26
Views
0
CrossRef citations to date
0
Altmetric
Review

Effect of systemic glucocorticoid therapy on bone metabolism: an update

Pages 111-122 | Published online: 10 Jan 2014

References

  • Cooper MS. Sensitivity of bone to glucocorticoids. Clin. Sci. 107, 111–123 (2004).
  • Canalis E. Clinical review 83: mechanisms of glucocorticoid action in bone: implications to glucocorticoid-induced osteoporosis. J. Clin. Endocrinol. Metab. 81, 34413447 (1996).
  • Godschalk MF, Downs RW. Effect of short-term glucocorticoids on serum osteocalcin in healthy young men. J. Bone Miner. Res. 3, 113–115 (1988).
  • Gennari C, Imbimbo B. Effects of prednisone and deflazacort on vertebral bone mass. Calcif. Tissue Int. 37, 592–593 (1985).
  • Adachi JD, Bensen WG, Brown J et al. Intermittent etidronate therapy to prevent corticosteroid-induced osteoporosis. N. Engl. J. Med. 337, 382–387 (1997).
  • Cohen S, Levy RM, Keller M et al. Risedronate therapy prevents corticosteroid-induced bone loss: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum. 42, 2309–2318 (1999).
  • Saag KG, Emkey R, Schnitzer TJ et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N. Engl. J. Med. 339, 292–299 (1998).
  • Wallach S, Cohen S, Reid DM et al. Effects of risedronate treatment on bone density and vertebral fracture in patients on corticosteroid therapy. Calcif. Tissue Int. 67, 277–285 (2000).
  • Carbonare LD, Arlot ME, Chavassieux PM, Roux JP, Portero NR, Meunier PJ. Comparison of trabecular bone microarchitecture and remodeling in glucocorticoid-induced and postmenopausal osteoporosis. J. Bone Miner. Res. 16, 97–103 (2001).
  • Vedi S, Elkin SL, Compston JE. A histomorphometric study of cortical bone of the iliac crest in patients treated with glucocorticoids. Calcif. Tissue Int. 77(2), 79–83 (2005).
  • Sambrook PN, Hughes DR, Nelson AE, Robinson BG, Mason RS. Osteocyte viability with glucocorticoid treatment: relation to histomorphometry. Ann. Rheum. Dis. 62, 1215–1217 (2003).
  • Leonard MB, Feldman HI, Shults J, Zemel BS, Foster BJ, Stallings VA. Long-term, high-dose glucocorticoids and bone mineral content in childhood glucocorticoid-sensitive nephrotic syndrome. N. Engl. J. Med. 351, 868–875 (2004).
  • Cooper MS, Stewart PM. Glucocorticoids and bone mineral content in the childhood nephrotic syndrome. N. Engl. J. Med. 351, 2655–2657 (2004).
  • Cooper MS, Hewison M, Stewart PM. Glucocorticoid activity, inactivity and the osteoblast. J. Endocrinol. 163, 159164 (1999).
  • Chang DJ, Ji C, Kim KK, Casinghino S, McCarthy TL, Centrella M. Reduction in transforming growth factor β receptor I expression and transcription factor CBFα1 on bone cells by glucocorticoid. J. Biol. Chem. 273, 4892–4896 (1998).
  • Engelbrecht Y, de Wet H, Horsch K, Langeveldt CR, Hough FS, Hulley PA. Glucocorticoids induce rapid upregulation of mitogen-activated protein kinase phosphatase-1 and dephosphorylation of extracellular signal-regulated kinase and impair proliferation in human and mouse osteoblast cell lines. Endocrinology 144, 412422 (2003).
  • Rubin MR, Bilezikian JP. Clinical review 151: the role of parathyroid hormone in the pathogenesis of glucocorticoid-induced osteoporosis: a re-examination of the evidence. J. Clin. Endocrinol. Metab. 87, 40334041 (2002).
  • Boden SD, Hair G, Titus L et al. Glucocorticoid-induced differentiation of fetal rat calvarial osteoblasts is mediated by bone morphogenetic protein-6. Endocrinology 138, 28202828 (1997).
  • Pereira RM, Delany AM, Durant D, Canalis E. Cortisol regulates the expression of Notch in osteoblasts. J. Cell Biochem. 85, 252–258 (2002).
  • McCarthy TL, Ji C, Chen Y, Kim K, Centrella M. Time- and dose-related interactions between glucocorticoid and cyclic adenosine 3’,5’-monophosphate on CCAAT/enhancer-binding protein-dependent insulin-like growth Factor I expression by osteoblasts. Endocrinology 141, 127137 (2000).
  • Ohnaka K, Taniguchi H, Kawate H, Nawata H, Takayanagi R. Glucocorticoid enhances the expression of dickkopf-1 in human osteoblasts: novel mechanism of glucocorticoid-induced osteoporosis. Biochem. Biophys. Res. Commun. 318, 259–264 (2004).
  • Wang FS, Lin CL, Chen YJ et al. Secreted frizzled-related protein 1 modulates glucocorticoid attenuation of osteogenic activities and bone mass. Endocrinology 146, 24152423 (2005).
  • Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J. Clin. Invest. 102, 274–282 (1998).
  • Kogianni G, Mann V, Ebetino F et al. Fas/CD95 is associated with glucocorticoid-induced osteocyte apoptosis. Life Sci. 75, 2879–2895 (2004).
  • Nakashima T, Sasaki H, Tsuboi M et al. Inhibitory effect of glucocorticoid for osteoblast apoptosis induced by activated peripheral blood mononuclear cells. Endocrinology 139, 20322040 (1998).
  • Pereira RM, Delany AM, Canalis E. Cortisol inhibits the differentiation and apoptosis of osteoblasts in culture. Bone 28, 484–490 (2001).
  • Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J. Clin. Invest. 104, 439–446 (1999).
  • Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J. Clin. Invest. 104, 1363–1374 (1999).
  • Weinstein RS, Chen JR, Powers CC et al. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J. Clin. Invest. 109, 1041–1048 (2002).
  • O’Brien CA, Jia D, Plotkin LI et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145(4), 1835–1841 (2003).
  • Weinstein RS, Jia D, Powers CC et al. The skeletal effects of glucocorticoid excess override those of orchidectomy in mice. Endocrinology 145(4), 1980–1987 (2004).
  • Mankin HJ. Nontraumatic necrosis of bone (osteonecrosis). N. Engl. J. Med. 326, 1473–1479 (1992).
  • Williams PL, Corbett M. Avascular necrosis of bone complicating corticosteroid replacement therapy. Ann. Rheum. Dis. 42, 276–279 (1983).
  • Weinstein RS, Nicholas RW, Manolagas SC. Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J. Clin. Endocrinol. Metab. 85, 29072912 (2000).
  • Hofbauer LC, Gori F, Riggs BL et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 140, 43824389 (1999).
  • Bekker PJ, Holloway DL, Rasmussen AS et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J. Bone Miner. Res. 19, 1059–1066 (2004).
  • Takuma A, Kaneda T, Sato T, Ninomiya S, Kumegawa M, Hakeda Y. Dexamethasone enhances osteoclast formation synergistically with transforming growth factor-β by stimulating the priming of osteoclast progenitors for differentiation into osteoclasts. J. Biol. Chem. 278, 44667–44674 (2003).
  • Cooper MS, Stewart PM. Corticosteroid insufficiency in acutely ill patients. N. Engl. J. Med. 348, 727–734 (2003).
  • Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest. 106, 1481–1488 (2000).
  • Tomlinson JW, Walker EA, Bujalska IJ et al. 11β-hydroxysteroid dehydrogenase Type 1: a tissue-specific regulator of glucocorticoid response. Endocr. Rev. 25, 831–866 (2004).
  • Cooper MS, Walker EA, Bland R, Fraser WD, Hewison M, Stewart PM. Expression and functional consequences of 11b-hydroxysteroid dehydrogenase activity in human bone. Bone 27, 375–381 (2000).
  • Cooper MS, Blumsohn A, Goddard PE et al. 11β-hydroxysteroid dehydrogenase Type 1 activity predicts the effects of glucocorticoids on bone. J. Clin. Endocrinol. Metab. 88, 38743877 (2003).
  • Cooper MS, Bujalska I, Rabbitt E et al. Modulation of 11β-hydroxysteroid dehydrogenase isozymes by pro-inflammatory cytokines in osteoblasts: an autocrine switch from glucocorticoid inactivation to activation. J. Bone Miner. Res. 16, 1037–1044 (2001).
  • Cooper MS, Rabbitt EH, Goddard PE, Bartlett WA, Hewison M, Stewart PM. Osteoblastic 11β-hydroxysteroid dehydrogenase Type 1 activity increases with age and glucocorticoid exposure. J. Bone Miner. Res. 17, 979–986 (2002).
  • Tobias JH, Sasi MR, Greenwood R, Probert CS. Rapid hip bone loss in active Crohn’s disease patients receiving short-term corticosteroid therapy. Aliment. Pharmacol. Ther. 20, 951–957 (2004).
  • van Staa TP, Leufkens HG, Abenhaim L, Begaud B, Zhang B, Cooper C. Use of oral corticosteroids in the United Kingdom. QJM 93, 105–111 (2000).
  • van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C. Use of oral corticosteroids and risk of fractures. J. Bone Miner. Res. 15, 993–1000 (2000).
  • Kanis JA, Borgstrom F, de Laet C et al. Assessment of fracture risk. Osteoporos. Int. 16, 581–589 (2005).
  • Manolagas SC. Corticosteroids and fractures: a close encounter of the third cell kind. J. Bone Miner. Res. 15, 1001–1005 (2000).
  • Compston J. Glucocorticoid-induced Osteoporosis: Guidelines for Prevention and Treatment. RCP, London, UK (2002).
  • van Staa TP, Cooper C, Leufkens HG, Bishop N. Children and the risk of fractures caused by oral corticosteroids. J. Bone Miner. Res. 18, 913–918 (2003).
  • van Staa TP, Geusens P, Pols HA, de Laet C, Leufkens HG, Cooper C. A simple score for estimating the long-term risk of fracture in patients using oral glucocorticoids. QJM 98, 191–198 (2005).
  • Gluck OS, Murphy WA, Hahn TJ, Hahn B. Bone loss in adults receiving alternate day glucocorticoid therapy. A comparison with daily therapy. Arthritis Rheum. 24, 892–898 (1981).
  • Reid DM, Hughes RA, Laan RF et al. Efficacy and safety of daily risedronate in the treatment of corticosteroid-induced osteoporosis in men and women: a randomized trial. European Corticosteroid-Induced Osteoporosis Treatment Study. J. Bone Miner. Res. 15, 1006–1013 (2000).
  • Boutsen Y, Jamart J, Esselinckx W, Devogelaer JP. Primary prevention of glucocorticoid-induced osteoporosis with intravenous pamidronate and calcium: a prospective controlled 1-year study comparing a single infusion, an infusion given once every 3 months, and calcium alone. J. Bone Miner. Res. 16, 104–112 (2001).
  • Cauley JA, Robbins J, Chen Z et al. Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women’s Health Initiative randomized trial. JAMA 290, 1729–1738 (2003).
  • Reid IR, Wattie DJ, Evans MC, Stapleton JP. Testosterone therapy in glucocorticoid-treated men. Arch. Intern. Med. 156, 1173–1177 (1996).
  • Sambrook P, Birmingham J, Kelly P et al. Prevention of corticosteroid osteoporosis. A comparison of calcium, calcitriol, and calcitonin. N. Engl. J. Med. 328, 1747–1752 (1993).
  • Reginster JY, Kuntz D, Verdickt W et al. Prophylactic use of alfacalcidol in corticosteroid-induced osteoporosis. Osteoporos. Int. 9, 75–81 (1999).
  • Sambrook PN, Kotowicz M, Nash P et al. Prevention and treatment of glucocorticoid-induced osteoporosis: a comparison of calcitriol, vitamin D plus calcium, and alendronate plus calcium. J. Bone Mineral. Res. 18, 919–924 (2003).
  • Neer RM, Arnaud CD, Zanchetta JR et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344, 1434–1441 (2001).
  • Lane NE, Sanchez S, Modin GW, Genant HK, Ini E, Arnaud CD. Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis. Results of a randomized controlled clinical trial. J. Clin. Invest. 102, 1627–1633 (1998).
  • Lane NE, Sanchez S, Modin GW, Genant HK, Pierini E, Arnaud CD. Bone mass continues to increase at the hip after parathyroid hormone treatment is discontinued in glucocorticoid-induced osteoporosis: results of a randomized controlled clinical trial. J. Bone Miner. Res. 15, 944–951 (2000).
  • Riggs BL, Hodgson SF, O’Fallon WM et al. Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N. Engl. J. Med. 322, 802–809 (1990).
  • Haguenauer D, Welch V, Shea B, Tugwell P, Adachi JD, Wells G. Fluoride for the treatment of postmenopausal osteoporotic fractures: a meta-analysis. Osteoporos. Int. 11, 727–738 (2000).
  • Olgaard K, Storm T, van Wowern N et al. Glucocorticoid-induced osteoporosis in the lumbar spine, forearm, and mandible of nephrotic patients: a double-blind study on the high-dose, long-term effects of prednisone versus deflazacort. Calcif. Tissue Int. 50, 490–497 (1992).
  • Lippuner K, Casez JP, Horber FF, Jaeger P. Effects of deflazacort versus prednisone on bone mass, body composition, and lipid profile: a randomized, double-blind study in kidney transplant patients. J. Clin. Endocrinol. Metab. 83, 37953802 (1998).
  • Krogsgaard MR, Thamsborg G, Lund B. Changes in bone mass during low dose corticosteroid treatment in patients with polymyalgia rheumatica: a double-blind, prospective comparison between prednisolone and deflazacort. Ann. Rheum. Dis. 55, 143–146 (1996).
  • Diederich S, Eigendorff E, Burkhardt P et al. 11β-hydroxysteroid dehydrogenase types 1 and 2: an important pharmacokinetic determinant for the activity of synthetic mine. J. Clin. Endocrinol. Metab. 87, 56955701 (2002).
  • Hodson EM, Knight JF, Willis NS, Craig JC. Corticosteroid therapy for nephrotic syndrome in children. Cochrane Database Syst. Rev. CD001533 (2005).
  • Reichardt HM, Kaestner KH, Tuckermann J et al. DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93, 531–541 (1998).
  • Tuckermann J, Schilling AF, Priemel M et al. Glucocorticoid induced osteoporosis requires the glucocorticoid receptor in osteoblasts and does not depend on DNA binding of the receptor. ASBMR Meeting Nashville 1101 (2005).
  • Khan SA, Kanis JA, Vasikaran S et al. Elimination and biochemical responses to intravenous alendronate in postmenopausal osteoporosis. J. Bone Miner. Res. 12, 1700–1707 (1997).
  • Nancollas GH, Tang R, Phipps RJ et al. Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone (2005) (In Press).
  • Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY. Severely suppressed bone turnover: a potential complication of alendronate therapy. J. Clin. Endocrinol. Metab. 90, 12941301 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.