139
Views
28
CrossRef citations to date
0
Altmetric
Review

Advances in technologies for laser-assisted in situ keratomileusis (LASIK) surgery

, &
Pages 209-229 | Published online: 09 Jan 2014

References

  • Buratto L, Ferrari M. Excimer laser intraestromal keratomileusis: case reports. J. Cataract. Refract. Surg.18, 37–41 (1992).
  • Pallikaris IG, Papatzanaki ME, Siganos DS, Tsilimbaris MK. A Corneal flap technique for laser in situ keratomileusis. Human Studies. Arch. Ophthalmol.109, 1699–1702 (1991).
  • Kremer FB, Dufek M. Excimer laser in situ keratomileusis. J. Refract. Surg.11, 244–247 (1995).
  • Gomes M. Laser in situ keratomileusis for myopia using manual disection. J. Refract. Surg.11, 239–243 (1995).
  • Fiander DC, Tayfour F. Excimer laser in situ keratomileusis in 124 myopic eyes. J. Refract. Surg.11, 234–238 (1995).
  • Bas AM, Onnis R. Excimer laser in situ keratomileusis for myopia. J. Refract. Surg.11, 229–233 (1995).
  • Augustine JM, Chester TM. Laser in situ keratomileusis for the reduction of myopia: an evaluation of clinical results. J. Am. Optom. Assoc.67, 721–731 (1995).
  • Guell JL. Experience with laser in situ keratomileusis. J. Cataract. Refract. Surg.22, 1391 (1996).
  • Varley GA, Huang D, Rapuano CJ, Schallhorn S, Boxer-Wachler BS, Sugar A. LASIK for hyperopia, hyperopic astigmatism and mixed astigmatism. A report by the American Academy of Ophthalmology. Ophthalmology111, 1604–1617 (2004).
  • Jaycock PD, O’Brart DPS, Rajan MS, Marshall J. 5-year follow up of LASIK for hyperopia. Ophthalmology112, 191–199 (2005).
  • Sukimoto Y, Rosenblatt M, Azar DT. Laser eye surgery for refractive errors. Lancet367, 1432–1447 (2006).
  • Sato T. Crosswise incisions of Descemet’s membrane for the treatment of advanced keratoconus. Acta Soc. Ophthalmol. (Jpn)146, 469–470 (1942).
  • Durnev VV. Characteristics of Surgical Correction of Myopia After 16 and 32 Peripheral Anterior Radial Non-perforating Incisions. Surgery of Anomalies in Ocular Refraction. Fyodorov SN (Ed.). The Moscow Research Institute of Ocular Microsurgery, Moscow, Russia 33–35. (1981).
  • Steinert RF, Bafna S. Surgical correction of moderate myopia: which method should you choose? II. PRK and LASIK are the treatments of choice. Surv. Ophthalmol.43, 157–179. (1998).
  • Barraquer JI. Bases de la queratoplastia refractiva. Arch Soc. Am. Oftalmol. Optom.5, 1979 (1965).
  • Barraquer JI. Keratomileusis. Int. Surg.48, 103–117 (1967).
  • Barraquer JI. Queratomileusis para la corrección de la myopia. Arch. Soc. Am. Oftalmol. Optom.5, 27–48 (1964).
  • Barraquer JI. Method for cutting lamellar grafts in frozen Corneas. New orientations for refractive surgery. Arch Soc. Am. Ophthalmol.1, 237 (1958).
  • Taboada J, Archibald CJ. An extreme sensitivity in the Corneal epithelium to far UV-ArF excimer laser pulses. Proceedings of the Aerospace Medical Association, 52 Annual Meeting, Washington, DC, USA. 8–9 (1981).
  • Trokel SL, Srinivasan R, Braren B. Excimer laser surgery of the Cornea. Am. J. Ophthalmol.96, 710–715 (1983).
  • Ruiz LA, Rowsey JJ. in situ myopic keratomileusis (abstract). Invest. Ophthalmol. Vis. Sci.29, 392 (1988).
  • Ruiz LA. Cheratomileusi automatizzata in situ. In: Della Miopia Assile Mediante Cheratomileusi. Buratto L, Ferrari M (Eds). Chirurgia Milano, CAMO, 137–142 (1993).
  • Pallikaris IG, Papatzanaki ME, Stathi EZ, Frenschock O, Georgiadis A. Laser in situ keratomileusis. Lasers Surg. Med.10, 463–468 (1990).
  • Buratto L, Ferrari M, Genisi C. Myopic keratomileusis with the excimer laser: one year follow-up. Refract. Corneal Surg.9, 12–19 (1993).
  • Behrens A, Langenbucher A, Kus MM, Rummelt C, Seitz B. Experimental evaluation of two current-generation automated microkeratomes: The Hansatome and the Supratome. Am. J. Ophthalmol.129, 59–67 (2000).
  • Chang MA, Chuck RS. Total anterior corneal surface and epithelial stem cell harvesting: current microkeratomes and beyond. Expert Rev. Med. Devices1, 251–258 (2004).
  • Stonecipher K, Ignacio TS, Stonecipher M. Advances in refractive surgery: microkeratome and femtosecond laser flap creation in relation to safety, efficacy, predictability and biomechanical stability. Curr. Opin. Ophthalmol.17, 368–372 (2006).
  • Lim T, Yang S, Kim MJ, Tchah H. Comparison of the intralase femtosecond laser mechanical microkeratome for laser in situ keratomileusis. Am. J. Ophthalmol.141, 833–839 (2006).
  • Crews KR, Mifflin MD, Olson RJ. Complications of automated lamellar keratoplasty [letter]. Arch. Ophthalmol.112, 1514–1515 (1994).
  • Friedman RF, Chodosh J, Wolf TC. Catastrophic complications of automated lamellar keratoplasty [letter]. Arch. Ophthalmol.115, 925–926 (1997).
  • Sugar A. Outcome of Cornea, iris, and lens perforation during automated lamellar keratectomy [letter]. Arch. Ophthalmol.114, 1144–1145 (1996).
  • Duffey RJ. Thin flap laser in situ keratomileusis: flap dimensions with the Moria LSK-One manual microkeratome using 100-µm head. J. Cataract. Refract. Surg.31, 1159–1162 (2005).
  • Javaloy J, Vidal MT, Quinto A, De Rojas V, Alió JL. Quality assessment model of 3 different microkeratomes trough confocal microscopy. J. Cataract. Refract. Surg.30, 1300–1309 (2004).
  • Kezirian GM, Stonecipher KG. Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis. J. Cataract. Refract. Surg.30, 804–811 (2004).
  • Muallem MS, Yoo SY, Romano AC, Schiffman JC, Culbertson WW. Corneal flap thickness in laser in situ keratomileusis using the Moria M2 microkeratome. J. Cataract. Refract. Surg.30, 1902–1908 (2004).
  • Pallikaris IG, Katsanevaki VJ, Kalyvianaki MI, Naoumidi II. Advances in subepithelial excimer refractive surgery techniques: Epi-LASIK. Curr. Opin. Ophthalmol.14, 207–212 (2003).
  • Duffey RG, Leaming D. US trends in refractive surgery: 2002 ISRS survey. J. Refract. Surg.19, 357–363 (2003).
  • Pallikaris IG, Kalyvianaki MI, Katsanevaki VJ, Ginis HS. Epi-LASIK: Preliminary clinical results of an alternative surface ablation procedure. J. Cataract. Refract. Surg.31, 879–885 (2005).
  • Gabler B, Winkler von Mohrenfelds C et al. Vitality of epithelial cells after alcohol exposure during laser-assisted subepithelial keratectomy flap preparation. J. Cataract. Refract. Surg.28, 1841–1846 (2002).
  • Kim S-H, Sah W-J, Lim Y-W, Hahn T-W. Twenty per-cent alcohol toxicity on rabbit corneal epithelial cells: electron microscopy study. Cornea21, 388–392 (2002).
  • Chen CC, Chang J-H, Lee JB et al. Human Corneal epithelial cell viability and morphology after dilute alcohol exposure. Invest. Ophthalmol. Vis. Sci.43, 2593–2602 (2002).
  • Stramer BM, Zieske JD, Jung J-C et al. Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes. Invest. Ophthalmol. Vis. Sci.44, 4237–4246 (2003).
  • Chan CCK, Moshegov CN. Amadeus microkeratome: experience with the first 2000 cases and lessons learned. Clin. Exp. Ophthalmol.33, 356–359 (2005).
  • Jackson DW, Wang L, Koch D. Accuracy and precision of the Amadeus microkeratome in producing LASIK flaps. Cornea22, 504–507 (2003).
  • Tehrani M, Schäfer S, Dick B. Evaluation of cut quality using the Amadeus microkeratome with different settings. J. Cataract. Refract. Surg.30, 2415–2419 (2004).
  • Kitazawa Y, Maekawa E, Sasaki S, Tokoro T, Mochizuki M, Ito S. Cooling effect on excimer laser photorefractive keratectomy. J. Cataract. Refract. Surg.25, 1349–55 (1999).
  • Holzer MP, Rabsilber TM, Auffarth GU. Femtosecond laser-assited corneal flap cuts: morphology, accuracy, and histopatology. Invest. Ophthalmol. Vis. Sci.47, 2828–2831 (2006).
  • Kurtz RM, Liu X, Elner VM et al. Photodisruption in the human cornea as a function of laser pulse width. J. Refract. Surg.13, 653–658 (1997).
  • Tran DB, Sarayba MA, Bor Z et al. Randomized prospective clinical study compared induced aberrations with IntraLase and Hansatome flap creation in fellow eyes. Potential impact on wavefront-guided laser in situ keratomileusis. J. Cataract. Refract. Surg.31, 97–105 (2005).
  • Kim JY, Kim MJ, Kim T et al. A femtosecond laser creates a stronger flap than a mechanical microkeratome. Invest. Ophthalmol. Vis. Sci.47, 599–604 (2006).
  • Nordan LT, Slade SG, Baker RN et al. Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S clinical series. J. Refract. Surg.19, 8–14 (2003).
  • Sugar A. Ultrafast (femtosecond) laser refractive surgery. Curr. Opin. Ophthalmol.13, 246–249 (2002).
  • Durrie DS, Kezirian GM. Femtosecond laser versus mechanical keratome flaps in wavefront-guided laser in situ keratomileusis: prospective contralateral eye study. J. Cataract Refract. Surg.1, 120–126 (2005).
  • Binder PS, Akers PH, Deg JK, Zavala EY. Refractive keratoplasty; microkeratome evaluation. Arch. Ophthalmol.100, 802–806 (1982).
  • Solomon R, Donnenfeld E, Perry H, Solomon K. Scanning electron microscopy ultrastructural comparison of femtosecond laser vs microkeratome lamellar keratectomy. Presented at the Annual Meeting of the American Academy of Ophthalmology. New Orleans, LA, San Francisco, USA, October 23–26, 91 (2004).
  • Sarayba MA, Ignacio TS, Tran DB, Binder PS. A 60 kHz IntraLase femtosecond laser creates a smoother LASIK stromal bed surface compared to a Zyoptix XP mechanical microkeratome in human donor eyes. J. Refract. Surg.4, 331–337 (2007).
  • Binder PS. One thousand consecutive IntraLase laser in situ keratomileusis flaps. J. Cataract. Refract. Surg.32, 962–969 (2006).
  • Binder PS. Ectasia after laser in situ keratomileusis. J. Cataract. Refract. Surg.29, 2419–2429 (2003).
  • McDonald MB, Liu JC, Byrd TJ et al. Central photorefractive keratectomy for myopia. Partially sighted and normally sighted eyes. Ophthalmology98, 1327–1337 (1991).
  • Ambrósio R Jr, Wilson SE. LASIK vs LASEK vs PRK: Advantages and indications. Semin. in Ophthalmol.18, 2–10 (2003).
  • Hersh PS, Carr JD. Excimer laser photorefractive keratectomy. Ophthalmic Practice13, 126–133 (1995).
  • Garrison BJ, Srinivasan R. Microscopic model for the ablative photodecompensation of polymers by far ultraviolet radiation (193 nm). Appl. Phys. Lett.44, 849–852 (1984).
  • Jellinek HH, Srinivasan R. Theory of etching of polymers by far-ultraviolet, high-intensity pulsed laser and long-term irradiation. J. Phys. Chem.88, 3048 (1984).
  • Gimbel HV, Anderson Penno EE. LASIK complications. Prevention and management. SLACK Incorporated, NJ, USA, 27 (1999).
  • Stulting RD, Lahners WJ, Carr JD. Advances in refractive surgery. 1975 to the present. Cornea19, 741–753 (2000).
  • Teplick SB. Broad-beam scanning lasers highlight current refractive surgery technology. Primary Care Optometry News, September (1998).
  • Slade SG. Abnormal induced topograpy. Central Islands. In: Excimer Laser Refractive Surgery. Practice and Principles. Machat JJ (Ed). SLACK Incorporated, NJ, USA, 399 (1996).
  • O’Donell CB, Kemmer J, O’Donell FE Jr. Ablation smoothness as a function of excimer laser delivery system. J. Cataract. Refract. Surg.22, 682–685 (1996).
  • Colin J, Cochener B, Gallinaro C. Central steeps islands immediately following excimer photorefractive keratectomy for myopia [letter]. Refract. Corneal Surg.9, 395–396 (1993).
  • Carr JD, Thompson KP, Stulting RD et al. Ablation profilometry and outcome of LASIK. Invest. Ophthalmol. Vis. Sci.37, S62 (1996).
  • Castillo A, Romero F, Martín-Valverde JA et al. Management and treatment of central steep islands alter excimer laser photorefractive keratectomy. J. Refract. Surg.12, 715–720 (1996).
  • Hersh PS, Shah SI, Holladay JT. Corneal asphericity following excimer laser photorefractive keratectomy. Summit PRK Topographic Study Group. Ophthalmic. Surg. Lasers27, 421–428 (1996).
  • Krueger RR, Saedy NF, Mc Donnell PJ. Clinical analysis of steep central islands after excimer laser photorefractive keratectomy. Arch. Ophthalmol.114, 377–381 (1996).
  • McGhee CN, Bryce IG. Natural history of central topographic islands following excimer laser photorefractive keratectomy. J. Cataract. Refract. Surg.22, 1151–1158 (1996).
  • Johnson DA, Haight DH, Kelly SE et al. Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy. Ophthalmology104, 823–830 (1997).
  • Manche EE, Maloney RK, Smith RJ. Treatment of topographic central islands following refractive surgery. J. Cataract. Refract. Surg.24, 464–470 (1998).
  • Zaldivar R, Davidorf JM, Oscherow S. Laser in situ keratomileusis for myopia from -5.50 to -11.50 diopters with astigmatism. J. Refract. Surg.14, 19–25 (1998).
  • Zaldivar R, Davidorf JM, Shultz MS et al. Laser in situ keratomileusis for low myopia and astigmatism with a scanning spot excimer laser. J. Refract. Surg.13, 614–619 (1997).
  • Chitkara DK, Rosen E, Gore C, Howes F, Kowalewski E. Tracked-assisted laser in situ keratomileusis for myopia using the autonomous scanning and tracking laser. 12-month results. Ophthalmology109, 965–972 (2002).
  • Tsai Y-Y, Lin J-M. Ablation centration after active eye-tracker-assisted photorefractive keratectomy and laser in situ keratomileusis. J. Cataract. Refract. Surg.26, 28–34 (2000).
  • Mrochen M, Eldine MS, Kaemmerer M, Seiler T, Hütz W. Improvement in photorefractive Corneal laser surgery results using an active eye-tracking system. J. Cataract. Refract. Surg.27, 1000–1006 (2001).
  • Lin DY, Manche EE. Custom-contoured ablation pattern method for the treatment of decentered ablations. J. Cataract. Refract. Surg.30, 1675–1684 (2004).
  • Mulhern MG, Foley-Nolan A, O’Keefe M, Condon PI. Topographical analysis of ablation centration after excimer laser photorefractive keratectomy and laser in situ keratomileusis for high myopia. J. Cataract. Refract. Surg.23, 488–494 (1997).
  • Terrell J, Bechara SJ, Nesburn A et al. The effect of globe fixation on ablation zone centration in photorefractive keratectomy. Am. J. Ophthalmol.119, 612–619 (1995).
  • Pande M, Hillman JS. Optical zone centration in keratorefractive surgery; entrance pupil center, visual axis, coaxially sighted corneal reflex, or geometric corneal centre? Ophthalmology10, 1930–1237 (1993).
  • Seiler T, McDonell PJ. Excimer laser photorefractive keratectomy. Surv. Ophthalmol.40, 89–118 (1995).
  • Amano S, Tanaka S, Shimizu K. Topographical evaluation of centration of excimer laser myopic photorefractive keratectomy. J. Cataract. Refract. Surg.20, 616–619 (1994).
  • Uozato H, Guyton DL. Centering Corneal surgical procedures. Am. J. Ophthalmol.103, 264–275; erratum, 852 (1987).
  • Mrochen M, Kaemmerer M, Mierdel P, Seiler T. Icreased higher-order optical aberrations after laser refractive surgery; a problem of subclinical decentration. J. Cataract. Refract. Surg.27, 362–369 (2001).
  • Chernyak DA. From wavefront device to laser: an alignment method for complete registration of the ablation to the cornea. J. Refract. Surg.21, 463–468 (2005).
  • Lawless MA, Hodge C. Wavefront’s role in corneal refractive surgery. Clin. Exp. Ophthalmol.33, 199–209 (2005).
  • Helmholtz H. Handbuch der Physiologischen Optik. Leizpig: Leopold Voss137–147 (1867).
  • Koller T, Iseli HP, Hafezi F, Mrochen M, Seiler T. Q-factor customized ablation profile for the correction of myopic astigmatism. J. Cataract. Refract. Surg.32, 584–589 (2006).
  • Munnerlyn CR, Koons SJ, Marshall J. Photorefractive keratectomy: a technique for laser refractive surgery. J. Cataract. Refract. Surg.14, 46–52 (1988).
  • Verdon W, Bullimore M, Maloney RK. Visual performance after photorefractive keratectomy. Arch. Ophthalmol.114, 1465–1472 (1996).
  • Seiler T, Kahle G, Kriegerowski M. Excimer laser (193 nm) myopic keratomileusis in sighted and blind human eyes. Refract. Corneal Surg.6, 165–173 (1990).
  • O’Brart DPS, Lohmann CP, Fitzke FW et al. Disturbances in night vision after excimer laser photorefractive keratectomy. Eye8, 46–51 (1994).
  • Holladay JT, Dudeja DR, Chang J. Functional vision and Corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing, and corneal topography. J. Cataract. Refract. Surg.25, 663–669 (1999).
  • Seiler T, Genth U, Holschbach A, Derse M. Aspheric photorefractive keratectomy with excimer laser. Refract. Corneal Surg.9, 166–172 (1993).
  • Applegate RA, Howland HC. Refractive surgery, optical aberrations, and visual performance. J. Refract. Surg.13, 295–299 (1997).
  • Seiler T, Kaemmerer M, Mierdel P, Krinke H-E. Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism, Arch. Ophthalmol.118, 17–21 (2000).
  • Seiler T, Dastljerdi MH. Customized corneal ablation. Curr. Opin. Ophthalmol.13, 356–260 (2002).
  • Alessio G, Boscia F, La Tegola MG et al. Topography-driven excimer laser for the treatment of decentralized myopic photorefractive keratectomy. Ophthalmology108, 1695–1703 (2001).
  • Alessio G, Boscia F, La Tegola MG et al. Corneal interactive programmed topographic ablation customized photorefractive keratectomy for correction of postkeratoplasty astigmatism. Ophthalmology108, 2029–2037 (2001).
  • Gimbel HV, Stoll SB. Photorefractive keratectomy with customized segmental ablation to correct irregular astigmatism after laser in situ keratomileusis. J. Refract. Surg.17, 229–232 (2001).
  • Klyce SD. Basics of wavefront. In: Subspeciality day: refractive surgery comes of age. ISRS/AAO, San Francisco, USA, 165–166 (2003).
  • Thibos LN, Applegate RA, Schwiegerling JT, Webb R. Standards for reporting the optical aberrations of eyes. J. Refract. Surg.18, 652–660 (2002).
  • Bille JF, Harner CFH, Loesel FH. Aberration-Free Refractive Surgery. New Frontiers in Vision. Springer7 (2003).
  • Kanjani N, Jacob S, Agarwal A et al. Wavefront- and topography-guided ablation in myopic eyes using Zyoptix. J. Cataract. Refract. Surg.30, 398–402 (2004).
  • Bühren J, Kohnen T. Factors affecting the change in lower-order and higher-order aberrations after wavefront-guided laser in situ keratomileusis for myopia with the 3.1 Zyoptix system. J. Cataract. Refract. Surg.32, 1166–1174 (2006).
  • Seiler T, Mrochen M, Kaemmerer M. Operative correction of ocular aberrations to improve visual acuity. J. Refract. Surg.16, 619–622 (2000).
  • Mrochen M, Kaemmerer M, Seiler T. Wavefront-guided laser in situ keratomileusis: early results in three eyes. J. Refract. Surg.16, 116–121 (2000).
  • Mrochen M, Kaemmerer M, Seiler T. Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery. J. Cataract. Refract. Surg.27, 201–207 (2001).
  • Mrochen M, Hafezi F, Jankov M, Seiler T. Ablationsprofile in der kornealen refraktiven Laserchirurgie: Gegenwärtige und Zuküntfige Konzepte. Ophthalmologe103, 175–183 (2006).
  • Kohnen T. Classification of excimer laser profiles. [From the editor]. J. Cataract. Refract. Surg.32, 543–544 (2006).
  • Sandoval HP, Fernández de Castro LE, Vroman DT, Solomon KD. Refractive surgery survey 2004. J. Cataract. Refract. Surg.31, 221–233 (2005).
  • Kohnen T, Bühren J, Kühne C, Mirshahi A. Wavefront-guided LASIK with the Zyoptix 3.1 system for the correction of myopia and compound myopic astigmatism with 1-year follow-up; clinical outcome and higher-order aberrations. Ophthalmology111, 2175–2185 (2004).
  • Kohnen T. Combining wavefront and topography data for excimer laser surgery: The future of customized ablation? J. Cataract. Refract. Surg.30, 285–286 (2004).
  • Mirshahi A, Bühren J, Gerhardt D, Kohnen T. In-vivo and in-vitro repeatability of Hartmann–Shack aberrometry. J. Cataract Refract. Surg.29, 2295–2301 (2003).
  • Netto MV, Dupps W Jr, Wilson SE. Wavefront-guided ablation : evidence for efficacy compared to traditional ablation. Am. J. Ophthalmol.141, 360–368 (2006).
  • Lafond G, Solomon L. Retreatment of central islands after photorefractive keratectomy. J. Cataract Refract. Surg.25, 188–196 (1999).
  • Buzard KA, Fundingsland BR. Treatment of irregular astigmatism with a broad beam excimer laser. J. Refract. Surg.13, 624–636 (1997).
  • Mrochen M, Kruegger RR, Bueeler M, Seiler T. Aberration-sensing and wavefront-guided laser in situ keratomileusis: management of decentered ablation. J. Refract. Surg.18, 418–429 (2002).
  • Smolek MK, Klyce SD. Zernike pilynomial fitting fails to represent all visually significant Corneal aberrations. Invest. Ophthalmol. Vis. Sci.44, 4676–4681 (2003).
  • Kiely PM, Smith G, Carney LG. The mean shape of the human Cornea. Opt. Acta. (Lond.)29, 1027–1040 (1982).
  • Gatinel D, Malet J, Hoang-Xuan T, Azar DT. Analysis of customized corneal ablations : theoretical limitations of increasing negative asphericity. Invest. Ophthalmol. Vis. Sci.43, 941–948 (2002).
  • Manns F, Ho H, Parel J-M, Culbertson W. Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration. J. Cataract. Refract. Surg.28, 766–774 (2002).
  • Feldman ST, Ellis W, Frucht-Pery J et al. Regression of effect following radial thermokeratoplasty in humans. Refract. Corneal Surg.5, 288–291 (1989).
  • Durrie DS, Schumer DJ, Cavanaugh TB. Holmium: YAG laser thermokeratoplasty for hyperopia. J. Refract. Corneal Surg.10, 277–280 (1994).
  • Basuk WL, Zisman M, Waring GO 3rd et al. Complications of hexagonal keratectomy. Am. J. Ophthalmol.117, 37–49 (1994).
  • Friedlander MH, Werblin TP, Kaufman HE, Granet NS. Clinical results of keratophakia and keratomileusis. Ophthalmology88, 716–720 (1981).
  • Gartry DS, Kerr Muir MG, Marshall J. Photorefractive keratectomy with an argon fluoride excimer laser: a clinical study. Refract. Corneal Surg.7, 420–435 (1991).
  • Rashad KM. Laser in situ keratomileusis for the correction of hyperopia from +1.25 to +5.00 diopters with the Technolas Keracor 117C laser. J. Refract. Surg.17, 113–122 (2001).
  • Tabbara KF, El-Sheikh HF, Islam SM. Laser in situ keratomileusis for the correction of hyperopia from +0.50 to +11.50 diopters with the Keracor 117C laser. J. Refract. Surg.17, 123–128 (2001).
  • Ditzen K, Fielder J, Pieger S. Laser in situ keratomileusis for hyperopia and hyperopic astigmatism using the Meditec MEL 70 spot scanner. J. Refract. Surg.18, 430–434 (2002).
  • Salz JJ, Stevens CA, LADARVision Hyperopic Stoudy Group. LASIK correction of spherical hyperopia, hyperopic astigmatism and mixed astigmatism with the LADARVision excimer laser system. Ophthalmology109, 1647–1656, discussion 1657–1658 (2002).
  • Carones F, Vigo L, Scandola E. Laser in situ keratomileusis for hyperopia and hyperopic and mixed astigmatism with LADARVision using 7 to 10-mm ablation diameters. J. Refract. Surg.19, 548–554 (2003).
  • Zadok D, Raifkup F, Landau D, Frucht-Pery J. Long-term evaluation of hyperopic laser in situ keratomileusis. J. Cataract. Refract. Surg.29, 2181–2188 (2003).
  • Jin GJC, Lyle A, Merkley KH. Laser in situ keratomileusis for primary hyperopia. J. Cataract. Refract. Surg.31, 776–784 (2005).
  • Arbelaez MC, Knorz MC. Laser in situ keratomileusis for hyperopia and hyperopic astigmatism. J. Refract. Surg.15, 406–414 (1999).
  • Ditzen K, Huschka H, Pieger S. Laser in situ keratomileusis for hyperopia. J. Cataract. Refract. Surg.24, 42–47 (1998).
  • Kohnen T, Mahmoud K, Bürhen J. Comparison of corneal higher-order aberrations induced by myopic and hyperopic LASIK. Ophthalmology112, 1692–1698 (2005).
  • McDonald MB, Durrie D, Asbell P, Maloney R, Nichamin L. Treatment of presbyopia with Conductive Keratoplasty®. Six Month results of the 1-year United States FDA Clinical Trial. Cornea23, 661–668 (2004).
  • Jain S, Ou R, Azar DT. Monovision outcomes in presbyopic individuals after refractive surgery. Ophthalmology108, 1430–1433 (2001).
  • Goldberg DB. Laser in situ keratomileusis monovision. J. Cataract. Refract. Surg.27, 1449–1455 (2001).
  • Schor C, Landsman L, Erickson P. Ocular dominance and the interocular suppression of blur in monovision. Am. J. Optom. Physiol. Opt.64, 723–730 (1987).
  • Erickson P, Mcgill EC. Role of visual acuity, stereoacuity, and ocular dominance in monovision patient success. Optom. Vis. Sci.69, 761–764 (1992).
  • Collins M, Goode A, Brown B. Distance visual acuity and monovision. Optom. Vis. Sci.70, 723–728 (1993).
  • Mcgill EC, Erickson P. The effect of monovision lenses on the near-point range of single binocular vision. J. Am. Optom. Assoc.62, 828–831 (1991).
  • Mcgill EC, Erickson P. Sighting dominance and monovision distance binocular fusional ranges. J. Am. Optom. Assoc.62, 828–831 (1991).
  • Wright KW, Guemes A, Kapadia MS, Wilson SE. Binocular function and patient satisfaction after monovision induced by myopic photorefractive keratectomy. J. Cataract. Refract. Surg.25, 177–182 (1999).
  • Koch D, Kohnen T, Mc Donell P et al. Hyperopia correction by non-contact holmium : YAG laser thermal keratoplasty. U.S Phase IIA. Clinical Study with 2-year follow-up. Ophthalmology104, 1938–1947 (1997).
  • Alio JL, Chaubard JJ, Caliz A, Sala E, Patel S. Correction of presbyopia by technovision central multifocal LASIK (presbyLASIK). J. Refract. Surg.22, 453–460 (2006).
  • Rabinowitz YS. Ectasia after laser in situ keratomileusis. Curr. Opin. Ophthalmol.17, 421–426 (2006).
  • Pallikaris IG, Kymionis GD, Astyrakakis NI. Corneal ectasia induced by laser in situ keratomileusis. J. Cataract Refract. Surg.17, 1796–1802 (2001).
  • Randleman JB. Post-laser in-situ keratomileusis ectasia: current understanding and future directions. Curr. Opin. Ophthalmol.17, 406–412 (2006).
  • Duffey RJ, Leaming D. US trends in refractive surgery: 2004 ISRS/AAO Survey. J. Refract. Surg.21, 742–748 (2005).
  • Kim H, Song IK, Joo CK. Keratectasia after laser in situ keratomileusis clinicopathological case report. Ophthalmologica220, 58–64 (2006).
  • Spirn MJ, Dawson DG, Rubinfeld RS et al. Histopathological analysis of postlaser-assisted in situ keratomileusis Corneal ectasia with intraestromal Corneal ring segments. Arch. Ophthalmol.123, 1604–1607 (2005).
  • Maldonado MJ, Ruiz-Oblitas L, Munuera JM, Aliseda D, García-Layana A, Moreno-Montañés J. Optical coherence tomography evaluation of the corneal cap and stromal bed features after laser in situ keratomileusis for high myopia and astigmatism. Ophthalmology107, 81–88 (2000).
  • Harto MA, Maldonado MJ, Cisneros AL, Pérez-Torregrosa VT, Menezo JL. Comparison of Intersecting trapezoidal keratotomy and arcuate transverse keratotomy in the correction of high astigmatism. J. Refract. Surg.12, 585–594 (1996).
  • Maldonado MJ, Arnau V, Martínez-Costa R et al. Reproducibility of digital image analysis for measuring corneal haze after myopic photorefractive keratectomy. Am. J. Ophthalmol.123, 31–41 (1997).
  • Maldonado MJ, Arnau V, Navea A et al. Direct objetive quantification of corneal haze after excimer laser photorefractive keratectomy for high myopia. Ophthalmology103, 1970–1978 (1996).
  • Maldonado MJ. Intraoperative MMC after excimer laser surgery for myopia. Ophthalmology109, 826 (2000).
  • Pérez-Torregrosa V, Menezo JL, Harto MA, Maldonado MJ, Cisneros AL. Digital system measurement of the decentration of high myopia IOLs (Worst-Fechner Iris Claw Lenses). J. Refract. Surg.11, 26–30 (1995).
  • Maldonado MJ, García-Feijoó J, Benítez Del Castillo JM, Teutsch P. Cataractous changes due to posterior chamber flattening with a posterior chamber phakic intraocular lens secondary to the administration of pilocarpine. Ophthalmology113, 1283–288 (2006).
  • Maldonado MJ, Juberías JR, Pinero DP, Álvarez-Vidal A, Rutzen AR. Flap tearing during lift-flap laser in situ keratomileusis retreatment. J. Cataract Refract. Surg.31, 2016–2018 (2005).
  • Maldonado MJ. Undersurface ablation of the flap for laser in situ keratomileusis retreatment. Ophthalmology109, 1453–1464 (2002).
  • Maldonado MJ, Nieto JC, Díez-Cuenca M, Piñero DP. posterior corneal curvature changes after undersurface ablation of the flap and in-the-bed LASIK retreatment. Ophthalmology113, 1125–1133 (2006).
  • Maldonado MJ, Juberias JR, Rodriguez-Conde R. Corneal flap thickness and tissue laser ablation in myopic LASIK. Ophthalmology109, 1042–1043 (2002).
  • Maldonado MJ, Nieto JC, Diez-Cuenca M, Pinero D. Repeatability and reproducibility of posterior corneal curvature measurements by combined scanning-slit and Placido-disk topography after LASIK. Ophthalmology113, 1918–926 (2006).
  • Chen D, Lam AK. Intrasession and intersession repeatability of the Pentacam system on posterior corneal assessment in the normal human eye. J. Cataract. Refract. Surg.33, 448–454 (2007).
  • Jain R, Dilraj G, Grewal SP. Repeatability of corneal parameters with Pentacam after laser in situ keratomileusis. Indian J. Ophthalmol.255, 341–347 (2007).
  • Hashemi H, Mehravaran S. Corneal changes after laser refractive surgery for myopia: comparison of Orbscan II and Pentacam findings. J. Cataract. Refract. Surg.33, 841–847 (2007).
  • Quisling S, Sjoberg S, Zimmerman B, Goins K, Sutphin J. Comparison of Pentacam and Orbscan IIz on posterior curvature topography measurements in keratoconic eyes. Ophthalmology113, 1629–1632 (2006).
  • Ciolino JB, Khachikian SS, Cortese MJ, Belin MW. Long-term stability of the posterior cornea after laser in situ keratomileusis. J. Cataract. Refract. Surg.33, 1366–1370 (2007).
  • Ciolino JB, Belin MW. Changes in the posterior cornea after laser in situ keratomileusis and photorefractive keratectomy. J. Cataract Refract. Surg.32, 1426–1431 (2006).
  • Hernández-Quintela E, Samapunphong S et al. Posterior corneal surface changes alter refractive surgery. Ophthalmology108, 1415–1422 (2006).
  • Nishimura R, Negishi K, Saiki M et al. No forward shifting of posterior corneal surface in eyes undergoing LASIK. Ophthalmology114(6), 1104–1110 (2007).
  • Maldonado MJ. Laser-assisted in situ keratomileusis posterior ablation platform. Arch. Ophthalmol.123, 988–990 (2007).
  • Taneri S, Azar DT. Ablation on the undersurface of a LASIK flap. Instrument and method for continuous eye tracking. Ophthalmologe104, 132–136 (1997).
  • Maldonado MJ, Rodriguez-Galietero A, Cano-Parra J. Menezo JL, Díaz Llopis M. Goldmann applanation tonometry using sterile disposable silicone tonometer shields. Ophthalmology103, 815–821 (1996).
  • Maldonado MJ. Corneal epithelial alterations resulting from use of chlorine-disinfected contact tonometer after myopic photorefractive keratectomy. Ophthalmology105, 1546–1549 (1998).
  • Menezo JL, Maldonado MJ, Muñoz G, Cisneros AL. Combined procedure for glaucoma and cataract: a retrospective study. J. Cataract. Refract. Surg.20, 498–503 (1994).
  • Maldonado MJ, Nieto JC. Comments on: LASIK and dry eye. Compr. Ophthalmol. Update8, 87–89 (1997).
  • Maldonado MJ, Juberías JR. Subtarsal flap dislocation after superior hinge laser in situ keratomileusis in a patient with borderline mental illness. J. Refract. Surg.19, 169–171 (2003).
  • Maldonado MJ, Juberías JR, Moreno H, Montañés J. Extensive corneal epithelial defect associated with internal hordeolum after uneventful laser in situ keratomileusis. J. Cataract. Refract. Surg.28, 1701–1702 (2002).
  • Marshall J. Presented at ESCRS, Stockholm, 5–9 September 2007.
  • Kim JY, Kim MJ, Kim TI, Choi HJ, Pak JH, Tchah H. A femtosecond laser creates a stronger flap than a mechanical microkeratome. Invest. Ophthalmol. Vis. Sci.47(2), 599–604 (2006).
  • Hiatt JA, Wachler BS, Grant C. Reversal of laser in situ keratomileusis-induced ectasia with intraocular pressure reduction. J. Cataract Refract. Surg.31, 1652–1655 (2005).
  • Randleman JB, Rusell B, Ward Ma et al. Risk factors and prognosis for corneal ectasia after LASIK. Ophthalmology110, 267–275 (2003).
  • Ward MA. Contact lens management following corneal refractive surgery. Ophthalmol. Clin. North Am.16, 395–403 (2001).
  • Choi HJ, Kim MK, Lee JL. Optimization of contact lens fitting in keratectasia patients after laser in situ keratomileusis. J. Cataract. Refract. Surg.30, 1057–1066 (2004).
  • O’Donell C, Welham L, Doyle S. Contact lens management of keratectasia after laser in situ keratomileusis for myopia. Eye Contact Lens30, 144–146 (2004).
  • Lovisolo CF, Fleming JF. Intracorneal ring segments for iatrogenic keratectasia after laser in situ keratomileusis or photorefractive keratectomy. J. Refract. Surg.18, 535–541 (2002).
  • Alio J, Salem T, Artola A, Osman A. Intracorneal rings to correct corneal ectasia after laser in situ keratomileusis. J. Cataract. Refract. Surg.28, 1568–1574 (2002).
  • Siganos CS, Kymionis GD, Astyrakakis N, Pallikaris IG. Management of corneal ectasia after laser in situ keratomileusis with INTACS. J. Refract. Surg.18, 43–46 (2002).
  • Kymionis GD, Siganos CS, Kounis G et al. Management of post-LASIK corneal ectasia with Intacs inserts: one-year results. Arch. Ophthalmol.121, 322–326 (2003).
  • Pokroy R, Levinger S, Hirsh A. Single Intacs segment for postlaser in situ keratomileusis keratectasia. J. Cataract Refract. Surg.30, 1685–1695 (2004).
  • Guell JL. Are intracorneal rings still useful in refractive surgery? Curr. Opin. Ophthalmol.16, 260–265 (2005).
  • Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-A-induced collagen cross-linking for the treatment of keratoconus. Am. J. Ophthalmol.135, 620–627 (2003).
  • Kohlhaas M, Spoerl E, Speck A et al. A new treatment of keratectasia after LASIK using collagen with riboflavin/UVA light cross-linking. Klin. Monatsbl. Augenheilkd222, 430–436 (2005).
  • Alio JL, Claramonte PJ, Caliz A, Ramzy MI. Corneal modeling of keratoconus by conductive keratoplasy. J. Cataract. Refract. Surg.31, 190–197 (2005).
  • Wirbelauer C, Pham DT. Continuous monitoring of Corneal thickness changes during LASIK with online optical coherence pachymetry. J. Cataract Refract. Surg.30, 2559–2568 (2004).
  • Bagayev SN, Gelikonov VM, Gelikonov GV et al. Optical coherence tomography for in situ monitoring of laser Corneal ablation. J. Biomed. Opt.7, 633–642 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.