(Pt 1), 153–157 (2005).
  • Genow A, Hummel C, Scheler G et al. Epilepsy surgery, resection volume and MSI localization in lesional frontal lobe epilepsy. Neuroimage21(1), 444–449 (2004).
  • Knowlton RC, Laxer KD, Aminoff MJ, Roberts TP, Wong ST, Rowley HA. Magnetoencephalography in partial epilepsy: clinical yield and localization accuracy. Ann. Neurol.42(4), 622–631 (1997).
  • Mamelak AN, Lopez N, Akhtari M, Sutherling WW. Magnetoencephalography-directed surgery in patients with neocortical epilepsy. J. Neurosurg.97(4), 865–873 (2002).
  • Oishi M, Kameyama S, Masuda H et al. Single and multiple clusters of magnetoencephalographic dipoles in neocortical epilepsy: significance in characterizing the epileptogenic zone. Epilepsia47(2), 355–364 (2006).
  • Oishi M, Otsubo H, Kameyama S et al. Epileptic spikes: magnetoencephalography versus simultaneous electrocorticography. Epilepsia43(11), 1390–1395 (2002).
  • Oishi M, Otsubo H, Iida K et al. Preoperative simulation of intracerebral epileptiform discharges: synthetic aperture magnetometry virtual sensor analysis of interictal magnetoencephalography data. J. Neurosurg.105(1 Suppl.), 41–49 (2006).
  • Xiao Z, Xiang J, Holowka S et al. Volumetric localization of epileptic activities in tuberous sclerosis using synthetic aperture magnetometry. Pediatr. Radiol.36(1), 16–21 (2006).
  • Mosher JC, Lewis PS, Leahy RM. Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans. Biomed. Eng.39(6), 541–557 (1992).
  • Jerbi K, Mosher JC, Baillet S, Leahy RM. On MEG forward modelling using multipolar expansions. Phys. Med. Biol.47(4), 523–555 (2002).
  • Lin YY, Chang KP, Hsieh JC et al. Magnetoencephalographic analysis of bilaterally synchronous discharges in benign rolandic epilepsy of childhood. Seizure12(7), 448–455 (2003).
  • Paetau R, Granstrom ML, Blomstedt G, Jousmaki V, Korkman M, Liukkonen E. Magnetoencephalography in presurgical evaluation of children with the Landau-Kleffner syndrome. Epilepsia40(3), 326–335 (1999).
  • Yu HY, Nakasato N, Iwasaki M, Shamoto H, Nagamatsu K, Yoshimoto T. Neuromagnetic separation of secondarily bilateral synchronized spike foci: report of three cases. J. Clin. Neurosci.11(6), 644–648 (2004).
  • Hauk O. Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data. Neuroimage21(4), 1612–1621 (2004).
  • Hillebrand A, Singh KD, Holliday IE, Furlong PL, Barnes GR. A new approach to neuroimaging with magnetoencephalography. Hum. Brain Mapp.25(2), 199–211 (2005).
  • Uutela K, Taulu S, Hamalainen M. Detecting and correcting for head movements in neuromagnetic measurements. Neuroimage14(6), 1424–1431 (2001).
  • de Munck JC, Verbunt JP, Van’t Ent D, Van Dijk BW. The use of an MEG device as 3D digitizer and motion monitoring system. Phys. Med. Biol.46(8), 2041–2052 (2001).
  • Wilson HS. Continuous head-localization and data correction in a whole-cortex MEG sensor. Neurol. Clin. Neurophysiol.2004, 56 (2004).
  • Wheless JW, Willmore LJ, Breier JI et al. A comparison of magnetoencephalography, MRI, and V-EEG in patients evaluated for epilepsy surgery. Epilepsia40(7), 931–941 (1999).
  • Papanicolaou AC, Pataraia E, Billingsley-Marshall R et al. Toward the substitution of invasive electroencephalography in epilepsy surgery. J. Clin. Neurophysiol.22(4), 231–237 (2005).
  • Knowlton RC, Elgavish R, Howell J et al. Magnetic source imaging versus intracranial electroencephalogram in epilepsy surgery: a prospective study. Ann. Neurol.59(5), 835–842 (2006).
  • Tilz C, Hummel C, Kettenmann B, Stefan H. Ictal onset localization of epileptic seizures by magnetoencephalography. Acta Neurol. Scand.106(4), 190–195 (2002).
  • Eliashiv DS, Elsas SM, Squires K, Fried I, Engel J Jr. Ictal magnetic source imaging as a localizing tool in partial epilepsy. Neurology59(10), 1600–1610 (2002).
  • Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila JK, Lounasmaa OV. Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys.65, 413–497 (1993).
  • Lin YY, Shih YH, Hsieh JC et al. Magnetoencephalographic yield of interictal spikes in temporal lobe epilepsy. Comparison with scalp EEG recordings. Neuroimage19(3), 1115–1126 (2003).
  • de Jongh A, de Munck JC, Goncalves SI, Ossenblok P. Differences in MEG/EEG epileptic spike yields explained by regional differences in signal-to-noise ratios. J. Clin. Neurophysiol.22(2), 153–158 (2005).
  • Assaf BA, Karkar KM, Laxer KD et al. Magnetoencephalography source localization and surgical outcome in temporal lobe epilepsy. Clin. Neurophysiol.115(9), 2066–2076 (2004).
  • Pataraia E, Lindinger G, Deecke L, Mayer D, Baumgartner C. Combined MEG/EEG analysis of the interictal spike complex in mesial temporal lobe epilepsy. Neuroimage24(3), 607–614 (2005).
  • Scheler G, Fischer MJ, Genow A et al. Spatial relationship of source localizations in patients with focal epilepsy: comparison of MEG and EEG with a three spherical shells and a boundary element volume conductor model. Hum. Brain Mapp.28(4), 315–322 (2007).
  • Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R. EEG source imaging. Clin. Neurophysiol.115(10), 2195–2222 (2004).
  • Wolters CH, Anwander A, Tricoche X, Weinstein D, Koch MA, MacLeod RS. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. Neuroimage30(3), 813–826 (2006).
  • Cascino GD. Surgical treatment for epilepsy. Epilepsy Res.60(2–3), 179–186 (2004).
  • Salmelin R. Clinical neurophysiology of language: the MEG approach. Clin. Neurophysiol.118(2), 237–254 (2007).
  • Benke T, Koylu B, Visani P et al. Language lateralization in temporal lobe epilepsy: a comparison between fMRI and the Wada test. Epilepsia47(8), 1308–1319 (2006).
  • Papanicolaou AC, Simos PG, Castillo EM et al. Magnetocephalography: a noninvasive alternative to the Wada procedure. J. Neurosurg.100(5), 867–876 (2004).
  • Baayen JC, de Jongh A, Stam CJ et al. Localization of slow wave activity in patients with tumor-associated epilepsy. Brain Topogr.16(2), 85–93 (2003).
  • Ishibashi H, Simos PG, Castillo EM et al. Detection and significance of focal, interictal, slow-wave activity visualized by magnetoencephalography for localization of a primary epileptogenic region. J. Neurosurg.96(4), 724–730 (2002).
  • Kaltenhäuser M, Scheler G, Rampp S, Paulini A, Stefan H. Spatial intralobar correlation of spike and slow wave activity localisations in focal epilepsies: a MEG analysis. Neuroimage34(4), 1466–1472 (2007).
  • Gallen CC, Tecoma E, Iragui V, Sobel DF, Schwartz BJ, Bloom FE. Magnetic source imaging of abnormal low-frequency magnetic activity in presurgical evaluations of epilepsy. Epilepsia38(4), 452–460 (1997).
  • Xiang J, Holowka S, Qiao H et al. Automatic localization of epileptic zones using magnetoencephalography. Neurol. Clin. Neurophysiol.2004, 98 (2004).
  • da Silva FH, Gomez JP, Velis DN, Kalitzin S. Phase clustering of high frequency EEG: MEG components. Clin. EEG Neurosci.36(4), 306–310 (2005).
  • Rampp S, Stefan H. Fast activity as a surrogate marker of epileptic network function? Clin. Neurophysiol.117(10), 2111–2117 (2006).
  • Tao JX, Ray A, Hawes-Ebersole S, Ebersole JS. Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia46(5), 669–676 (2005).
  • Cohen D, Cuffin BN. EEG versus MEG localization accuracy: theory and experiment. Brain Topogr.4(2), 95–103 (1991).
  • Soufflet L, Boeijinga PH. Linear inverse solutions: simulations from a realistic head model in MEG. Brain Topogr.18(2), 87–99 (2005).
  • Szmuk P, Kee S, Pivalizza EG, Warters RD, Abramson DC, Ezri T. Anaesthesia for magnetoencephalography in children with intractable seizures. Paediatr. Anaesth.13(9), 811–817 (2003).
  • Fernandez A, Maestu F, Amo C et al. Focal temporoparietal slow activity in Alzheimer’s disease revealed by magnetoencephalography. Biol. Psychiatry52(7), 764–770 (2002).
  • Wienbruch C, Moratti S, Elbert T et al. Source distribution of neuromagnetic slow wave activity in schizophrenic and depressive patients. Clin. Neurophysiol.114(11), 2052–2060 (2003).
  • Seidel P, Schmidl F, Becker C et al. Planar high-temperature superconducting dc-SQUID gradiometers for different applications. Supercond. Sci. Technol.19, 5133–5148 (2006).
  • Stefan H, Nimsky C, Scheler G et al. Periventricular nodular heterotopia: a challenge for epilepsy surgery. Seizure16(1), 81–86 (2007).

Website

  • WHO. Atlas: epilepsy care in the world (2005). www.who.int/mental_health/neurology/ Epilepsy_atlas_r1.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.