80
Views
25
CrossRef citations to date
0
Altmetric
Review

Adult mesenchymal stem cells and impaction grafting: a new clinical paradigm shift

, , , &
Pages 393-404 | Published online: 09 Jan 2014

References

  • Segal HE, Bellamy TN. The joint health benefits delivery program: improving access and reducing costs – successes and pitfalls. Mil. Med.153(8), 430–431 (1988).
  • Birrell F, Johnell O, Silman A. Projecting the need for hip replacement over the next three decades: influence of changing demography and threshold for surgery. Ann. Rheum. Dis.58(9), 569–572 (1999).
  • Dixon T, Shaw M, Ebrahim S, Dieppe P. Trends in hip and knee joint replacement: socioeconomic inequalities and projections of need. Ann. Rheum. Dis.63(7), 825–830 (2004).
  • Bozic KJ, Durbhakula S, Berry DJ et al. Differences in patient and procedure characteristics and hospital resource use in primary and revision total joint arthroplasty: a multicenter study. J. Arthroplasty20(7 Suppl. 3), 17–25 (2005).
  • Crowe JF, Sculco TP, Kahn B. Revision total hip arthroplasty: hospital cost and reimbursement analysis. Clin. Orthop. Relat Res.413, 175–182 (2003).
  • Slooff TJ, Huiskes R, van HJ, Lemmens AJ. Bone grafting in total hip replacement for acetabular protrusion. Acta Orthop. Scand.55(6), 593–596 (1984).
  • Gie GA, Linder L, Ling RS, Simon JP, Slooff TJ, Timperley AJ. Contained morselized allograft in revision total hip arthroplasty. Surgical technique. Orthop. Clin. North Am.24(4), 717–725 (1993).
  • Halliday BR, English HW, Timperley AJ, Gie GA, Ling RS. Femoral impaction grafting with cement in revision total hip replacement. Evolution of the technique and results. J. Bone Joint Surg. Br.85(6), 809–817 (2003).
  • Eldridge JD, Smith EJ, Hubble MJ, Whitehouse SL, Learmonth ID. Massive early subsidence following femoral impaction grafting. J. Arthroplasty12(5), 535–540 (1997).
  • Sharpe P. Impaction grafting or cement alone for femoral revision hip replacement. Conference proceedings, ANZORS. Sydney, Australia (1998).
  • Anderson MJ, Keyak JH, Skinner HB. Compressive mechanical properties of human cancellous bone after γ irradiation. J. Bone Joint Surg. Am.74(5), 747–752 (1992).
  • Pelker RR, Friedlaender GE, Markham TC, Panjabi MM, Moen CJ. Effects of freezing and freeze-drying on the biomechanical properties of rat bone. J. Orthop. Res.1(4), 405–411 (1984).
  • Cornu O, Bavadekar A, Godts B, Van Tomme J, Delloye C, Banse X. Impaction bone grafting with freeze-dried irradiated bone. Part II. Changes in stiffness and compactness of morselized grafts: experiments in cadavers. Acta Orthop. Scand.74(5), 553–558 (2003).
  • Lambe WRV. Soil Mechanics – SI Version. John Wiley & Sons, London, UK (1979).
  • Smith GN. Elements of Soil Mechanics (6th Edition). Blackwell Science, Oxford, UK (1990).
  • Dunlop DG, Brewster NT, Madabhushi SP, Usmani AS, Pankaj P, Howie CR. Techniques to improve the shear strength of impacted bone graft: the effect of particle size and washing of the graft. J. Bone Joint Surg. Am.85-A(4), 639–646 (2003).
  • Friedlaender GE. Bone grafts. The basic science rationale for clinical applications. J. Bone Joint Surg. Am.69(5), 786–790 (1987).
  • Brewster NT, Gillespie WJ, Howie CR, Madabhushi SP, Usmani AS, Fairbairn DR. Mechanical considerations in impaction bone grafting. J. Bone Joint Surg. Br.81(1), 118–124 (1999).
  • Blom AW, Cunningham JL, Hughes G et al. The compatibility of ceramic bone graft substitutes as allograft extenders for use in impaction grafting of the femur. J. Bone Joint Surg. Br.87(3), 421–425 (2005).
  • van Haaren EH, Smit TH, Phipps K, Wuisman PI, Blunn G, Heyligers IC. Tricalcium-phosphate and hydroxyapatite bone-graft extender for use in impaction grafting revision surgery. An in vitro study on human femora. J. Bone Joint Surg. Br.87(2), 267–271 (2005).
  • Arts JJ, Gardeniers JW, Welten ML, Verdonschot N, Schreurs BW, Buma P. No negative effects of bone impaction grafting with bone and ceramic mixtures. Clin. Orthop. Relat Res. (438), 239–247 (2005).
  • Kanczler JM, Barry J, Ginty P, Howdle SM, Shakesheff KM, Oreffo RO. Supercritical carbon dioxide generated vascular endothelial growth factor encapsulated poly(DL-lactic acid) scaffolds induce angiogenesis in vitro. Biochem. Biophys. Res. Commun.352, 135–141 (2007).
  • Tagil M, Aspenberg P. Impaction of cancellous bone grafts impairs osteoconduction in titanium chambers. Clin. Orthop. Relat. Res.352, 231–238 (1998).
  • Tagil M, Jeppsson C, Aspenberg P. Bone graft incorporation. Effects of osteogenic protein-1 and impaction. Clin. Orthop. Relat. Res.371, 240–245 (2000).
  • McGee MA, Findlay DM, Howie DW et al. The use of OP-1 in femoral impaction grafting in a sheep model. J. Orthop. Res.22(5), 1008–1015 (2004).
  • Jeppsson C, Astrand J, Tagil M, Aspenberg P. A combination of bisphosphonate and BMP additives in impacted bone allografts. Acta Orthop. Scand.74(4), 483–489 (2003).
  • Ling RS, Timperley AJ, Linder L. Histology of cancellous impaction grafting in the femur. A case report. J. Bone Joint Surg. Br.75(5), 693–696 (1993).
  • Mikhail WE, Weidenhielm LR, Wretenberg P, Mikhail N, Bauer TW. Femoral bone regeneration subsequent to impaction grafting during hip revision: histologic analysis of a human biopsy specimen. J. Arthroplasty14(7), 849–853 (1999).
  • Nelissen RG, Bauer TW, Weidenhielm LR, LeGolvan DP, Mikhail WE. Revision hip arthroplasty with the use of cement and impaction grafting. Histological analysis of four cases. J. Bone Joint Surg. Am.77(3), 412–422 (1995).
  • Ullmark G, Obrant KJ. Histology of impacted bone-graft incorporation. J. Arthroplasty17(2), 150–157 (2002).
  • Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu. Rev. Med.52, 443–451 (2001).
  • Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation6(2), 230–247 (1968).
  • Friedenstein AJ. Precursor cells of mechanocytes. Int. Rev. Cytol.47327–359 (1976).
  • Friedenstein AJ, Ivanov-Smolenski AA, Chajlakjan RK et al. Origin of bone marrow stromal mechanocytes in radiochimeras and heterotopic transplants. Exp. Hematol.6(5), 440–444 (1978).
  • Oreffo ROC, Cooper C, Mason C, Clements M. Mesenchymal stem cells: lineage, plasticity and skeletal therapeutic potential. Stem Cell Rev.1(2), 168–177 (2005).
  • Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp.136, 42–60 (1988).
  • Goshima J, Goldberg VM, Caplan AI. The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin. Orthop. Relat. Res. (262), 298–311 (1991).
  • Bianco P, Robey PG. Stem cells in tissue engineering. Nature414(6859), 118–121 (2001).
  • Hernigou P, Poignard A, Beaujean F, Rouard H. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J. Bone Joint Surg. Am.87(7), 1430–1437 (2005).
  • Hernigou P, Beaujean F. Treatment of osteonecrosis with autologous bone marrow grafting. Clin. Orthop. Relat. Res. (405), 14–23 (2002).
  • Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J. Bone Joint Surg. Am.80(7), 985–996 (1998).
  • Arinzeh TL, Peter SJ, Archambault MP et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J. Bone Joint Surg. Am.85-A(10), 1927–1935 (2003).
  • Dai KR, Xu XL, Tang TT et al. Repairing of goat tibial bone defects with BMP-2 gene-modified tissue-engineered bone. Calcif. Tissue Int.77(1), 55–61 (2005).
  • den Boer FC, Wippermann BW, Blokhuis TJ, Patka P, Bakker FC, Haarman HJ. Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow. J. Orthop. Res.21(3), 521–528 (2003).
  • Mushipe MT, Chen X, Jennings D, Li G. Cells seeded on MBG scaffold survive impaction grafting technique: potential application of cell-seeded biomaterials for revision arthroplasty. J. Orthop. Res.24(3), 501–507 (2006).
  • Korda M, Blunn G, Phipps K et al. Can mesenchymal stem cells survive under normal impaction force in revision total hip replacements? Tissue Eng.12(3), 625–630 (2006).
  • Tilley S, Dunlop DG, Oreffo ROC. Synthetic scaffolds seeded with mesenchymal stem cells – the future of impaction bone grafting? J. Bone Joint Surg. Br.88-B(Suppl. III), 403 (2006).
  • Brewster NT, Gillespie WJ, Howie CR, Madabhushi SP, Usmani AS, Fairbairn DR. Mechanical considerations in impaction bone grafting. J. Bone Joint Surg. Br.81(1), 118–124 (1999).
  • Dunlop DG, Brewster NT, Madabhushi SP, Usmani AS, Pankaj P, Howie CR. Techniques to improve the shear strength of impacted bone graft: the effect of particle size and washing of the graft. J. Bone Joint Surg. Am.85-A(4), 639–646 (2003).
  • Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood78(1), 55–62 (1991).
  • Stewart K, Walsh S, Screen J et al. Further characterization of cells expressing STRO-1 in cultures of adult human bone marrow stromal cells. J. Bone Miner. Res.14(8), 1345–1356 (1999).
  • Gronthos S, Graves SE, Ohta S, Simmons PJ. The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood84(12), 4164–4173 (1994).
  • Stewart K, Monk P, Walsh S, Jefferiss CM, Letchford J, Beresford JN. STRO-1, HOP-26 (CD63), CD49a and SB-10 (CD166) as markers of primitive human marrow stromal cells and their more differentiated progeny: a comparative investigation in vitro. Cell Tissue Res.313(3), 281–290 (2003).
  • MacArthur BD, Oreffo RO. Bridging the gap. Nature433(7021), 19 (2005).
  • Bolland BJRF, Partridge K, Tilley S, New AMR, Dunlop DG, Oreffo ROC. Biological and mechanical enhancement of impacted allograft seeded with human bone marrow stromal cells. Regenerative Med.1(4), 457–467 (2006).
  • Owen TA, Aronow M, Shalhoub V et al. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J. Cell Physiol.143(3), 420–430 (1990).
  • Toms AD, Barker RL, Jones RS, Kuiper JH. Impaction bone-grafting in revision joint replacement surgery. J. Bone Joint Surg. Am.86-A(9), 2050–2060 (2004).
  • Yang XB, Whitaker MJ, Sebald W et al. Human osteoprogenitor bone formation using encapsulated bone morphogenetic protein 2 in porous polymer scaffolds. Tissue Eng.10(7–8), 1037–1045 (2004).
  • Korovessis P, Koureas G, Zacharatos S, Papazisis Z, Lambiris E. Correlative radiological, self-assessment and clinical analysis of evolution in instrumented dorsal and lateral fusion for degenerative lumbar spine disease. Autograft versus coralline hydroxyapatite. Eur. Spine J.14(7), 630–638 (2005).
  • Burwell RG. Studies in the transplantation of bone. VII. The fresh composite homograft-autograft of cancellous bone; an analysis of factors leading to osteogenesis in marrow transplants and in marrow containing bone grafts. J. Bone Joint Surg. Br.46, 110–140 (1964).
  • Vaccaro AR, Chiba K, Heller JG et al. Bone grafting alternatives in spinal surgery. Spine J.2(3), 206–215 (2002).
  • Feinberg SE, Aghaloo TL, Cunningham LL Jr. Role of tissue engineering in oral and maxillofacial reconstruction: findings of the 2005 AAOMS Research Summit. J. Oral Maxillofac. Surg.63(10), 1418–1425 (2005).
  • Gangji V, Hauzeur JP, Matos C, De Maertelaer V, Toungouz M, Lambermont M. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J. Bone Joint Surg. Am.86-A(6), 1153–1160 (2004).
  • Khanal GP, Garg M, Singh GK. A prospective randomized trial of percutaneous marrow injection in a series of closed fresh tibial fractures. Int. Orthop.28(3), 167–170 (2004).
  • Tilley S, Bolland BJRF, Partridge K et al. Taking tissue engineering principles into theater: augmentation of impacted allograft with human bone marrow stromal cells. Regenerative Med.1(5), 685–692 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.