247
Views
46
CrossRef citations to date
0
Altmetric
Review

Bioactive materials in endodontics

, , , , , , , , & show all
Pages 475-494 | Published online: 09 Jan 2014

References

  • Barthel CR, Rosenkranz B, Leuenberg A, Roulet JF. Pulp capping of carious exposures: treatment outcome after 5 and 10 years: a retrospective study. J. Endod.26(9), 525–528 (2000).
  • Stanley HR. Pulp capping: conserving the dental pulp – can it be done? Is it worth it? Oral Surg. Oral Med. Oral Pathol.68(5), 628–639 (1989).
  • Ward J. Vital pulp therapy in cariously exposed permanent teeth and its limitations. Aust. Endod. J.28(1), 29–37 (2002).
  • Al-Hiyasat AS, Barrieshi-Nusair KM, Al-Omari MA. The radiographic outcomes of direct pulp-capping procedures performed by dental students: a retrospective study. J. Am. Dent. Assoc.137(12), 1699–1705 (2006).
  • Stanley HR. Criteria for standardizing and increasing credibility of direct pulp capping studies. Am. J. Dent.11 Spec No, S17–S34 (1998).
  • Berman MH. Pulpotomy: the old reliable pulp therapy. Dent. Today15(11), 60, 62–67 (1996).
  • Fitzgerald M, Heys RJ. A clinical and histological evaluation of conservative pulpal therapy in human teeth. Oper. Dent.16(3), 101–112 (1991).
  • Langeland K. Management of the inflamed pulp associated with deep carious lesion. J. Endod.7(4), 169–181 (1981).
  • Cox CF, Subay RK, Ostro E, Suzuki S, Suzuki SH. Tunnel defects in dentin bridges: their formation following direct pulp capping. Oper. Dent.21(1), 4–11 (1996).
  • Costa CA, Hebling J, Hanks CT. Current status of pulp capping with dentin adhesive systems: a review. Dent. Mater.16(3), 188–197 (2000).
  • Pereira JC, Segala AD, Costa CA. Human pulpal response to direct pulp capping with an adhesive system. Am. J. Dent.13(3), 139–147 (2000).
  • Accorinte ML, Loguercio AD, Reis A, Costa CA. Response of human pulps capped with different self-etch adhesive systems. Clin. Oral Investig. (2007).
  • Murray PE, Hafez AA, Smith AJ, Cox CF. Hierarchy of pulp capping and repair activities responsible for dentin bridge formation. Am. J. Dent.15(4), 236–243 (2002).
  • Cox CF, Tarim B, Kopel H, Gurel G, Hafez A. Technique sensitivity: biological factors contributing to clinical success with various restorative materials. Adv. Dent. Res.15, 85–90 (2001).
  • Murray PE, Windsor LJ, Smyth TW, Hafez AA, Cox CF. Analysis of pulpal reactions to restorative procedures, materials, pulp capping, and future therapies. Crit. Rev. Oral Biol. Med.13(6), 509–520 (2002).
  • Sjogren U, Figdor D, Persson S, Sundqvist G. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int. Endod. J.30(5), 297–306 (1997).
  • Lin LM, Skribner JE, Gaengler P. Factors associated with endodontic treatment failures. J. Endod.18(12), 625–627 (1992).
  • Smith CS, Setchell DJ, Harty FJ. Factors influencing the success of conventional root canal therapy – a five-year retrospective study. Int. Endod. J.26(6), 321–333 (1993).
  • Friedman S, Abitbol S, Lawrence HP. Treatment outcome in endodontics: the Toronto Study. Phase 1: initial treatment. J. Endod.29(12), 787–793 (2003).
  • Friedman S, Lost C, Zarrabian M, Trope M. Evaluation of success and failure after endodontic therapy using a glass ionomer cement sealer. J. Endod.21(7), 384–390 (1995).
  • Farzaneh M, Abitbol S, Lawrence HP, Friedman S. Treatment outcome in endodontics-the Toronto Study. Phase II: initial treatment. J. Endod.30(5), 302–309 (2004).
  • Marquis VL, Dao T, Farzaneh M, Abitbol S, Friedman S. Treatment outcome in endodontics: the Toronto Study. Phase III: initial treatment. J. Endod.32(4), 299–306 (2006).
  • Marending M, Peters OA, Zehnder M. Factors affecting the outcome of orthograde root canal therapy in a general dentistry hospital practice. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.99(1), 119–124 (2005).
  • Chugal NM, Clive JM, Spangberg LS. A prognostic model for assessment of the outcome of endodontic treatment: effect of biologic and diagnostic variables. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.91(3), 342–352 (2001).
  • Heling I, Bialla-Shenkman S, Turetzky A, Horwitz J, Sela J. The outcome of teeth with periapical periodontitis treated with nonsurgical endodontic treatment: a computerized morphometric study. Quintessence Int.32(5), 397–400 (2001).
  • Seltzer S. Endodontology. Biologic Considerations in Endodontic Procedures. Febiger L (Ed.) NY, USA (1988).
  • Johnson BR. Considerations in the selection of a root-end filling material. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.87(4), 398–404 (1999).
  • Hauman CH, Love RM. Biocompatibility of dental materials used in contemporary endodontic therapy: a review. Part 1. Intracanal drugs and substances. Int. Endod. J.36(2), 75–85 (2003).
  • Hauman CH, Love RM. Biocompatibility of dental materials used in contemporary endodontic therapy: a review. Part 2. Root-canal-filling materials. Int. Endod. J.36(3), 147–160 (2003).
  • Geurtsen W. Biocompatibility of root canal filling materials. Aust. Endod. J.27(1), 12–21 (2001).
  • Briseno BM, Willershausen B. Root canal sealer cytotoxicity on human gingival fibroblasts. 1. Zinc oxide-eugenol-based sealers. J. Endod.16(8), 383–386 (1990).
  • Watts A, Paterson RC. Initial biological testing of root canal sealing materials – a critical review. J. Dent.20(5), 259–265 (1992).
  • Holland R, de Souza V, Nery MJ, de Mello W, Bernabe PF, Otoboni JA Jr. Reaction of rat connective tissue to gutta-percha and silver points. A long-term histological study. Aust. Dent J.27(4), 224–226 (1982).
  • Serene TP, Vesely J, Boackle RJ. Complement activation as a possible in vitro indication of the inflammatory potential of endodontic materials. Oral Surg. Oral Med. Oral Pathol.65(3), 354–357 (1988).
  • Sjogren U, Sundqvist G, Nair PN. Tissue reaction to gutta-percha particles of various sizes when implanted subcutaneously in guinea pigs. Eur. J. Oral Sci.103(5), 313–321 (1995).
  • Spangberg L. Biological effects of root canal filling materials. 1. Media for the investigation of the toxic effect of water-soluble substances on human cells in vitro. Odontologisk revy20(2), 123–132 (1969).
  • Wolfson EM, Seltzer S. Reaction of rat connective tissue to some gutta-percha formulations. J. Endod.1(12), 395–402 (1975).
  • Tanzilli JP, Nevins AJ, Borden BG. The reaction of rat connective tissue to polyethylene tube implants filled with Hydron or gutta-percha. Oral Surg. Oral Med. Oral Pathol.55(5), 507–513 (1983).
  • Leonardo MR, Utrilla LS, Rothier A, Leonardo RT, Consolaro A. Comparison of subcutaneous connective tissue responses among three different formulations of gutta-percha used in thermatic techniques. Int. Endod. J.23(4), 211–217 (1990).
  • Szep S, Grumann L, Ronge K, Schriever A, Schultze M, Heidemann D. In vitro cytotoxicity of medicated and nonmedicated gutta-percha points in cultures of gingival fibroblasts. J. Endod.29(1), 36–40 (2003).
  • Ektefaie MR, David HT, Poh CF. Surgical resolution of chronic tissue irritation caused by extruded endodontic filling material. J. Can. Dent. Assoc.71(7), 487–490 (2005).
  • Huang TH, Lii CK, Chou MY, Kao CT. Lactate dehydrogenase leakage of hepatocytes with AH26 and AH Plus sealer treatments. J. Endod.26(9), 509–511 (2000).
  • Huang FM, Hsieh YS, Tai KW, Chou MY, Chang YC. Induction of c-fos and c-jun protooncogenes expression by formaldehyde-releasing and epoxy resin-based root-canal sealers in human osteoblastic cells. J. Biomed. Mater. Res.59(3), 460–465 (2002).
  • Huang FM, Tai KW, Chou MY, Chang YC. Cytotoxicity of resin-, zinc oxide-eugenol-, and calcium hydroxide-based root canal sealers on human periodontal ligament cells and permanent V79 cells. Int. Endod. J.35(2), 153–158 (2002).
  • Geurtsen W, Leinenbach F, Krage T, Leyhausen G. Cytotoxicity of four root canal sealers in permanent 3T3 cells and primary human periodontal ligament fibroblast cultures. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.85(5), 592–597 (1998).
  • Markowitz K, Moynihan M, Liu M, Kim S. Biologic properties of eugenol and zinc oxide-eugenol. A clinically oriented review. Oral Surg. Oral Med. Oral Pathol.73(6), 729–737 (1992).
  • Ho YC, Huang FM, Chang YC. Cytotoxicity of formaldehyde on human osteoblastic cells is related to intracellular glutathione levels. J. Biomed. Mater. Res. B Appl. Biomater.83(2), 340–344 (2007).
  • Ho YC, Huang FM, Chang YC. Mechanisms of cytotoxicity of eugenol in human osteoblastic cells in vitro. Int. Endod. J.39(5), 389–393 (2006).
  • Huang TH, Ding SJ, Hsu TZ, Lee ZD, Kao CT. Root canal sealers induce cytotoxicity and necrosis. J. Mater. Sci.15(7), 767–771 (2004).
  • Erausquin J, Muruzabal M, Devoto FC, Rikles A. Necrosis of the periodontal ligament in root canal overfillings. J. Dent. Res.45(4), 1084–1092 (1966).
  • Kolokouris I, Economides N, Beltes P, Vlemmas I. in vivo comparison of the biocompatibility of two root canal sealers implanted into the subcutaneous connective tissue of rats. J. Endod.24(2), 82–85 (1998).
  • Bouillaguet S, Wataha JC, Tay FR, Brackett MG, Lockwood PE. Initial in vitro biological response to contemporary endodontic sealers. J. Endod.32(10), 989–992 (2006).
  • Bernath M, Szabo J. Tissue reaction initiated by different sealers. Int. Endod. J.36(4), 256–261 (2003).
  • Huang FM, Tsai CH, Yang SF, Chang YC. Induction of interleukin-6 and interleukin-8 gene expression by root canal sealers in human osteoblastic cells. J. Endod.31(9), 679–683 (2005).
  • Huang FM, Chou MY, Chang YC. Dentin bonding agents induce c-fos and c-jun protooncogenes expression in human gingival fibroblasts. Biomaterials24(1), 157–163 (2003).
  • Geurtsen W, Leyhausen G. Biological aspects of root canal filling materials – histocompatibility,cytotoxicity, and mutagenicity. Clin. Oral Investig.1(1), 5–11 (1997).
  • Economides N, Kotsaki-Kovatsi VP, Poulopoulos A, Kolokuris I, Rozos G, Shore R. Experimental study of the biocompatibility of four root canal sealers and their influence on the zinc and calcium content of several tissues. J. Endod.21(3), 122–127 (1995).
  • Huang TH, Lee H, Kao CT. Evaluation of the genotoxicity of zinc oxide eugenol-based, calcium hydroxide-based, and epoxy resin-based root canal sealers by comet assay. J. Endod.27(12), 744–748 (2001).
  • Huang TH, Yang JJ, Li H, Kao CT. The biocompatibility evaluation of epoxy resin-based root canal sealers in vitro. Biomaterials23(1), 77–83 (2002).
  • Lin LM, Rosenberg PA, Lin J. Do procedural errors cause endodontic treatment failure? J. Am. Dent. Assoc.136(2), 187–193 (2005).
  • Barbosa CA, Goncalves RB, Siqueira JF Jr, De Uzeda M. Evaluation of the antibacterial activities of calcium hydroxide, chlorhexidine, and camphorated paramonochlorophenol as intracanal medicament. A clinical and laboratory study. J. Endod.23(5), 297–300 (1997).
  • Bystrom A, Claesson R, Sundqvist G. The antibacterial effect of camphorated paramonochlorophenol, camphorated phenol and calcium hydroxide in the treatment of infected root canals. Endod. Dent. Traumatol.1(5), 170–175 (1985).
  • Orstavik D, Kerekes K, Molven O. Effects of extensive apical reaming and calcium hydroxide dressing on bacterial infection during treatment of apical periodontitis: a pilot study. Int. Endod. J.24(1), 1–7 (1991).
  • Sjogren U, Figdor D, Spangberg L, Sundqvist G. The antimicrobial effect of calcium hydroxide as a short-term intracanal dressing. Int. Endod. J.24(3), 119–125 (1991).
  • Gordon TM, Ranly DM, Boyan BD. The effects of calcium hydroxide on bovine pulp tissue: variations in pH and calcium concentration. J. Endod.11(4), 156–160 (1985).
  • Tronstad L, Andreasen JO, Hasselgren G, Kristerson L, Riis I. pH changes in dental tissues after root canal filling with calcium hydroxide. J. Endod.7(1), 17–21 (1981).
  • Freeman K, Ludington JR Jr, Svec TA, Pinero GJ, Hoover J. Continuously infused calcium hydroxide: its influence on hard tissue repair. J. Endod.20(6), 272–275 (1994).
  • Fitzgerald M, Chiego DJ Jr, Heys DR. Autoradiographic analysis of odontoblast replacement following pulp exposure in primate teeth. Arch. Oral Biol.35(9), 707–715 (1990).
  • Torneck CD, Moe H, Howley TP. The effect of calcium hydroxide on porcine pulp fibroblasts in vitro. J. Endod.9(4), 131–136 (1983).
  • Schroder U. Effects of calcium hydroxide-containing pulp-capping agents on pulp cell migration, proliferation, and differentiation. J. Dent. Res.64 Spec No, 541–548 (1985).
  • Alliot-Licht B, Jean A, Gregoire M. Comparative effect of calcium hydroxide and hydroxyapatite on the cellular activity of human pulp fibroblasts in vitro. Arch. Oral Biol.39(6), 481–489 (1994).
  • Furusawa M, Nakagawa K, Asai Y. Clinico-pathological studies on the tissue reactions of human pulp treated with various kinds of calcium phosphate ceramics. Bull. Tokyo Dent. Coll.32(3), 111–120 (1991).
  • Pameijer CH, Stanley HR. The disastrous effects of the “total etch” technique in vital pulp capping in primates. Am. J. Dent.11 Spec No, S45–54 (1998).
  • Hebling J, Giro EM, Costa CA. Biocompatibility of an adhesive system applied to exposed human dental pulp. J. sEndod.25(10), 676–682 (1999).
  • Horsted-Bindslev P, Vilkinis V, Sidlauskas A. Direct capping of human pulps with a dentin bonding system or with calcium hydroxide cement. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.96(5), 591–600 (2003).
  • Akimoto N, Momoi Y, Kohno A et al. Biocompatibility of Clearfil Liner Bond 2 and Clearfil AP-X system on nonexposed and exposed primate teeth. Quintessence Int.29(3), 177–188 (1998).
  • Cox CF, Hafez AA, Akimoto N, Otsuki M, Suzuki S, Tarim B. Biocompatibility of primer, adhesive and resin composite systems on non-exposed and exposed pulps of non-human primate teeth. Am. J. Dent.11 Spec No, S55–63 (1998).
  • Tarim B, Hafez AA, Suzuki SH, Suzuki S, Cox CF. Biocompatibility of Optibond and XR-Bond adhesive systems in nonhuman primate teeth. Int. J. Periodontics Restorative Dent.18(1), 86–99 (1998).
  • Kitasako Y, Inokoshi S, Tagami J. Effects of direct resin pulp capping techniques on short-term response of mechanically exposed pulps. J. Dent.27(4), 257–263 (1999).
  • Hafez AA, Kopel HM, Cox CF. Pulpotomy reconsidered: application of an adhesive system to pulpotomized permanent primate pulps. Quintessence Int.31(8), 579–589 (2000).
  • Imaizumi N, Kondo H, Ohya K, Kasugai S, Araki K, Kurosaki N. Effects of exposure to 4-META/MMA-TBB resin on pulp cell viability. J. Med. Dent. Sci.53(2), 127–133 (2006).
  • Elias RV, Demarco FF, Tarquinio SB, Piva E. Pulp responses to the application of a self-etching adhesive in human pulps after controlling bleeding with sodium hypochlorite. Quintessence Int.38(2), e67–e77 (2007).
  • Lu Y, Liu T, Li X, Li H, Pi G. Histologic evaluation of direct pulp capping with a self-etching adhesive and calcium hydroxide in beagles. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.102(4), e78–84 (2006).
  • Caliskan MK, Sen BH. Endodontic treatment of teeth with apical periodontitis using calcium hydroxide: a long-term study. Endod. Dent. Traumatol.12(5), 215–221 (1996).
  • Cvek M. Calcium Hydroxide in Dental Medicine. Nordiska Dental, Angelholm, Sweden (1996).
  • Webber RT, Schwiebert KA, Cathey GM. A technique for placement of calcium hydroxide in the root canal system. J. Am. Dent. Assoc.103(3), 417–421 (1981).
  • Mackie IC, Hill FJ, Worthington HV. Comparison of two calcium hydroxide pastes used for endodontic treatment of non-vital immature incisor teeth. Endod. Dent. Traumatol.10(2), 88–90 (1994).
  • Abedi HR, Ingle JI. Mineral trioxide aggregate: a review of a new cement. J. Calif. Dent. Assoc.23(12), 36–39 (1995).
  • Arens DE, Torabinejad M. Repair of furcal perforations with mineral trioxide aggregate: two case reports. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.82(1), 84–88 (1996).
  • Dammaschke T, Gerth HU, Zuchner H, Schafer E. Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dent. Mater.21(8), 731–738 (2005).
  • Keiser K, Johnson CC, Tipton DA. Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts. J. Endod.26(5), 288–291 (2000).
  • Torabinejad M, Hong CU, Pitt Ford TR, Kettering JD. Cytotoxicity of four root end filling materials. J. Endod.21(10), 489–492 (1995).
  • Torabinejad M, Hong CU, Lee SJ, Monsef M, Pitt Ford TR. Investigation of mineral trioxide aggregate for root-end filling in dogs. J. Endod.21(12), 603–608 (1995).
  • Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J. Endod.19(12), 591–595 (1993).
  • Holland R, de Souza V, Nery MJ et al. Reaction of rat connective tissue to implanted dentin tube filled with mineral trioxide aggregate, Portland cement or calcium hydroxide. Braz. Dent. J.12(1), 3–8 (2001).
  • Holland R, Souza V, Nery MJ et al. Reaction of rat connective tissue to implanted dentin tubes filled with a white mineral trioxide aggregate. Braz. Dent. J.13(1), 23–26 (2002).
  • Holland R, de Souza V, Nery MJ, Otoboni Filho JA, Bernabe PF, Dezan Junior E. Reaction of rat connective tissue to implanted dentin tubes filled with mineral trioxide aggregate or calcium hydroxide. J. Endod.25(3), 161–166 (1999).
  • Torabinejad M, Pitt Ford TR. Root end filling materials: a review. Endod. Dent. Traumatol.12(4), 161–178 (1996).
  • Torabinejad M, Ford TR, Abedi HR, Kariyawasam SP, Tang HM. Tissue reaction to implanted root-end filling materials in the tibia and mandible of guinea pigs. J. Endod.24(7), 468–471 (1998).
  • Fridland M, Rosado R. Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. J. Endod.29(12), 814–817 (2003).
  • Duarte MA, Demarchi AC, Yamashita JC, Kuga MC, Fraga Sde C. pH and calcium ion release of 2 root-end filling materials. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.95(3), 345–347 (2003).
  • Fridland M, Rosado R. MTA solubility: a long term study. J. Endod.31(5), 376–379 (2005).
  • Fischer EJ, Arens DE, Miller CH. Bacterial leakage of mineral trioxide aggregate as compared with zinc-free amalgam, intermediate restorative material, and Super-EBA as a root-end filling material. J. Endod.24(3), 176–179 (1998).
  • Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J. Endod.21(7), 349–353 (1995).
  • Torabinejad M, Rastegar AF, Kettering JD, Pitt Ford TR. Bacterial leakage of mineral trioxide aggregate as a root-end filling material. J. Endod.21(3), 109–112 (1995).
  • Eldeniz AU, Hadimli HH, Ataoglu H, Orstavik D. Antibacterial effect of selected root-end filling materials. J. Endod.32(4), 345–349 (2006).
  • Al-Nazhan S, Al-Judai A. Evaluation of antifungal activity of mineral trioxide aggregate. J. Endod.29(12), 826–827 (2003).
  • Al-Hezaimi K, Naghshbandi J, Oglesby S, Simon JH, Rotstein I. Comparison of antifungal activity of white-colored and gray-colored mineral trioxide aggregate (MTA) at similar concentrations against Candida albicans. J. Endod.32(4), 365–367 (2006).
  • Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J. Endod.19(11), 541–544 (1993).
  • Bates CF, Carnes DL, del Rio CE. Longitudinal sealing ability of mineral trioxide aggregate as a root-end filling material. J. Endod.22(11), 575–578 (1996).
  • Mangin C, Yesilsoy C, Nissan R, Stevens R. The comparative sealing ability of hydroxyapatite cement, mineral trioxide aggregate, and super ethoxybenzoic acid as root-end filling materials. J. Endod.29(4), 261–264 (2003).
  • Gondim E Jr, Kim S, de Souza-Filho FJ. An investigation of microleakage from root-end fillings in ultrasonic retrograde cavities with or without finishing: a quantitative analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.99(6), 755–760 (2005).
  • Xavier CB, Weismann R, de Oliveira MG, Demarco FF, Pozza DH. Root-end filling materials: apical microleakage and marginal adaptation. J. Endod.31(7), 539–542 (2005).
  • Wu MK, Kontakiotis EG, Wesselink PR. Long-term seal provided by some root-end filling materials. J. Endod.24(8), 557–560 (1998).
  • Adamo HL, Buruiana R, Schertzer L, Boylan RJ. A comparison of MTA, Super-EBA, composite and amalgam as root-end filling materials using a bacterial microleakage model. Int. Endod. J.32(3), 197–203 (1999).
  • Pereira CL, Cenci MS, Demarco FF. Sealing ability of MTA, Super EBA, Vitremer and amalgam as root-end filling materials. Braz. Oral Res.18(4), 317–321 (2004).
  • Tobon-Arroyave SI, Restrepo-Perez MM, Arismendi-Echavarria JA, Velasquez-Restrepo Z, Marin-Botero ML, Garcia-Dorado EC. Ex vivo microscopic assessment of factors affecting the quality of apical seal created by root-end fillings. Int. Endod. J.40(8), 590–602 (2007).
  • Matt GD, Thorpe JR, Strother JM, McClanahan SB. Comparative study of white and gray mineral trioxide aggregate (MTA) simulating a one- or two-step apical barrier technique. J. Endod.30(12), 876–879 (2004).
  • Stefopoulos S, Tsatsas DV, Kerezoudis NP, Eliades G. Comparative in vitro study of the sealing efficiency of white vs grey ProRoot mineral trioxide aggregate formulas as apical barriers. Dent. Traumatol.24(2), 207–213 (2008).
  • Weldon JK Jr, Pashley DH, Loushine RJ, Weller RN, Kimbrough WF. Sealing ability of mineral trioxide aggregate and super-EBA when used as furcation repair materials: a longitudinal study. J. Endod.28(6), 467–470 (2002).
  • Krupalini KS, Udayakumar, Jayalakshmi KB. A comparative evaluation of medicated calcium sulphate, hydroxylapatite, mineral trioxide aggregate (MTA) as barrier and their effect on the sealing ability of furcation perforation repair material – an in vitro study. Indian J. Dent. Res.14(3), 156–161 (2003).
  • Tsatsas DV, Meliou HA, Kerezoudis NP. Sealing effectiveness of materials used in furcation perforation in vitro. Inter. Dent. J.55(3), 133–141 (2005).
  • Hamad HA, Tordik PA, McClanahan SB. Furcation perforation repair comparing gray and white MTA: a dye extraction study. J. Endod.32(4), 337–340 (2006).
  • Hachmeister DR, Schindler WG, Walker WA 3rd, Thomas DD. The sealing ability and retention characteristics of mineral trioxide aggregate in a model of apexification. J. Endod.28(5), 386–390 (2002).
  • Nakata TT, Bae KS, Baumgartner JC. Perforation repair comparing mineral trioxide aggregate and amalgam using an anaerobic bacterial leakage model. J. Endod.24(3), 184–186 (1998).
  • Ferris DM, Baumgartner JC. Perforation repair comparing two types of mineral trioxide aggregate. J. Endod.30(6), 422–424 (2004).
  • Tang HM, Torabinejad M, Kettering JD. Leakage evaluation of root end filling materials using endotoxin. J. Endod.28(1), 5–7 (2002).
  • Scheerer SQ, Steiman HR, Cohen J. A comparative evaluation of three root-end filling materials: an in vitro leakage study using Prevotella nigrescens. J. Endod.27(1), 40–42 (2001).
  • Maltezos C, Glickman GN, Ezzo P, He J. Comparison of the sealing of Resilon, Pro Root MTA, and Super-EBA as root-end filling materials: a bacterial leakage study. J. Endod.32(4), 324–327 (2006).
  • Montellano AM, Schwartz SA, Beeson TJ. Contamination of tooth-colored mineral trioxide aggregate used as a root-end filling material: a bacterial leakage study. J. Endod.32(5), 452–455 (2006).
  • de Leimburg ML, Angeretti A, Ceruti P, Lendini M, Pasqualini D, Berutti E. MTA obturation of pulpless teeth with open apices: bacterial leakage as detected by polymerase chain reaction assay. J. Endod.30(12), 883–886 (2004).
  • Al-Kahtani A, Shostad S, Schifferle R, Bhambhani S. In-vitro evaluation of microleakage of an orthograde apical plug of mineral trioxide aggregate in permanent teeth with simulated immature apices. J. Endod.31(2), 117–119 (2005).
  • Tselnik M, Baumgartner JC, Marshall JG. Bacterial leakage with mineral trioxide aggregate or a resin-modified glass ionomer used as a coronal barrier. J. Endod.30(11), 782–784 (2004).
  • Torabinejad M, Higa RK, McKendry DJ, Pitt Ford TR. Dye leakage of four root end filling materials: effects of blood contamination. J. Endod.20(4), 159–163 (1994).
  • Sarkar NK, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J. Endod.31(2), 97–100 (2005).
  • Balto HA. Attachment and morphological behavior of human periodontal ligament fibroblasts to mineral trioxide aggregate: a scanning electron microscope study. J. Endod.30(1), 25–29 (2004).
  • Koh ET, Torabinejad M, Pitt Ford TR, Brady K, McDonald F. Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J. Biomed. Mater. Res.37(3), 432–439 (1997).
  • Koh ET, McDonald F, Pitt Ford TR, Torabinejad M. Cellular response to Mineral Trioxide Aggregate. J. Endod.24(8), 543–547 (1998).
  • Zhu Q, Haglund R, Safavi KE, Spangberg LS. Adhesion of human osteoblasts on root-end filling materials. J. Endod.26(7), 404–406 (2000).
  • Pelliccioni GA, Ciapetti G, Cenni E et al. Evaluation of osteoblast-like cell response to Proroot MTA (mineral trioxide aggregate) cement. J. Mater. Sci.15(2), 167–173 (2004).
  • Mitchell PJ, Pitt Ford TR, Torabinejad M, McDonald F. Osteoblast biocompatibility of mineral trioxide aggregate. Biomaterials20(2), 167–173 (1999).
  • Thomson TS, Berry JE, Somerman MJ, Kirkwood KL. Cementoblasts maintain expression of osteocalcin in the presence of mineral trioxide aggregate. J. Endod.29(6), 407–412 (2003).
  • Moghaddame-Jafari S, Mantellini MG, Botero TM, McDonald NJ, Nor JE. Effect of ProRoot MTA on pulp cell apoptosis and proliferation in vitro. J. Endod.31(5), 387–391 (2005).
  • Takita T, Hayashi M, Takeichi O et al. Effect of mineral trioxide aggregate on proliferation of cultured human dental pulp cells. Int. Endod. J.39(5), 415–422 (2006).
  • Torabinejad M, Hong CU, Pitt Ford TR, Kaiyawasam SP. Tissue reaction to implanted Super-EBA and mineral trioxide aggregate in the mandible of guinea pigs: a preliminary report. J. Endod.21(11), 569–571 (1995).
  • Apaydin ES, Shabahang S, Torabinejad M. Hard-tissue healing after application of fresh or set MTA as root-end-filling material. J. Endod.30(1), 21–24 (2004).
  • Faraco IM Jr, Holland R. Response of the pulp of dogs to capping with mineral trioxide aggregate or a calcium hydroxide cement. Dent. Traumatol.17(4), 163–166 (2001).
  • Holland R, de Souza V, Murata SS et al. Healing process of dog dental pulp after pulpotomy and pulp covering with mineral trioxide aggregate or Portland cement. Braz. Dent. J.12(2), 109–113 (2001).
  • Holland R, de Souza V, Nery MJ, Otoboni Filho JA, Bernabe PF, Dezan E Jr. Reaction of dogs’ teeth to root canal filling with mineral trioxide aggregate or a glass ionomer sealer. J. Endod.25(11), 728–730 (1999).
  • Torabinejad M, Pitt Ford TR, McKendry DJ, Abedi HR, Miller DA, Kariyawasam SP. Histologic assessment of mineral trioxide aggregate as a root-end filling in monkeys. J. Endod.23(4), 225–228 (1997).
  • Eidelman E, Holan G, Fuks AB. Mineral trioxide aggregate vs. formocresol in pulpotomized primary molars: a preliminary report. Pediatr. Dent.23(1), 15–18 (2001).
  • Koh ET, Ford TR, Kariyawasam SP, Chen NN, Torabinejad M. Prophylactic treatment of dens evaginatus using mineral trioxide aggregate. J. Endod.27(8), 540–542 (2001).
  • Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J. Endod.25(3), 197–205 (1999).
  • Tziafas D, Pantelidou O, Alvanou A, Belibasakis G, Papadimitriou S. The dentinogenic effect of mineral trioxide aggregate (MTA) in short-term capping experiments. Int. Endod. J.35(3), 245–254 (2002).
  • Shabahang S, Torabinejad M, Boyne PP, Abedi H, McMillan P. A comparative study of root-end induction using osteogenic protein-1, calcium hydroxide, and mineral trioxide aggregate in dogs. J. Endod.25(1), 1–5 (1999).
  • Regan JD, Gutmann JL, Witherspoon DE. Comparison of Diaket and MTA when used as root-end filling materials to support regeneration of the periradicular tissues. Int. Endod. J.35(10), 840–847 (2002).
  • Kratchman SI. Perforation repair and one-step apexification procedures. Dent. Clin. N. Am.48(1), 291–307 (2004).
  • Main C, Mirzayan N, Shabahang S, Torabinejad M. Repair of root perforations using mineral trioxide aggregate: a long-term study. J. Endod.30(2), 80–83 (2004).
  • Schwartz RS, Mauger M, Clement DJ, Walker WA, 3rd. Mineral trioxide aggregate: a new material for endodontics. J. Am. Dent. Assoc.130(7), 967–975 (1999).
  • Giuliani V, Baccetti T, Pace R, Pagavino G. The use of MTA in teeth with necrotic pulps and open apices. Dent. Traumatol.18(4), 217–221 (2002).
  • Hayashi M, Shimizu A, Ebisu S. MTA for obturation of mandibular central incisors with open apices: case report. J. Endod.30(2), 120–122 (2004).
  • Levenstein H. Obturating teeth with wide open apices using mineral trioxide aggregate: a case report. SADJ57(7), 270–273 (2002).
  • Linsuwanont P. MTA apexification combined with conventional root canal retreatment. Aust. Endod. J.29(1), 45–49 (2003).
  • Lynn EA, Einbender S. The use of mineral trioxide aggregate to create an apical stop in previously traumatized adult tooth with blunderbuss canal. Case report. NY State Dent. J.69(2), 30–32 (2003).
  • Maroto M, Barberia E, Planells P, Vera V. Treatment of a non-vital immature incisor with mineral trioxide aggregate (MTA). Dent. Traumatol.19(3), 165–169 (2003).
  • Shabahang S, Torabinejad M. Treatment of teeth with open apices using mineral trioxide aggregate. Pract. Periodontics Aesthet. Dent.12(3), 315–320 (2000).
  • Steinig TH, Regan JD, Gutmann JL. The use and predictable placement of Mineral Trioxide Aggregate in one-visit apexification cases. Aust. Endod. J.29(1), 34–42 (2003).
  • Witherspoon DE, Ham K. One-visit apexification: technique for inducing root-end barrier formation in apical closures. Pract. Proced. Aesthet. Dent.13(6), 455–460 (2001).
  • Bodem O, Blumenshine S, Zeh D, Koch MJ. Direct pulp capping with mineral trioxide aggregate in a primary molar: a case report. Int. J. Paediatr. Dent.14(5), 376–379 (2004).
  • Karabucak B, Li D, Lim J, Iqbal M. Vital pulp therapy with mineral trioxide aggregate. Dent. Traumatol.21(4), 240–243 (2005).
  • Kuttler Y. Microscopic investigation of root apexes. J. Am. Dent. Assoc.50(5), 544–552 (1955).
  • Hembrough MW, Meares WA, Cohen J, Steiman HR. Non-surgical post perforation repair with mineral trioxide aggregate: a case report. J. Mich. Dent. Assoc.85(3), 36–38 (2003).
  • Joffe E. Use of mineral trioxide aggregate (MTA) in root repairs. Clinical cases. NY State Dent. J.68(6), 34–36 (2002).
  • Menezes R, da Silva Neto UX, Carneiro E, Letra A, Bramante CM, Bernadinelli N. MTA repair of a supracrestal perforation: a case report. J. Endod.31(3), 212–214 (2005).
  • Koh ET. Mineral trioxide aggregate (MTA) as a root end filling material in apical surgery – a case report. Singapore Dent. J.23(1 Suppl.), 72–78 (2000).
  • Aeinehchi M, Eslami B, Ghanbariha M, Saffar AS. Mineral trioxide aggregate (MTA) and calcium hydroxide as pulp-capping agents in human teeth: a preliminary report. Int. Endod. J.36(3), 225–231 (2003).
  • Iwamoto CE, Adachi E, Pameijer CH, Barnes D, Romberg EE, Jefferies S. Clinical and histological evaluation of white ProRoot MTA in direct pulp capping. Am. J. Dent.19(2), 85–90 (2006).
  • Agamy HA, Bakry NS, Mounir MM, Avery DR. Comparison of mineral trioxide aggregate and formocresol as pulp-capping agents in pulpotomized primary teeth. Pediatr. Dent.26(4), 302–309 (2004).
  • Maroto M, Barberia E, Planells P, Garcia Godoy F. Dentin bridge formation after mineral trioxide aggregate (MTA) pulpotomies in primary teeth. Am. J. Dent.18(3), 151–154 (2005).
  • Maroto M, Barberia E, Vera V, Garcia-Godoy F. Dentin bridge formation after white mineral trioxide aggregate (white MTA) pulpotomies in primary molars. Am. J. Dent.19(2), 75–79 (2006).
  • Farsi N, Alamoudi N, Balto K, Mushayt A. Success of mineral trioxide aggregate in pulpotomized primary molars. J. Clin. Pediatr. Dent.29(4), 307–311 (2005).
  • Holan G, Eidelman E, Fuks AB. Long-term evaluation of pulpotomy in primary molars using mineral trioxide aggregate or formocresol. Pediatr. Dent.27(2), 129–136 (2005).
  • Percinoto C, de Castro AM, Pinto LM. Clinical and radiographic evaluation of pulpotomies employing calcium hydroxide and trioxide mineral aggregate. Gen. Dent.54(4), 258–261 (2006).
  • Barrieshi-Nusair KM, Qudeimat MA. A prospective clinical study of mineral trioxide aggregate for partial pulpotomy in cariously exposed permanent teeth. J. Endod.32(8), 731–735 (2006).
  • Qudeimat MA, Barrieshi-Nusair KM, Owais AI. Calcium hydroxide vs mineral trioxide aggregates for partial pulpotomy of permanent molars with deep caries. Eur. Arch. Paediatr. Dent.8(2), 99–104 (2007).
  • Witherspoon DE, Small JC, Harris GZ. Mineral trioxide aggregate pulpotomies: a case series outcomes assessment. J. Am. Dent. Assoc.137(5), 610–618 (2006).
  • Chong BS, Pitt Ford TR, Hudson MB. A prospective clinical study of mineral trioxide aggregate and IRM when used as root-end filling materials in endodontic surgery. Int. Endod. J.36(8), 520–526 (2003).
  • Daculsi G, Bouler JM, LeGeros RZ. Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int. Rev. Cytol.172, 129–191 (1997).
  • Daculsi G, LeGeros RZ, Mitre D. Crystal dissolution of biological and ceramic apatites. Calcif. Tissue Int.45(2), 95–103 (1989).
  • LeGeros R, Daculsi G, Orly I, LeGeros J. Substrate Surface dissolution and interfacial biological mineralization. In: The Bone Biomaterials Interface. Jed, D (Ed.). University of Toronto Press, Toronto, Canada (1991).
  • LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin. Orthop. Relat. Res.395, 81–98 (2002).
  • Passuti N, Daculsi G. [Calcium phosphate ceramics in orthopedic surgery]. Presse Med.18(1), 28–31 (1989).
  • Ikami K, Iwaku M, Ozawa H. An ultrastructural study of the process of hard tissue formation in amputated dental pulp dressed with α-tricalcium phosphate. Arch. Hist. Cytol.53(2), 227–243 (1990).
  • Daculsi G, Passuti N. Bioactive ceramics, fundamental properties and clinical applications: the osteocoalescence process. In: Ceramics in Medicine. Onishi, H, Heimcke, G (Eds.), Butterworth-Heinemann, Cologne, Germany 3–10 (1990).
  • Frank RM, Gineste M, Benque EP, Hemmerle J, Duffort JF, Heughebaert M. [Ultrastructural study of bone formation after bioapatite implantation in man]. J. Biol. Buccale.15(2), 125–134 (1987).
  • LeGeros RZ. Calcium phosphate materials in restorative dentistry: a review. Adv. Dent. Res.2(1), 164–180 (1988).
  • Nielsen TH. Sealing ability of chelate root filling cements: Brinell hardness, cement/dentin adhesive force, summary data table. Part 5. J. Endod.11(12), 548–554 (1985).
  • Rothier A, Leonardo MR, Bonetti I Jr, Mendes AJ. Leakage evaluation in vitro of two calcium hydroxide and two zinc oxide-eugenol-based sealers. J. Endod.13(7), 336–338 (1987).
  • Siqueira FJ Jr, Fraga RC, Garcia PF. Evaluation of sealing ability, pH and flow rate of three calcium hydroxide-based sealers. Endod. Dent. Traumatol.11(5), 225–228 (1995).
  • LeGeros RZ. Calcium phosphates in oral biology and medicine. Monogr. Oral Sci.15, 1–201 (1991).
  • Jean A, Kerebel B, Kerebel LM, Legeros RZ, Hamel H. Effects of various calcium phosphate biomaterials on reparative dentin bridge formation. J. Endod.14(2), 83–87 (1988).
  • Boone ME 2nd, Kafrawy AH. Pulp reaction to a tricalcium phosphate ceramic capping agent. Oral Surg. Oral Med. Oral Pathol.47(4), 369–371 (1979).
  • Coviello J, Brilliant JD. A preliminary clinical study on the use of tricalcium phosphate as an apical barrier. J. Endod.5(1), 6–13 (1979).
  • Heller AL, Koenigs JF, Brilliant JD, Melfi RC, Driskell TD. Direct pulp capping of permanent teeth in primates using a resorbable form of tricalcium phosphate ceramic. J. Endod.1(3), 95–101 (1975).
  • Metsger DS, Driskell TD, Paulsrud JR. Tricalcium phosphate ceramic – a resorbable bone implant: review and current status. J. Am. Dent. Assoc.105(6), 1035–1038 (1982).
  • Howden GF. Biodegradable ceramic (Synthos) in human endodontic surgery. J. Br. Endod. Soc.10(2), 71–76 (1977).
  • Bottero-Cornillac MJ, Bonnin JJ, Vannesson H, Vadot J. [Clinical tests of a new synthetic hydroxyapatite: apropos of 3 types of use]. Rev. Fr. Endod.7(3), 39–52 (1988).
  • Chohayeb AA, Adrian JC, Salamat K. Pulpal response to tricalcium phosphate as a capping agent. Oral Surg. Oral Med. Oral Pathol.71(3), 343–345 (1991).
  • Frank RM, Klewansky P, Hemmerle J, Tenenbaum H. Ultrastructural demonstration of the importance of crystal size of bioceramic powders implanted into human periodontal lesions. J. Clin. Periodontol.18(9), 669–680 (1991).
  • Jaber L, Mascres C, Donohue WB. Electron microscope characteristics of dentin repair after hydroxylapatite direct pulp capping in rats. J. Oral Pathol. Med.20(10), 502–508 (1991).
  • Jaber L, Mascres C, Donohue WB. Reaction of the dental pulp to hydroxyapatite. Oral Surg. Oral Med. Oral Pathol.73(1), 92–98 (1992).
  • Jean AH, Pouezat JA, Daculsi G, Appleton J. Pulpal response to calcium-phosphate materials in-vivo study of calcium-phosphate materials in endodontics. Cell. Mater.3(2), 193–200 (1993).
  • Noguchi J. [Ultrastructural study on the developmental process of the dentin bridge following direct capping using hydroxyapatite ceramic]. Tsurumi Shigaku15(1), 63–86 (1989).
  • Sena M, Yamashita Y, Nakano Y et al. Octacalcium phosphate-based cement as a pulp-capping agent in rats. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.97(6), 749–755 (2004).
  • Jean A, Pouezat JA, Laboux O, Marion D, Daculsi G. Biocompatibility of various phosphate materials to dental pulp. Adv. Biomater.10, 25–30 (1992).
  • Chohayeb AA, Adrian JC, Salamat K, Legeros CZ. An evaluation of apatite-based pulp capping materials. Natl Dent. Assoc. J.42(1), 14–18 (1985).
  • Himel VT, Brady J Jr, Weir J Jr. Evaluation of repair of mechanical perforations of the pulp chamber floor using biodegradable tricalcium phosphate or calcium hydroxide. J. Endod.11(4), 161–165 (1985).
  • Brandell DW, Torabinejad M, Bakland LK, Lessard GM. Demineralized dentin, hydroxylapatite and dentin chips as apical plugs. Endod. Dent. Traumatol.2(5), 210–214 (1986).
  • Harbert H. Generic tricalcium phosphate plugs: an adjunct in endodontics. J. Endod.17(3), 131–134 (1991).
  • Harbert H. One-step apexification without calcium hydroxide. J. Endod.22(12), 690–692 (1996).
  • Koenigs JF, Heller AL, Brilliant JD, Melfi RC, Driskell TD. Induced apical closure of permanent teeth in adult primates using a resorbable form of tricalcium phosphate ceramic. J. Endod.1(3), 102–106 (1975).
  • Roberts SC Jr, Brilliant JD. Tricalcium phosphate as an adjunct to apical closure in pulpless permanent teeth. J. Endod.1(8), 263–269 (1975).
  • LeGeros R, Chohayeb AAS. Apatitic calcium phosphates: possible restorative materials. J. Dent. Res.61(343) (1982).
  • Brown WE, Chow LC. A new calcium phosphate, water-setting cement. In: Cements Research Progress 1986. Brown, PW (Ed.). The American Ceramic Society, Westerville, OH, USA 352–379 (1987).
  • Costantino PD, Friedman CD, Jones K, Chow LC, Sisson GA. Experimental hydroxyapatite cement cranioplasty. Plast. Reconstr. Surg.90(2), 174–185 (1992).
  • Friedman CD, Costantino PD, Jones K, Chow LC, Pelzer HJ, Sisson GA Sr. Hydroxyapatite cement. II. Obliteration and reconstruction of the cat frontal sinus. Arch. Otolaryngol. Head Neck Surg.117(4), 385–389 (1991).
  • Bilginer S, Esener T, Soylemezoglu F, Tiftik AM. The investigation of biocompatibility and apical microleakage of tricalcium phosphate based root canal sealers. J. Endod.23(2), 105–109 (1997).
  • Higashi S, Ohsumi T, Ozumi K, Kuroki K, Inokuchi Y, Terashita M. Evaluation of cytotoxicity of calcium phosphate cement consisting of α-tricalcium phosphate and dicalcium phosphate dihydrate. Dent. Mater. J.17(3), 186–194 (1998).
  • Liu C, Wang W, Shen W, Chen T, Hu L, Chen Z. Evaluation of the biocompatibility of a nonceramic hydroxyapatite. J. Endod.23(8), 490–493 (1997).
  • Steinbrunner RL, Brown CE Jr, Legan JJ, Kafrawy AH. Biocompatibility of two apatite cements. J. Endod.24(5), 335–342 (1998).
  • Sugawara A, Nishiyama M, Kusama K et al. Histopathological reactions of calcium phosphate cement. Dent. Mater. J.11(1), 11–16 (1992).
  • Yoshikawa M, Toda T, Oonishi H et al. Osteocompatibility and biocompatibility of tetracalcium phosphate cement. In: Bioceramics.187–192 (1994).
  • Chohayeb AA, Chow LC, Tsaknis PJ. Evaluation of calcium phosphate as a root canal sealer-filler material. J. Endod.13(8), 384–387 (1987).
  • Hong CY, Lin SK, Kok SH, Wong MY, Hong YC. Histologic reactions to a newly developed calcium phosphate cement implanted in the periapical and periodontal tissues. J. Formos. Med. Assoc.89(4), 297–304 (1990).
  • Hong YC, Wang JT, Hong CY, Brown WE, Chow LC. The periapical tissue reactions to a calcium phosphate cement in the teeth of monkeys. J. Biomed. Mater. Res.25(4), 485–498 (1991).
  • Kouassi M, Michailesco P, Lacoste-Armynot A, Boudeville P. Antibacterial effect of a hydraulic calcium phosphate cement for dental applications. J. Endod.29(2), 100–103 (2003).
  • Krell KV, Madison S. Comparison of apical leakage in teeth obturated with a calcium phosphate cement or Grossman’s cement using lateral condensation. J. Endod.11(8), 336–339 (1985).
  • Krell KF, Wefel JS. A calcium phosphate cement root canal sealer – scanning electron microscopic analysis. J. Endod.10(12), 571–576 (1984).
  • Sugihara F, Minamikawa IK, Oonishi H et al. Charasteristics and bone tissue reaction of tetracalcium phosphate-collagen conjugated sponge. In: Bioceramics.193 (1994).
  • White JM, Goodis H. in vitro evaluation of an hydroxyapatite root canal system filling material. J. Endod.17(11), 561–566 (1991).
  • Yoshikawa M, Hayami S, Tsuji I, Toda T. Histopathological study of a newly developed root canal sealer containing tetracalcium-dicalcium phosphates and 1.0% chondroitin sulfate. J. Endod.23(3), 162–166 (1997).
  • Yoshikawa M, Inamoto T, Hakata T, Toda T. Apical canal sealing ability of calcium phosphate based cements. J. Osaka Dent. Univ.30(1–2), 1–6 (1996).
  • Brown PW, Fulmer M. Kinetics of hydroxyapatite formation at low temperature. J. Am. Ceram. Soc.74(5), 934–940 (1991).
  • Constantz BR, Ison IC, Fulmer MT et al. Skeletal repair by in situ formation of the mineral phase of bone. Science267(5205), 1796–1799 (1995).
  • Ginebra MP, Fernandez E, De Maeyer EA et al. Setting reaction and hardening of an apatitic calcium phosphate cement. J. Dent. Res.76(4), 905–912 (1997).
  • Khairoun I, Boltong MG, Driessens FC, Planell JA. Some factors controlling the injectability of calcium phosphate bone cements. J. Mater. Sci.9(8), 425–428 (1998).
  • Lemaitre J, Munting E, Mirtchi AA. Setting, hardening and resorption of calcium phosphate hydraulic cements. Rev. Stomatol. Chir. Maxillofac.93(3), 163–165 (1992).
  • Mirtchi AA, Lemaitre J, Munting E. Calcium phosphate cements: study of the beta-tricalcium phosphate – dicalcium phosphate – calcite cements. Biomaterials11(2), 83–88 (1990).
  • Takagi S, Chow LC, Ishikawa K. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials19(17), 1593–1599 (1998).
  • Sugawara A, Fujikawa K, Takagi S, Chow LC, Nishiyama M, Murai S. Histopathological and cell enzyme studies of calcium phosphate cements. Dent. Mater. J.23(4), 613–620 (2004).
  • Serraj S, Michailesco P, Margerit J, Bernard B, Boudeville P. Study of a hydraulic calcium phosphate cement for dental applications. J. Mater. Sci.13(1), 125–131 (2002).
  • el-Briak H, Durand D, Nurit J, Munier S, Pauvert B, Boudeville P. Study of a hydraulic dicalcium phosphate dihydrate/calcium oxide-based cement for dental applications. J. Biomed. Mater. Res.63(4), 447–453 (2002).
  • Michailesco P, Kouassi M, El Briak H, Armynot A, Boudeville P. Antimicrobial activity and tightness of a DCPD-CaO-based hydraulic calcium phosphate cement for root canal filling. J. Biomed. Mater. Res. B Appl. Biomater.74(2), 760–767 (2005).
  • El Briak H, Durand D, Boudeville P. Study of a hydraulic DCPA/CaO-based cement for dental applications. J. Mater. Sci.19(2), 737–744 (2008).
  • Roy CO, Jeansonne BG, Gerrets TF. Effect of an acid environment on leakage of root-end filling materials. J. Endod.27(1), 7–8 (2001).
  • Mattioli Belmonte M, De Benedittis A, Mongiorgi R et al. Bioactivity of chitosan in dentistry. Preliminary data on chitosan-based cements. Minerva Stomatol.48(12), 567–576 (1999).
  • Sugawara A, Chow LC, Takagi S, Chohayeb H. In vitro evaluation of the sealing ability of a calcium phosphate cement when used as a root canal sealer-filler. J. Endod.16(4), 162–165 (1990).
  • Takagi S, Chow LC, Hirayama S, Sugawara A. Premixed calcium-phosphate cement pastes. J. Biomed. Mater. Res. B Appl. Biomater.67(2), 689–696 (2003).
  • Cherng A, Takagi S, Chow LC. Effects of hydroxypropyl methylcellulose and other gelling agents on the handling properties of calcium phosphate cement. J. Biomed. Mater. Res.35(3), 273–277 (1997).
  • Takagi S, Chow LC, Hirayama S, Eichmiller FC. Properties of elastomeric calcium phosphate cement-chitosan composites. Dent. Mater.19(8), 797–804 (2003).
  • Trecant M, Delecrin J, Nguyen JM, Royer J, Passuti N, Daculsi G. Influence of post-implantation physico-chemical changes in a macroporous ceramic on its mechanical strength. J. Mater. Sci. Mater. Med,7(4), 227–229 (1996).
  • Gauthier O, Muller R, von Stechow D et al.In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials26(27), 5444–5453 (2005).
  • Saito T, Yamauchi M, Crenshaw MA. Apatite induction by insoluble dentin collagen. J. Bone Miner. Res.13(2), 265–270 (1998).
  • Wada Y, Fujisawa R, Nodasaka Y, Kuboki Y. Electrophoretic gels of dentin matrix proteins as diffusion media for in vitro mineralization. J. Dent. Res.75(6), 1381–1387 (1996).
  • Cherng AM, Chow LC, Takagi S. In vitro evaluation of a calcium phosphate cement root canal filler/sealer. J. Endod.27(10), 613–615 (2001).
  • Kim JS, Baek SH, Bae KS. In vivo study on the biocompatibility of newly developed calcium phosphate-based root canal sealers. J. Endod.30(10), 708–711 (2004).
  • Chau JY, Hutter JW, Mork TO, Nicoll BK. An in vitro study of furcation perforation repair using calcium phosphate cement. J. Endod.23(9), 588–592 (1997).
  • MacDonald A, Moore BK, Newton CW, Brown CE Jr. Evaluation of an apatite cement as a root end filling material. J. Endod.20(12), 598–604 (1994).
  • Goodell GG, Mork TO, Hutter JW, Nicoll BK. Linear dye penetration of a calcium phosphate cement apical barrier. J. Endod.23(3), 174–177 (1997).
  • Hayashi Y, Imai M. Application of Ca-β-glycerophosphate for artificial apical barrier formation. J. Endod.21(4), 205–207 (1995).
  • Donlon WC. Immune neutrality of calf skin collagen gel used to stimulate revitalization in pulpless open apex teeth of rhesus monkeys. J. Dent. Res.56(6), 670–673 (1977).
  • Nevins A, Finkelstein F, Laporta R, Borden BG. Induction of hard tissue into pulpless open-apex teeth using collagen-calcium phosphate gel. J. Endod.4(3), 76–81 (1978).
  • Nevins AJ, LaPorta RF, Borden BG, Spangberg LS. Pulpotomy and partial pulpectomy procedures in monkey teeth using cross-linked collagen-calcium phosphate gel. Oral Surg. Oral Med. Oral Pathol.49(4), 360–365 (1980).
  • Gallis P, Santini A. Response to rat and guinea pig subcutaneous tissue to implanted human roots containing collagen and hydroxyapatite preparations. Int. J. Endodon.18, 267–272 (1985).
  • Nevins A, Crespi P. A clinical study using the collagen gel Zyplast in endodontic treatment. J. Endod.24(9), 610–613 (1998).
  • Grimandi G, Weiss P, Millot F, Daculsi G. In vitro evaluation of a new injectable calcium phosphate material. J. Biomed. Mater. Res.39(4), 660–666 (1998).
  • Barbie C, Chauveaux D, Barthe X, Baquey C, Poustis J. Biological behavior of cellulosic materials after bone implantation: preliminary results. Clin. Mater.5(2–4), 251–258 (1990).
  • Nery EB, LeGeros RZ, Lynch KL, Lee K. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/β TCP in periodontal osseous defects. J. Periodontol.63(9), 729–735 (1992).
  • Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J. Biomed. Mater. Res.23(8), 883–894 (1989).
  • LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J. Mater. Sci.14(3), 201–209 (2003).
  • Bohic S, Weiss P, Roger P, Daculsi G. Light scattering experiments on aqueous solutions of selected cellulose ethers: contribution to the study of polymer-mineral interactions in a new injectable biomaterial. J. Mater. Sci.12(3), 201–205 (2001).
  • Weiss P, Bohic S, Lapkowski M, Daculsi G. Application of FT-IR microspectroscopy to the study of an injectable composite for bone and dental surgery. J. Biomed. Mater. Res.41(1), 167–170 (1998).
  • Weiss P, Gauthier O, Bouler JM, Grimandi G, Daculsi G. Injectable bone substitute using a hydrophilic polymer. Bone25(2 Suppl.), 67S–70S (1999).
  • Weiss P, Lapkowski M, Legeros RZ, Bouler JM, Jean A, Daculsi G. Fourier-transform infrared spectroscopy study of an organic-mineral composite for bone and dental substitute materials. J. Mater. Sci.8(10), 621–629 (1997).
  • Daculsi G, Passuti N. Effect of the macroporosity for osseous substitution of calcium phosphate ceramics. Biomaterials11, 86–87 (1990).
  • Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials19(1–3), 133–139 (1998).
  • van Blitterswijk CA, Grote JJ, Kuijpers W, Daems WT, de Groot K. Macropore tissue ingrowth: a quantitative and qualitative study on hydroxyapatite ceramic. Biomaterials7(2), 137–143 (1986).
  • Khairoun I, Magne D, Gauthier O et al.In vitro characterization and In vivo properties of a carbonated apatite bone cement. J. Biomed. Mater. Res.60(4), 633–642 (2002).
  • Gauthier O, Khairoun I, Bosco J et al. Noninvasive bone replacement with a new injectable calcium phosphate biomaterial. J. Biomed. Meter. Res.66(1), 47–54 (2003).
  • Weiss P, Obadia L, Magne D et al. Synchrotron X-ray microtomography (on a micron scale) provides three-dimensional imaging representation of bone ingrowth in calcium phosphate biomaterials. Biomaterials24(25), 4591–4601 (2003).
  • Gauthier O, Goyenvalle E, Bouler JM et al. Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: a comparative study 3 and 8 weeks after implantation in rabbit bone. J. Mater. Sci.12(5), 385–390 (2001).
  • Daculsi G, Weiss P, Bouler JM, Gauthier O, Millot F, Aguado E. Biphasic calcium phosphate/hydrosoluble polymer composites: a new concept for bone and dental substitution biomaterials. Bone25(2 Suppl.), 59S–61S (1999).
  • Passuti N, Millot F, Dupraz A et al. Conception d’un matériau multiphasé injectable en site discal. Caractérisation et étude préliminaires. Innov. Tech. Biol. Med.16(1), 20–26 (1995).
  • Gauthier O, Boix D, Grimandi G et al. A new injectable calcium phosphate biomaterial for immediate bone filling of extraction sockets: a preliminary study in dogs. J. Periodontol.70(4), 375–383 (1999).
  • Gauthier O, Bouler JM, Weiss P, Bosco J, Daculsi G, Aguado E. Kinetic study of bone ingrowth and ceramic resorption associated with the implantation of different injectable calcium-phosphate bone substitutes. J. Biomed. Mater. Res.47(1), 28–35 (1999).
  • Weiss P, Layrolle P, Clergeau LP et al. The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials28(22), 3295–3305 (2007).
  • Higashi T, Okamoto H. Influence of particle size of calcium phosphate ceramics as a capping agent on the formation of a hard tissue barrier in amputated dental pulp. J. Endod.22(6), 281–283 (1996).
  • Higashi T, Okamoto H. Influence of particle size of hydroxyapatite as a capping agent on cell proliferation of cultured fibroblasts. J. Endod.22(5), 236–239 (1996).
  • Malard O, Bouler JM, Guicheux J et al. Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: preliminary in vitro and In vivo study. J. Biomed. Mater. Res.46(1), 103–111 (1999).
  • Gauthier O, Bouler JM, Weiss P, Bosco J, Aguado E, Daculsi G. Short-term effects of mineral particle sizes on cellular degradation activity after implantation of injectable calcium phosphate biomaterials and the consequences for bone substitution. Bone25(2 Suppl.), 71S–74S (1999).
  • Bosco J, Enkel B, Armengol V, Daculsi G, Jean A, Weiss P. Bioactive calcium phosphate material for dental endodontic treatment. Root apical deposition. Key Eng. Mater.309–311, 1157–1160 (2006).
  • Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics. J. Endod.31(10), 711–718 (2005).
  • Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J. Endod.33(4), 377–390 (2007).
  • Kaigler D, Mooney D. Tissue engineering’s impact on dentistry. J. Dent. Educ.65(5), 456–462 (2001).
  • Tziafas D. The future role of a molecular approach to pulp-dentinal regeneration. Caries. Res.38(3), 314–320 (2004).
  • Sheridan MH, Shea LD, Peters MC, Mooney DJ. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J. Control Release64(1–3), 91–102 (2000).
  • Shea LD, Smiley E, Bonadio J, Mooney DJ. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol.17(6), 551–554 (1999).
  • Trojani C, Weiss P, Michiels JF et al. Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel. Biomaterials26(27), 5509–5517 (2005).
  • Goldberg M, Lacerda-Pinheiro S, Jegat N et al. The impact of bioactive molecules to stimulate tooth repair and regeneration as part of restorative dentistry. Dent. Clin. N. Am.50(2), 277–298, x (2006).
  • Gao Y, Fang YR, Suwa F, Yoshida S, Yang L, Tanaka A. Induction of reparative dentin formation in dogs by bovine bone morphogenetic protein bound to ceramic dentin. J. Osaka Dent. Univ.29(1), 29–38 (1995).
  • Goldberg M, Six N, Decup F et al. Application of bioactive molecules in pulp-capping situations. Adv. Dent. Res.15, 91–95 (2001).
  • Goldberg M, Six N, Decup F et al. Bioactive molecules and the future of pulp therapy. Am. J. Dent.16(1), 66–76 (2003).
  • Lianjia Y, Yuhao G, White FH. Bovine bone morphogenetic protein-induced dentinogenesis. Clin. Orthop. Relat. Res.(295), 305–312 (1993).
  • Nakashima M. The induction of reparative dentine in the amputated dental pulp of the dog by bone morphogenetic protein. Arch. Oral Biol.35(7), 493–497 (1990).
  • Nakashima M. Induction of dentine in amputated pulp of dogs by recombinant human bone morphogenetic proteins-2 and -4 with collagen matrix. Arch. Oral Biol.39(12), 1085–1089 (1994).
  • Nakashima M. Induction of dentin formation on canine amputated pulp by recombinant human bone morphogenetic proteins (BMP)-2 and -4. J. Dent. Res.73(9), 1515–1522 (1994).
  • Nakashima M. Bone morphogenetic proteins in dentin regeneration for potential use in endodontic therapy. Cytokine Growth Factor Rev.16(3), 369–376 (2005).
  • Rutherford RB, Spangberg L, Tucker M, Rueger D, Charette M. The time-course of the induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Arch. Oral Biol.39(10), 833–838 (1994).
  • Rutherford RB, Wahle J, Tucker M, Rueger D, Charette M. Induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Arch. Oral Biol.38(7), 571–576 (1993).
  • Six N, Lasfargues JJ, Goldberg M. Differential repair responses in the coronal and radicular areas of the exposed rat molar pulp induced by recombinant human bone morphogenetic protein 7 (osteogenic protein 1). Arch. Oral Biol.47(3), 177–187 (2002).
  • Zhang Q, Fan M, Bian Z, Chen Z, Zhu Q. Immunohistochemistry of bone sialoprotein and osteopontin during reparative dentinogenesis in vivo. Chin. J. Dent. Res.3(2), 38–43 (2000).
  • Nakamura Y, Hammarstrom L, Lundberg E et al. Enamel matrix derivative promotes reparative processes in the dental pulp. Adv. Dent. Res.15, 105–107 (2001).
  • Decup F, Six N, Palmier B et al. Bone sialoprotein-induced reparative dentinogenesis in the pulp of rat’s molar. Clin. Oral Investig.4(2), 110–119 (2000).
  • Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit. Rev. Oral Biol. Med.15(1), 13–27 (2004).
  • Six N, Septier D, Chaussain-Miller C, Blacher R, DenBesten P, Goldberg M. Dentonin, a MEPE fragment, initiates pulp-healing response to injury. J. Dent. Res.86(8), 780–785 (2007).
  • Liu H, Li W, Gao C, Kumagai Y, Blacher RW, DenBesten PK. Dentonin, a fragment of MEPE, enhanced dental pulp stem cell proliferation. J. Dent. Res.83(6), 496–499 (2004).
  • Liu H, Li W, Shi S, Habelitz S, Gao C, Denbesten P. MEPE is downregulated as dental pulp stem cells differentiate. Arch. Oral Biol.50(11), 923–928 (2005).
  • Almushayt A, Narayanan K, Zaki AE, George A. Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Therapy13(7), 611–620 (2006).
  • Mooney DJ, Powell C, Piana J, Rutherford B. Engineering dental pulp-like tissue in vitro. Biotechnol. Prog.12(6), 865–868 (1996).
  • Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J. Dent. Res.81(10), 695–700 (2002).
  • Duailibi MT, Duailibi SE, Young CS, Bartlett JD, Vacanti JP, Yelick PC. Bioengineered teeth from cultured rat tooth bud cells. J. Dent. Res.83(7), 523–528 (2004).
  • Fukuda J, Khademhosseini A, Yeh J et al. Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components. Biomaterials27(8), 1479–1486 (2006).
  • Iohara K, Nakashima M, Ito M et al. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J. Dent. Res.83(8), 590–595 (2004).
  • Fujiwara S, Kumabe S, Iwai Y. Isolated rat dental pulp cell culture and transplantation with an alginate scaffold. Okajimas Folia Anatomica Japonica83(1), 15–24 (2006).
  • Nakashima M, Iohara K, Ishikawa M et al. Stimulation of reparative dentin formation by ex vivo gene therapy using dental pulp stem cells electrotransfected with growth/differentiation factor 11 (Gdf11). Hum. Gene Ther.15(11), 1045–1053 (2004).
  • Nakashima M. Tissue engineering in endodontics. Aust. Endod. J.31(3), 111–113 (2005).
  • Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J. Mater. Sci.14(3), 195–200 (2003).
  • Koort JK, Suokas E, Veiranto M et al.In vitro and in vivo testing of bioabsorbable antibiotic containing bone filler for osteomyelitis treatment. J. Biomed. Meter. Res.78(3), 532–540 (2006).
  • Joosten U, Joist A, Gosheger G, Liljenqvist U, Brandt B, von Eiff C. Effectiveness of hydroxyapatite-vancomycin bone cement in the treatment of Staphylococcus aureus induced chronic osteomyelitis. Biomaterials26(25), 5251–5258 (2005).
  • Paul W, Sharma CP. Ceramic drug delivery: a perspective. J. Biomater. Appl.17(4), 253–264 (2003).
  • Kleinheinz J, Stratmann U, Joos U, Wiesmann HP. VEGF-activated angiogenesis during bone regeneration. J. Oral Maxillofac. Surg.63(9), 1310–1316 (2005).
  • Rutherford RB, Gu K. Treatment of inflamed ferret dental pulps with recombinant bone morphogenetic proteinH7. Eur. J. Oral Sci.108(3), 202–206 (2000).
  • Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol? J. Endod.30(4), 196–200 (2004).
  • Iwaya SI, Ikawa M, Kubota M. Revascularization of an immature permanent tooth with apical periodontitis and sinus tract. Dent. Traumatol.17(4), 185–187 (2001).
  • Ritter AL, Ritter AV, Murrah V, Sigurdsson A, Trope M. Pulp revascularization of replanted immature dog teeth after treatment with minocycline and doxycycline assessed by laser Doppler flowmetry, radiography, and histology. Dent. Traumatol.20(2), 75–84 (2004).
  • Yanpiset K, Trope M. Pulp revascularization of replanted immature dog teeth after different treatment methods. Endod. Dent. Traumatol.16(5), 211–217 (2000).
  • Demiralp B, Keceli HG, Muhtarogullar M, Serper A, Demiralp B, Eratalay K. Treatment of periapical inflammatory lesion with the combination of platelet-rich plasma and tricalcium phosphate: a case report. J. Endod.30(11), 796–800 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.