34
Views
0
CrossRef citations to date
0
Altmetric
Review

Diagnosis and management of congenital adrenal hyperplasia

Pages 103-110 | Published online: 10 Jan 2014

References

  • Speiser PW, White PC. Congenital adrenal hyperplasia. N. Engl. J. Med. 349(8), 776–788 (2003).
  • vanderKamp HJ, Wit JM. Neonatal screening for congenital adrenal hyperplasia. Eur. J. Endocrinol. 151(Suppl. 3), U71–U75 (2004).
  • Fitness J, Dixit N, Webster D et al. Genotyping of CYP21, linked chromosome 6p markers, and a sex-specific gene in neonatal screening for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 84(3), 960–966 (1999).
  • Nordenstrom A, Ahmed S, Jones J et al. Female preponderance in congenital adrenal hyperplasia due to CYP21 deficiency in England: implications for neonatal screening. Horm. Res. 63(1), 22–28 (2005).
  • Therrell BL. Newborn screening for congenital adrenal hyperplasia. Endocrinol. Metab. Clin. North Am. 30(1), 15–30 (2001).
  • Balsamo A, Cacciari E, Piazzi S et al. Congenital adrenal hyperplasia: neonatal mass screening compared with clinical diagnosis only in the Emilia-Romagna region of Italy, 1980- 1995. Pediatrics 98(3 Pt 1), 362–367 (1996).
  • Votava F, Torok D, Kovacs J et al. Estimation of the false-negative rate in newborn screening for congenital adrenal hyperplasia. Eur. J. Endocrinol. 152(6), 869–874 (2005).
  • Ohkubo S, Shimozawa K, Matsumoto M, Kitagawa T. Analysis of blood spot 17 α-hydroxyprogesterone concentration in premature infants-proposal for cut-off limits in screening for congenital adrenal hyperplasia. Acta. Paediatr. Jpn 34(2), 126–133 (1992).
  • Cutfield WS, Webster D. Newborn screening for congenital adrenal hyperplasia in New Zealand. J. Pediatr. 126(1), 118–121 (1995).
  • vanderKamp HJ, Oudshoorn CG, Elvers BH et al. Cutoff levels of 17-{α}-hydroxyprogesterone in neonatal screening for congenital adrenal hyperplasia should be based on gestational age rather than on birth weight. J. Clin. Endocrinol. Metab. 90(7), 3904–3907 (2005).
  • Mikami A, Fukushi M, Oda H, Fujita K, Fujieda K. Newborn screening for congenital adrenal hyperplasia in Sapporo City: sixteen years experience. Southeast Asian J. Trop. Med. Public Health 30(Suppl. 2), 100–102 (1999).
  • Boudi A, Giton F, Galons H et al. Development of a plasma 17 α-hydroxyprogesterone time resolved-fluorescence immunoassay involving a new biotinylated tracer. Steroids 65(2), 103–108 (2000).
  • Minutti CZ, Lacey JM, Magera MJ et al. Steroid profiling by tandem mass spectrometry improves the positive predictive value of newborn screening for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 89, 3687–3693 (2004).
  • Nordenstrom A, Thilen A, Hagenfeldt L, Larsson A, Wedell A. Genotyping is a valuable diagnostic complement to neonatal screening for congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 84(5), 1505–1509 (1999).
  • Wilson RC, Mercado AB, Cheng KC, New MI. Steroid 21-hydroxylase deficiency: genotype may not predict phenotype. J. Clin. Endocrinol. Metab. 80(8), 2322–2329 (1995).
  • Homma K, Hasegawa T, Takeshita E et al. Elevated urine pregnanetriolone definitively establishes the diagnosis of classical 21-hydroxylase deficiency in term and preterm neonates. J. Clin. Endocrinol. Metab. 89(12), 6087–6091 (2004).
  • New MI, Lorenzen F, Lerner AJ et al. Genotyping steroid 21-hydroxylase deficiency: hormonal reference data. J. Clin. Endocrinol. Metab. 57(2), 320–326 (1983).
  • Carrera P, Ferrari M, Beccaro F et al. Molecular characterization of 21-hydroxylase deficiency in 70 Italian families. Hum. Hered. 43(3), 190–196 (1993).
  • Higashi Y, Hiromasa T, Tanae A et al. Effects of individual mutations in the P450(C21) pseudogene on the P450(C21) activity and their distribution in the patient genomes of congenital steroid 21-hydroxylase deficiency. J. Biochem. (Tokyo) 109, 638–644 (1991).
  • Jaaskelainen J, Levo A, Voutilainen R, Partanen J. Population-wide evaluation of disease manifestation in relation to molecular genotype in steroid 21-hydroxylase (CYP21) deficiency: good correlation in a well defined population. J. Clin. Endocrinol. Metab. 82(10), 3293–3297 (1997).
  • Kharrat M, Tardy V, M’Rad R et al. Molecular genetic analysis of Tunisian patients with a classic form of 21-hydroxylase deficiency: identification of four novel mutations and high prevalence of Q318X mutation. J. Clin. Endocrinol. Metab. 89(1), 368–374 (2004).
  • Krone N, Braun A, Roscher AA, Knorr D, Schwarz HP. Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany. J. Clin. Endocrinol. Metab. 85(3), 1059–1065 (2000).
  • Mornet E, Crete P, Kuttenn F et al. Distribution of deletions and seven point mutations on CYP21B genes in three clinical forms of steroid 21-hydroxylase deficiency. Am. J. Hum. Genet. 48(1), 79–88 (1991).
  • Speiser PW, DuPont J, Zhu D et al. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Invest. 90(2), 584–595 (1992).
  • Wedell A, Thilen A, Ritzen EM, Stengler B, Luthman H. Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease manifestation. J. Clin. Endocrinol. Metab. 78(5), 1145–1152 (1994).
  • Dolzan V, Stopar-Obreza M, Zerjav-Tansek M, Breskvar K, Krzisnik C, Battelino T. Mutational spectrum of congenital adrenal hyperplasia in Slovenian patients: a novel Ala15Thr mutation and Pro30Leu within a larger gene conversion associated with a severe form of the disease. Eur. J. Endocrinol. 149(2), 137–144 (2003).
  • Kotaska K, Prusa R. Frequency of CYP21 gene mutations in Czech patients with steroid 21-hydroxylase deficiency and statistical comparison with other populations. Med. Princ. Pract. 12(4), 243–247 (2003).
  • Lobato MN, Ordonez-Sanchez ML, Tusie-Luna MT, Meseguer A. Mutation analysis in patients with congenital adrenal hyperplasia in the Spanish population: identification of putative novel steroid 21-hydroxylase deficiency alleles associated with the classic form of the disease. Hum. Hered. 49(3), 169–175 (1999).
  • Ordonez-Sanchez ML, Ramirez-Jimenez S, Lopez-Gutierrez AU et al. Molecular genetic analysis of patients carrying steroid 21-hydroxylase deficiency in the Mexican population: identification of possible new mutations and high prevalence of apparent germ-line mutations. Hum. Genet. 102(2), 170–177 (1998).
  • Tukel T, Uyguner O, Wei JQ et al. A novel semiquantitative polymerase chain reaction/enzyme digestion-based method for detection of large scale deletions/conversions of the CYP21 gene and mutation screening in Turkish families with 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 88(12), 5893–5897 (2003).
  • Amor M, Parker KL, Globerman H, New MI, White PC. Mutation in the CYP21B gene (Ile-172-Asn) causes steroid 21-hydroxylase deficiency. Proc. Natl Acad. Sci. USA 85(5), 1600–1604 (1988).
  • Higashi Y, Tanae A, Inoue H, Hiromasa T, Fujii-Kuriyama Y. Aberrant splicing and missense mutations cause steroid 21-hydroxylase [P450(C21)] deficiency in humans: possible gene conversion products. Proc. Natl Acad. Sci. USA 85(20), 7486–7490 (1988).
  • Tusie-Luna MT, Traktman P, White PC. Determination of functional effects of mutations in the steroid 21- hydroxylase gene (CYP21) using recombinant vaccinia virus. J. Biol. Chem. 265(34), 20916–20922 (1990).
  • Tusie-Luna MT, Speiser PW, Dumic M, New MI, White PC. A mutation (Pro-30 to Leu) in CYP21 represents a potential nonclassic steroid 21-hydroxylase deficiency allele. Mol. Endocrinol. 5(5), 685–692 (1991).
  • Speiser PW, New MI, White PC. Molecular genetic analysis of nonclassic steroid 21-hydroxylase deficiency associated with HLA-B14,DR1. N. Engl. J. Med. 319(1), 19–23 (1988).
  • Dipple KM, McCabe ER. Phenotypes of patients with ‘simple’ mendelian disorders are complex traits: thresholds, modifiers, and systems dynamics. Am. J. Hum. Genet. 66(6), 1729–1735 (2000).
  • Scriver CR, Waters PJ. Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet. 15(7), 267–272 (1999).
  • Peter M, Sippell WG, Lorenzen F, Willig RP, Westphal E, Grosse-Wilde H. Improved test to identify heterozygotes for congenital adrenal hyperplasia without index case examination. Lancet 335(8701), 1296–1299 (1990).
  • Knochenhauer ES, Cortet-Rudelli C, Cunnigham RD, Conway-Myers BA, Dewailly D, Azziz R. Carriers of 21-hydroxylase deficiency are not at increased risk for hyperandrogenism. J. Clin. Endocrinol. Metab. 82(2), 479–485 (1997).
  • Day DJ, Speiser PW, Schulze E et al. Identification of non-amplifying CYP21 genes when using PCR-based diagnosis of 21-hydroxylase deficiency in congenital adrenal hyperplasia (CAH) affected pedigrees. Hum. Mol. Genet. 5(12), 2039–2048 (1996).
  • Kerrigan JR, Veldhuis JD, Leyo SA, Iranmanesh A, Rogol AD. Estimation of daily cortisol production and clearance rates in normal pubertal males by deconvolution analysis. J. Clin. Endocrinol. Metab. 76(6), 1505–1510 (1993).
  • Metzger DL, Wright NM, Veldhuis JD, Rogol AD, Kerrigan JR. Characterization of pulsatile secretion and clearance of plasma cortisol in premature and term neonates using deconvolution analysis. J. Clin. Endocrinol. Metab. 77(2), 458–463 (1993).
  • Migeon CJ, Wisniewski AB. Congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Growth, development, and therapeutic considerations. Endocrinol. Metab. Clin. North Am. 30(1), 193–206 (2001).
  • Stevens A, Ray DW, Zeggini E et al. Glucocorticoid sensitivity is determined by a specific glucocorticoid receptor haplotype. J. Clin. Endocrinol. Metab. 89(2), 892–897 (2004).
  • Clayton PE, Miller WL, Oberfield SE, Ritzen EM, Sippell WG, Speiser PW. Consensus statement on 21-hydroxylase deficiency from the Lawson Wilkins Pediatric Endocrine Society and The European Society for Pediatric Endocrinology. J. Clin. Endocrinol. Metab. 87(9), 4048–4053 (2002).
  • Creighton SM, Minto CL, Steele SJ. Objective cosmetic and anatomical outcomes at adolescence of feminising surgery for ambiguous genitalia done in childhood. Lancet 358(9276), 124–125 (2001).
  • Schnitzer JJ, Donahoe PK. Surgical treatment of congenital adrenal hyperplasia. Speiser PW, editor. Endocrinology & Metabolism Clinics of North America Philadelphia, Saunders. Endocrinol. Metab. Clin. North Am.30, 137–154 (2001).
  • Lo J, Grumbach M. Pregnancy outcomes in women with congenital virilizing adrenal hyperplasia. Endocrinol. Metab. Clin. North Am. 30, 207–229 (2001).
  • Speiser PW. Congenital adrenal hyperplasia: transition from childhood to adulthood. J. Endocrinol. Invest. 24(9), 681–691 (2001).
  • New MI, Carlson A, Obeid J et al. Prenatal diagnosis for congenital adrenal hyperplasia in 532 pregnancies. J. Clin. Endocrinol. Metab. 86(12), 5651–5657 (2001).
  • Zimmermann B, El Sheikhah A, Nicolaides K, Holzgreve W, Hahn S. Optimized real-time quantitative PCR measurement of male fetal DNA in maternal plasma. Clin. Chem. 51(9), 1598–1604 (2005).
  • Lajic S, Nordenstrom A, Ritzen EM, Wedell A. Prenatal treatment of congenital adrenal hyperplasia. Eur. J. Endocrinol. 151(Suppl. 3), U63–U69 (2004).
  • Halliday HL. Use of steroids in the perinatal period. Paediatr. Respir. Rev. 5(Suppl. A), S321–S327 (2004).
  • Merke DP, Keil MF, Jones JV, Fields J, Hill S, Cutler GB Jr. Flutamide, testolactone, and reduced hydrocortisone dose maintain normal growth velocity and bone maturation despite elevated androgen levels in children with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 85(3), 1114–1120 (2000).
  • Charmandari E, Calis KA, Keil MF, Mohassel MR, Remaley A, Merke DP. Flutamide decreases cortisol clearance in patients with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 87(7), 3197–3200 (2002).
  • Merke DP, Bornstein SR, Avila NA, Chrousos GP. NIH conference. Future directions in the study and management of congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Ann. Intern. Med. 136(4), 320–334 (2002).
  • Lin-Su K, Vogiatzi MG, Marshall I et al. Treatment with growth hormone and luteinizing hormone releasing hormone analog improves final adult height in children with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 90(6), 3318–3325 (2005).
  • Gmyrek GA, New MI, Sosa RE, Poppas DP. Bilateral laparoscopic adrenalectomy as a treatment for classic congenital adrenal hyperplasia attributable to 21-hydroxylase deficiency. Pediatrics 109(2), E28 (2002).
  • Gunther DF, Bukowski TP, Ritzen EM, Wedell A, Van Wyk JJ. Prophylactic adrenalectomy of a three-year-old girl with congenital adrenal hyperplasia: pre- and postoperative studies. J. Clin. Endocrinol. Metab. 82(10), 3324–3327 (1997).
  • Meyers RL, Grua JR. Bilateral laparoscopic adrenalectomy: a new treatment for difficult cases of congenital adrenal hyperplasia. J. Pediatr. Surg. 35(11), 1586–1590 (2000).
  • Warinner SA, Zimmerman D, Thompson GB, Grant CS. Study of three patients with congenital adrenal hyperplasia treated by bilateral adrenalectomy. World J. Surg. 24(11), 1347–1352 (2000).
  • Charmandari E, Chrousos GP, Merke DP. Adrenocorticotropin hypersecretion and pituitary microadenoma following bilateral adrenalectomy in a patient with classic 21-hydroxylase deficiency. J. Pediatr. Endocrinol. Metab. 18(1), 97–101 (2005).
  • Hunt PJ, Gurnell EM, Huppert FA et al. Improvement in mood and fatigue after dehydroepiandrosterone replacement in Addison’s disease in a randomized, double-blind trial. J. Clin. Endocrinol. Metab. 85(12), 4650–4656 (2000).
  • VanWyk JJ, Gunther DF, Ritzen EM et al. The use of adrenalectomy as a treatment for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 81(9), 3180–3190 (1996).
  • Tajima T, Okada T, Ma XM, Ramsey W, Bornstein S, Aguilera G. Restoration of adrenal steroidogenesis by adenovirus-mediated transfer of human cytochromeP450 21-hydroxylase into the adrenal gland of 21- hydroxylase-deficient mice. Gene Ther. 6(11), 1898–1903 (1999).
  • Eugster EA, Dimeglio LA, Wright JC, Freidenberg GR, Seshadri R, Pescovitz OH. Height outcome in congenital adrenal hyperplasia caused by 21-hydroxylase deficiency: A meta-analysis. J. Pediatr. 138(1), 26–32 (2001).
  • Plourde PV, Reiter EO, Jou HC et al. Safety and efficacy of anastrozole for the treatment of pubertal gynecomastia: a randomized, double-blind, placebo-controlled trial. J. Clin. Endocrinol. Metab. 89(9), 4428–4433 (2004).
  • Riepe FG, Baus I, Wiest S, Krone N, Sippell WG, Partsch CJ. Treatment of pubertal gynecomastia with the specific aromatase inhibitor anastrozole. Horm. Res. 62(3), 113–118 (2004).
  • Hero M, Norjavaara E, Dunkel L. Inhibition of estrogen biosynthesis with a potent aromatase inhibitor increases predicted adult height in boys with idiopathic short stature: a randomized controlled trial. J. Clin. Endocrinol. Metab. (2005).
  • Howell A, Cuzick J, Baum M et al. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 365(9453), 60–62 (2005).
  • Yanovski JA, Rose SR, Municchi G et al. Treatment with a luteinizing hormone-releasing hormone agonist in adolescents with short stature. N. Engl. J. Med. 348(10), 908–917 (2003).

Website

  • The Human Gene Mutation Database. www.hgmd.cf.ac.uk/hgmd0.html

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.