15
Views
2
CrossRef citations to date
0
Altmetric
Review

Vitamin D and cancer

&
Pages 219-231 | Published online: 10 Jan 2014

References

  • Kotnis A, Sarin R, Mulherkar R. Genotype, phenotype and cancer: role of low penetrance genes and environment in tumour susceptibility. J. Biosci. 30(1), 93–102 (2005).
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 100(1), 57–70 (2000).
  • Reya T, Clevers H. Wnt signaling in stem cells and cancer. Nature 434(7035), 843–850 (2005).
  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65(23), 10946–10951 (2005).
  • Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 7(3), 86–95 (2005).
  • Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 432(7015), 324–331 (2004).
  • Sherley JL. Asymmetric cell kinetics genes: the key to expansion of adult stem cells in culture. Scientific World J. 2, 1906–1921 (2002).
  • Pathak SK, Sharma RA, Mellon JK. Chemoprevention of prostate cancer by diet-derived antioxidant agents and hormonal manipulation. Int. J. Oncol. 22(1), 5–13 (2003).
  • Muller M, Kersten S. Nutrigenomics: goals and strategies. Nature Rev. Genet. 4(4), 315–322 (2003).
  • Campbell MJ, Park S, Uskokovic MR, Dawson MI, Koeffler HP. Expression of retinoic acid receptor-β sensitizes prostate cancer cells to growth inhibition mediated by combinations of retinoids and a 19-nor hexafluoride vitamin D3 analog. Endocrinology 139(4), 1972–1980 (1998).
  • Skowronski RJ, Peehl DM, Feldman D. Vitamin D and prostate cancer: 1,25dihydroxyvitamin D3 receptors and actions in human prostate cancer cell lines. Endocrinology 132(5), 1952–1960 (1993).
  • Mueller E, Smith M, Sarraf P et al. Effects of ligand activation of peroxisome proliferator-activated receptor γ in human prostate cancer. Proc. Natl Acad. Sci. USA 97(20), 10990–10995 (2000).
  • Stephen RL, Gustafsson MC, Jarvis M et al. Activation of peroxisome proliferator-activated receptor δ stimulates the proliferation of human breast and prostate cancer cell lines. Cancer Res.64(9), 3162–3170 (2004).
  • Fukuchi J, Kokontis JM, Hiipakka RA, Chuu CP, Liao S. Antiproliferative effect of liver X receptor agonists on LNCaP human prostate cancer cells. Cancer Res. 64(21), 7686–7689 (2004).
  • Mohan R, Heyman RA. Orphan nuclear receptor modulators. Curr. Top. Med. Chem. 3(14), 1637–1647 (2003).
  • Goldstein JT, Dobrzyn A, Clagett-Dame M, Pike JW, DeLuca HF. Isolation and characterization of unsaturated fatty acids as natural ligands for the retinoid-X receptor. Arch. Biochem. Biophys. 420(1), 185–193 (2003).
  • Anderson SP, Dunn C, Laughter A et al. Overlapping transcriptional programs regulated by the nuclear receptors peroxisome proliferator-activated receptor {α}, retinoid X receptor and liver X receptor in mouse Liver Mol. Pharmacol. (2004).
  • Liu M, Lee MH, Cohen M, Bommakanti M, Freedman LP. Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev. 10(2), 142–153 (1996).
  • Saramaki A, Banwell CM, Campbell MJ et al. Regulation of the human p21waf1/cip1 gene promoter via multiple binding sites for p53 and the vitamin D3 receptor. Nucleic. Acids Res.34, 543–554 (2006). Chiba H, Itoh T, Satohisa S et al. Activation of p21CIP1/WAF1 gene expression and inhibition of cell proliferation by overexpression of hepatocyte nuclear factor-4a. Exp. Cell Res. 302(1), 11–21 (2005).
  • Suzui M, Shimizu M, Masuda M, Lim JT, Yoshimi N, Weinstein IB. Acyclic retinoid activates retinoic acid receptor β and induces transcriptional activation of p21CIP1 in HepG2 human hepatoma cells. Mol. Cancer Ther. 3(3), 309–316 (2004).
  • Jarvis MC, Gray TJ, Palmer CN. Both PPARγ and PPARδ influence sulindac sulfide-mediated p21WAF1/CIP1 upregulation in a human prostate epithelial cell line. Oncogene 24(55), 8211–8215 (2005).
  • Gnerre C, Blattler S, Kaufmann MR, Looser R, Meyer UA. Regulation of CYP3A4 by the bile acid receptor FXR: evidence for functional binding sites in the CYP3A4 gene. Pharmacogenetics14(10), 635–645 (2004).
  • Jurutka PW, Thompson PD, Whitfield GK et al. Molecular and functional comparison of 1,25-dihydroxyvitamin D3 and the novel vitamin D receptor ligand, lithocholic acid, in activating transcription of cytochrome P450 3A4. J. Cell Biochem. 94(5), 917–943(2004).
  • Dunlop TW, Vaisanen S, Frank C, Molnar F, Sinkkonen L, Carlberg C. The human peroxisome proliferator-activated receptor δ gene is a primary target of 1α,25-dihydroxyvitamin D3 and its nuclear receptor. J. Mol. Biol.349(2), 248–260 (2005).
  • Lal A, Lash AE, Altschul SF et al. A public database for gene expression in human cancers. Cancer Res. 59(21), 5403–5407 (1999).
  • Jarred RA, McPherson SJ, Bianco JJ, Couse JF, Korach KS, Risbridger GP. Prostate phenotypes in estrogen-modulated transgenic mice. Trends Endocrinol. Metab. 13(4), 163–168 (2002).
  • Francis GA, Fayard E, Picard F, Auwerx J. Nuclear receptors and the control of metabolism. Ann. Rev. Physiol. 65, 261–311 (2003).
  • Yoon HG, Chan DW, Huang ZQ et al. Purification and functional characterization of the human N–CoR complex: the roles of HDAC3, TBL1 and TBLR1. EMBO J. 22(6), 1336–1346 (2003).
  • Nagy L, Schwabe JW. Mechanism of the nuclear receptor molecular switch. Trends Biochem. Sci. 29(6), 317–324 (2004).
  • Rachez C, Gamble M, Chang CP, Atkins GB, Lazar MA, Freedman LP. The DRIP complex and SRC-1/p160 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes. Mol. Cell Biol. 20(8), 2718–2726.
  • Reid G, Hubner MR, Metivier R et al. Cyclic, proteasome-mediated turnover of unliganded and liganded ERα on responsive promoters is an integral feature of estrogen signaling. Mol. Cell 11(3), 695–707 (2003).
  • Metivier R, Penot G, Hubner MR et al. Estrogen receptor-α directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115(6), 751–763 (2003).
  • Vaisanen S, Dunlop TW, Sinkkonen L, Frank C, Carlberg C. Spatio-temporal activation of chromatin on the human CYP24 gene promoter in the presence of 1α,25-dihydroxyvitamin D3. J. Mol. Biol. 350(1), 65–77 (2005).
  • Hermanson O, Jepsen K, Rosenfeld MG. N–CoR controls differentiation of neural stem cells into astrocytes. Nature 419(6910), 934–939 (2002).
  • Shang Y, Brown M. Molecular determinants for the tissue specificity of SERMs. Science 295(5564), 2465–2468 (2002).
  • Khanim FL, Gommersall LM, Wood VH et al. Altered SMRT levels disrupt vitamin D(3) receptor signaling in prostate cancer cells. Oncogene 23(40), 6712–6725 (2004).
  • Jenuwein T, Allis CD. Translating the histone code. Science 293(5532), 1074–1080 (2001).
  • Hartman HB, Yu J, Alenghat T, Ishizuka T, Lazar MA. The histone-binding code of nuclear receptor co-repressors matches the substrate specificity of histone deacetylase 3. EMBO Rep. 6(5), 445–451 (2005).
  • Dawson-Hughes B, Heaney RP, Holick MF, Lips P, Meunier PJ, Vieth R. Estimates of optimal vitamin D status. Osteoporos Int. 16(7), 713–716 (2005).
  • Heaney RP, Davies KM, Chen TC, Holick MF, Barger-Lux MJ. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am. J. Clin. Nutr. 77(1), 204–210 (2003).
  • Yoshizawa T, Handa Y, Uematsu Y et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nature Genet. 16(4), 391–396 (1997).
  • Zinser G, Packman K, Welsh J. Vitamin D3 receptor ablation alters mammary gland morphogenesis. Development 129(13), 3067–3076 (2002).
  • Zinser GM, Welsh J. Accelerated mammary gland development during pregnancy and delayed postlactational involution in vitamin D3 receptor null mice. Mol. Endocrinol. 18(9), 2208–2223 (2004).
  • Zinser GM, Welsh J. Vitamin D receptor status alters mammary gland morphology and tumorigenesis in MMTV–neu mice. Carcinogenesis 25(12), 2361–2372 (2004).
  • Zinser GM, Sundberg JP, Welsh J. Vitamin D3 receptor ablation sensitizes skin to chemically induced tumorigenesis. Carcinogenesis 23(12), 2103–2109 (2002).
  • Xue L, Lipkin M, Newmark H, Wang J. Influence of dietary calcium and vitamin D on diet-induced epithelial cell hyperproliferation in mice. J. Natl Cancer Inst. 91(2), 176–181 (1999).
  • Huerta S, Irwin RW, Heber D et al. 1α,25-(OH)2-D3 and its synthetic analogue decrease tumor load in the Apc(min) mouse. Cancer Res.62(3), 741–746 (2002).
  • Anzano MA, Smith JM, Uskokovic MR et al. 1α,25-Dihydroxy-16-ene-23-yne-26,27-hexafluorocholecalciferol (Ro24–5531), a new deltanoid (vitamin D analogue) for prevention of breast cancer in the rat. Cancer Res. 54(7), 1653–1656 (1994).
  • Mehta RG. Stage-specific inhibition of mammary carcinogenesis by 1α-hydroxyvitamin D5. Eur. J. Cancer 40(15), 2331–2337 (2004).
  • Cope MB, Steele VE, Eto I, Juliana MM, Hill DL, Grubbs CJ. Prevention of methylnitrosourea-induced mammary cancers by 9-cis-retinoic acid and/or vitamin D3. Oncol. Rep. 9(3), 533–537 (2002).
  • Belleli A, Shany S, Levy J, Guberman R, Lamprecht SA. A protective role of 1,25-dihydroxyvitamin D3 in chemically induced rat colon carcinogenesis. Carcinogenesis 13(12), 2293–2298 (1992).
  • Colston KW, Pirianov G, Bramm E, Hamberg KJ, Binderup L. Effects of Seocalcitol (EB1089) on nitrosomethyl urea-induced rat mammary tumors. Breast Cancer Res. Treat. 80(3), 303–311 (2003).
  • Cross HS, Kallay E, Lechner D, Gerdenitsch W, Adlercreutz H, Armbrecht HJ. Phytoestrogens and vitamin D metabolism: a new concept for the prevention and therapy of colorectal, prostate, and mammary carcinomas. J. Nutr.134(5), 1207S–1212S (2004).
  • Colston K, Colston MJ, Fieldsteel AH, Feldman D. 1,25-dihydroxyvitamin D3 receptors in human epithelial cancer cell lines. Cancer Res. 42(3), 856–859 (1982).
  • Colston KW, Berger U, Coombes RC. Possible role for vitamin D in controlling breast cancer cell proliferation. Lancet 1(8631), 188–191 (1989).
  • Welsh J, Wietzke JA, Zinser GM et al. Impact of the vitamin D3 receptor on growth-regulatory pathways in mammary gland and breast cancer. J. Steroid Biochem. Mol. Biol. 83(1–5), 85–92 (2002).
  • Munker R, Norman A, Koeffler HP. Vitamin D compounds. Effect on clonal proliferation and differentiation of human myeloid cells. J. Clin. Invest. 78(2), 424–430 (1986).
  • Abe E, Miyaura C, Sakagami H et al. Differentiation of mouse myeloid leukemia cells induced by 1 α,25-dihydroxy vitamin D3. Proc. Natl Acad. Sci. USA 78(8), 4990–4994 (1981).
  • Colston K, Colston MJ, Feldman D. 1,25-dihydroxy vitamin D3 and malignant melanoma: the presence of receptors and inhibition of cell growth in culture. Endocrinology 108(3), 1083–1086 (1981).
  • Palmer HG, Sanchez-Carbayo M, Ordonez-Moran P, Larriba MJ, Cordon-Cardo C, Munoz A. Genetic signatures of differentiation induced by 1α,25-dihydroxyvitamin D3 in human colon cancer cells. Cancer Res. 63(22), 7799–7806 (2003).
  • Akutsu N, Lin R, Bastien Y et al. Regulation of gene expression by 1α,25-dihydroxyvitamin D3 and its analog EB1089 under growth-inhibitory conditions in squamous carcinoma cells. Mol. Endocrinol. 15(7), 1127–1139 (2001).
  • Eelen G, Verlinden L, Van Camp M et al. Microarray analysis of 1α,25-dihydroxyvitamin D3-treated MC3T3-E1 cells. J. Steroid Biochem. Mol. Biol. 89–90(1–5), 405–407 (2004).
  • Wang TT, Tavera-Mendoza LE, Laperriere D et al. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol. Endocrinol. 19(11), 2685–2695 (2005).
  • Hengst L, Reed SI. Translational control of p27Kip1 accumulation during the cell cycle. Science 271(5257), 1861–1864 (1996).
  • Huang YC, Chen JY, Hung WC. Vitamin D3 receptor/Sp1 complex is required for the induction of p27Kip1 expression by vitamin D3. Oncogene 23(28), 4856–4861 (2004).
  • Li P, Li C, Zhao X, Zhang X, Nicosia SV, Bai W. p27(Kip1) stabilization and G1 arrest by 1,25-dihydroxyvitamin D3 in ovarian cancer cells mediated through down-regulation of cyclin E/cyclin-dependent kinase 2 and Skp1–Cullin–F–box protein/Skp2 ubiquitin ligase. J. Biol. Chem. 279(24), 25260–25267 (2004).
  • Jiang F, Li P, Fornace AJ Jr, Nicosia SV, Bai W. G2/M arrest by 1,25-dihydroxyvitamin D3 in ovarian cancer cells mediated through the induction of GADD45 via an exonic enhancer. J. Biol. Chem. 278(48), 48030–48040 (2003).
  • Ryhanen S, Jaaskelainen T, Mahonen A, Maenpaa PH. Inhibition of MG-63 cell cycle progression by synthetic vitamin D3 analogs mediated by p27, Cdk2, cyclin E, and the retinoblastoma protein. Biochem. Pharmacol. 66(3), 495–504 (2003).
  • Blutt SE, McDonnell TJ, Polek TC, Weigel NL. Calcitriol-induced apoptosis in LNCaP cells is blocked by overexpression of Bcl-2. Endocrinology 141(1), 10–17 (2000).
  • Mathiasen IS, Lademann U, Jaattela M. Apoptosis induced by vitamin D compounds in breast cancer cells is inhibited by Bcl-2 but does not involve known caspases or p53. Cancer Res. 59(19), 4848–4856 (1999).
  • Han SH, Jeon JH, Ju HR et al. VDUP1 upregulated by TGF-β1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene 22(26), 4035–4046 (2003).
  • Song H, Cho D, Jeon JH et al. Vitamin D3 up-regulating protein 1 (VDUP1) antisense DNA regulates tumorigenicity and melanogenesis of murine melanoma cells via regulating the expression of fas ligand and reactive oxygen species. Immunol. Lett. 86(3), 235–247 (2003).
  • Wang X, Studzinski GP. Antiapoptotic action of 1,25-dihydroxyvitamin D3 is associated with increased mitochondrial MCL-1 and RAF-1 proteins and reduced release of cytochrome c. Exp. Cell Res.235(1), 210–217 (1997).
  • Palmer HG, Gonzalez-Sancho JM, Espada J et al. Vitamin D3 promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of β-catenin signaling. J. Cell Biol. 154(2), 369–387 (2001).
  • Schwartz GG, Wang MH, Zang M, Singh RK, Siegal GP. 1α,25-Dihydroxyvitamin D (calcitriol) inhibits the invasiveness of human prostate cancer cells. Cancer Epidemiol. Biomarkers Prev. 6(9), 727–732 (1997).
  • Larriba MJ, Munoz A. SNAIL vs vitamin D receptor expression in colon cancer: therapeutics implications. Br. J. Cancer92(6), 985–989 (2005).
  • Palmer HG, Larriba MJ, Garcia JM et al. The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Nature Med. 10(9), 917–919 (2004).
  • Elstner E, Linker-Israeli M, Said J et al. 20-epi-vitamin D3 analogues: a novel class of potent inhibitors of proliferation and inducers of differentiation of human breast cancer cell lines. Cancer Res. 55(13), 2822–2830 (1995).
  • Polek TC, Stewart LV, Ryu EJ, Cohen MB, Allegretto EA, Weigel NL. p53 Is required for 1,25-dihydroxyvitamin D3-induced G0 arrest but is not required for G1 accumulation or apoptosis of LNCaP prostate cancer cells. Endocrinology 144(1), 50–60 (2003).
  • Dunlap N, Schwartz GG, Eads D et al. 1α,25-dihydroxyvitamin D3 (calcitriol) and its analogue, 19-nor-1α,25(OH)2D2, potentiate the effects of ionising radiation on human prostate cancer cells. Br. J. Cancer89(4), 746–753 (2003).
  • Campbell MJ, Gombart AF, Kwok SH, Park S, Koeffler HP. The anti-proliferative effects of 1α,25(OH)2D3 on breast and prostate cancer cells are associated with induction of BRCA1 gene expression. Oncogene 19(44), 5091–5097 (2000).
  • Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Invest. 102(5), 1016–1023 (1998).
  • Luo G, Guenthner T, Gan LS, Humphreys WG. CYP3A4 induction by xenobiotics: biochemistry, experimental methods and impact on drug discovery and development. Curr. Drug Metab. 5(6), 483–505 (2004).
  • Schrader M, Bendik I, Becker-Andre M, Carlberg C. Interaction between retinoic acid and vitamin D signaling pathways. J. Biol. Chem. 268(24), 17830–17836 (1993).
  • Elstner E, Campbell MJ, Munker R et al. Novel 20-epi-vitamin D3 analog combined with 9-cis-retinoic acid markedly inhibits colony growth of prostate cancer cells. Prostate 40(3), 141–149 (1999).
  • Peehl DM, Krishnan AV, Feldman D. Pathways mediating the growth-inhibitory actions of vitamin D in prostate cancer. J. Nutr. 133(7 Suppl.), 2461S–2469S (2003).
  • Cross HS, Kallay E, Farhan H, Weiland T, Manhardt T. Regulation of extrarenal vitamin D metabolism as a tool for colon and prostate cancer prevention. Recent Results Cancer Res. 164, 413–425 (2003).
  • Lechner D, Cross HS. Phytoestrogens and 17β-estradiol influence vitamin D metabolism and receptor expression-relevance for colon cancer prevention. Recent Results Cancer Res. 164, 379–391 (2003).
  • Wietzke JA, Welsh J. Phytoestrogen regulation of a vitamin D3 receptor promoter and 1,25-dihydroxyvitamin D3 actions in human breast cancer cells. J. Steroid Biochem. Mol. Biol. 84(2–3), 149–157 (2003).
  • Rozen F, Pollak M. Inhibition of insulin-like growth factor I receptor signaling by the vitamin D analogue EB1089 in MCF-7 breast cancer cells: a role for insulin-like growth factor binding proteins. Int. J. Oncol. 15(3), 589–594 (1999).
  • Peehl DM, Krishnan AV, Feldman D. Pathways mediating the growth-inhibitory actions of vitamin D in prostate cancer. J. Nutr. 133(7 Suppl.), 2461S–2469S (2003).
  • Wu Y, Craig TA, Lutz WH, Kumar R. Identification of 1α,25-dihydroxyvitamin D3 response elements in the human transforming growth factor β2 gene. Biochemistry 38(9), 2654–2660 (1999).
  • Dwivedi PP, Hii CS, Ferrante A et al. Role of MAP kinases in the 1,25-dihydroxyvitamin D3-induced transactivation of the rat cytochrome P450C24 (CYP24) promoter. Specific functions for ERK1/ERK2 and ERK5. J. Biol. Chem. 277(33), 29643–29653 (2002).
  • Wang X, Rao J, Studzinski GP. Inhibition of p38 MAP kinase activity up-regulates multiple MAP kinase pathways and potentiates 1,25-dihydroxyvitamin D3-induced differentiation of human leukemia HL60 cells. Exp. Cell Res. 258(2), 425–437 (2000).
  • John EM, Schwartz GG, Koo J, Van Den BD, Ingles SA. Sun exposure, vitamin D receptor gene polymorphisms, and risk of advanced prostate cancer. Cancer Res. 65(12), 5470–5479 (2005).
  • Schwartz GG, Hulka BS. Is vitamin D deficiency a risk factor for prostate cancer? (Hypothesis). Anticancer Res. 10(5A), 1307–1311 (1990).
  • Giovannucci E. The epidemiology of vitamin D and cancer incidence and mortality: a review (United States). Cancer Causes Control. 16(2), 83–95 (2005).
  • Luscombe CJ, French ME, Liu S et al. Prostate cancer risk: associations with ultraviolet radiation, tyrosinase and melanocortin-1 receptor genotypes. Br. J. Cancer 85(10), 1504–1509 (2001).
  • Garland FC, Garland CF, Gorham ED, Young JF. Geographic variation in breast cancer mortality in the United States: a hypothesis involving exposure to solar radiation. Prev. Med. 19(6), 614–622 (1990).
  • Garland CF, Garland FC. Do sunlight and vitamin D reduce the likelihood of colon cancer? Int. J. Epidemiol. 9(3), 227–231 (1980).
  • Lowe LC, Guy M, Mansi JL et al. Plasma 25-hydroxy vitamin D concentrations, vitamin D receptor genotype and breast cancer risk in a UK Caucasian population. Eur. J. Cancer 41(8), 1164–1169 (2005).
  • Albertson DG, Ylstra B, Segraves R et al. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nature Genet. 25(2), 144–146 (2000).
  • Townsend K, Banwell CM, Guy M et al. Autocrine metabolism of vitamin D in normal and malignant breast tissue. Clin. Cancer Res. 11(9), 3579–3586 (2005).
  • Garland C, Shekelle RB, Barrett-Connor E, Criqui MH, Rossof AH, Paul O. Dietary vitamin D and calcium and risk of colorectal cancer: a 19-year prospective study in men. Lancet 1(8424), 307–309 (1985).
  • Chen TC, Wang L, Whitlatch LW, Flanagan JN, Holick MF. Prostatic 25-hydroxyvitamin D-1α-hydroxylase and its implication in prostate cancer. J. Cell Biochem. 88(2), 315–322 (2003).
  • Hsu JY, Feldman D, McNeal JE, Peehl DM. Reduced 1α-hydroxylase activity in human prostate cancer cells correlates with decreased susceptibility to 25-hydroxyvitamin D3-induced growth inhibition. Cancer Res.61(7), 2852–2856 (2001).
  • Ahonen MH, Tenkanen L, Teppo L, Hakama M, Tuohimaa P. Prostate cancer risk and prediagnostic serum 25-hydroxyvitamin D levels (Finland). Cancer Causes Control. 11(9), 847–852 (2000).
  • Feskanich D, Ma J, Fuchs CS et al. Plasma vitamin D metabolites and risk of colorectal cancer in women. Cancer Epidemiol. Biomarkers Prev.13(9), 1502–1508 (2004).
  • Luscombe CJ, French ME, Liu S et al. Outcome in prostate cancer associations with skin type and polymorphism in pigmentation-related genes. Carcinogenesis 22(9), 1343–1347 (2001).
  • Chen TC, Wang L, Whitlatch LW, Flanagan JN, Holick MF. Prostatic 25-hydroxyvitamin D-1α-hydroxylase and its implication in prostate cancer. J. Cell Biochem. 88(2), 315–322 (2003).
  • Ahonen MH, Tenkanen L, Teppo L, Hakama M, Tuohimaa P. Prostate cancer risk and prediagnostic serum 25-hydroxyvitamin D levels (Finland). Cancer Causes Control. 11(9), 847–852 (2000).
  • Slattery ML, Neuhausen SL, Hoffman M et al. Dietary calcium, vitamin D, VDR genotypes and colorectal cancer. Int. J. Cancer 111(5), 750–756 (2004).
  • Miller CW, Morosetti R, Campbell MJ, Mendoza S, Koeffler HP. Integrity of the 1,25-dihydroxyvitamin D3 receptor in bone, lung, and other cancers. Mol. Carcinog. 19(4), 254–257 (1997).
  • Guy M, Lowe LC, Bretherton-Watt D, Mansi JL, Colston KW. Approaches to evaluating the association of vitamin D receptor gene polymorphisms with breast cancer risk. Recent Results Cancer Res. 164, 43–54 (2003).
  • Ingles SA, Ross RK, Yu MC et al. Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J. Natl Cancer Inst. 89(2), 166–170 (1997).
  • Ma J, Stampfer MJ, Gann PH et al. Vitamin D receptor polymorphisms, circulating vitamin D metabolites, and risk of prostate cancer in United States physicians. Cancer Epidemiol. Biomarkers Prev. 7(5), 385–390 (1998).
  • Lundin AC, Soderkvist P, Eriksson B, Bergman-Jungestrom M, Wingren S. Association of breast cancer progression with a vitamin D receptor gene polymorphism. South-East Sweden Breast Cancer Group. Cancer Res.59(10), 2332–2334 (1999).
  • Schondorf T, Eisberg C, Wassmer G et al. Association of the vitamin D receptor genotype with bone metastases in breast cancer patients. Oncology 64(2), 154–159 (2003).
  • Guy M, Lowe LC, Bretherton-Watt D et al. Vitamin D receptor gene polymorphisms and breast cancer risk. Clin. Cancer Res.10(16), 5472–5481 (2004).
  • Ntais C, Polycarpou A, Ioannidis JP. Vitamin D receptor gene polymorphisms and risk of prostate cancer: a meta-analysis. Cancer Epidemiol. Biomarkers Prev. 12(12), 1395–1402 (2003).
  • Campbell MJ, Elstner E, Holden S, Uskokovic M, Koeffler HP. Inhibition of proliferation of prostate cancer cells by a 19-nor-hexafluoride vitamin D3 analogue involves the induction of p21waf1, p27kip1 and E-cadherin. J. Mol. Endocrinol. 19(1), 15–27 (1997).
  • Rashid SF, Moore JS, Walker E et al. Synergistic growth inhibition of prostate cancer cells by 1α,25 dihydroxyvitamin D3 and its 19-nor-hexafluoride analogs in combination with either sodium butyrate or trichostatin A. Oncogene 20(15), 1860–1872 (2001).
  • Miller GJ, Stapleton GE, Hedlund TE, Moffat KA. Vitamin D receptor expression, 24-hydroxylase activity, and inhibition of growth by 1α,25-dihydroxyvitamin D3 in seven human prostatic carcinoma cell lines. Clin. Cancer Res. 1(9), 997–1003 (1995).
  • Rashid SF, Mountford JC, Gombart AF, Campbell MJ. 1α,25-dihydroxyvitamin D3 displays divergent growth effects in both normal and malignant cells. Steroids 66(3–5), 433–440 (2001).
  • Banwell CM, O'Neill LP, Uskokovic MR, Campbell MJ. Targeting 1α,25-dihydroxyvitamin D3 antiproliferative insensitivity in breast cancer cells by co-treatment with histone deacetylation inhibitors. J. Steroid Biochem. Mol. Biol. 89–90(1–5), 245–249 (2004).
  • Banwell CM, Guy M, Uskokovic M et al. Altered nuclear receptor co-repressor expression attenuates Vitamin D receptor signaling in breast cancer cells. Clin. Cancer Res. 11, 3579–3586 (2006).
  • Chen JS, Faller DV, Spanjaard RA. Short-chain fatty acid inhibitors of histone deacetylases: promising anticancer therapeutics? Curr. Cancer Drug Targets3(3), 219–236 (2003).
  • Daniel C, Schroder O, Zahn N, Gaschott T, Stein J. p38 MAPK signaling pathway is involved in butyrate-induced vitamin D receptor expression. Biochem. Biophys. Res. Commun. 324(4), 1220–1226 (2004).
  • Gaschott T, Stein J. Short-chain fatty acids and colon cancer cells: the vitamin D receptor-butyrate connection. Recent Results Cancer Res.164,247–257 (2003).
  • Gaschott T, Werz O, Steinmeyer A, Steinhilber D, Stein J. Butyrate-induced differentiation of CaCo-2 cells is mediated by vitamin D receptor. Biochem. Biophys. Res. Commun.288(3), 690–696 (2001).
  • Costa EM, Feldman D. Modulation of 1,25-dihydroxyvitamin D3 receptor binding and action by sodium butyrate in cultured pig kidney cells (LLC-PK1). J. Bone Miner. Res. 2(2), 151–159 (1987).
  • Tanaka Y, Bush KK, Klauck TM, Higgins PJ. Enhancement of butyrate-induced differentiation of HT-29 human colon carcinoma cells by 1,25-dihydroxyvitamin D3. Biochem. Pharmacol. 38(21), 3859–3865 (1989).
  • Beer TM, Myrthue A, Eilers KM. Rationale for the development and current status of calcitriol in androgen-independent prostate cancer. World J. Urol. 23(1), 28–32 (2005).
  • Beer TM, Myrthue A, Garzotto M et al. Randomized study of high-dose pulse calcitriol or placebo prior to radical prostatectomy. Cancer Epidemiol. Biomarkers Prev. 13(12), 2225–2232 (2004).
  • Beer TM, Garzotto M, Katovic NM. High-dose calcitriol and carboplatin in metastatic androgen-independent prostate cancer. Am. J. Clin. Oncol. 27(5), 535–541 (2004).
  • Trump DL, Hershberger PA, Bernardi RJ et al. Anti-tumor activity of calcitriol: pre-clinical and clinical studies. J. Steroid Biochem. Mol. Biol. 89–90(1–5), 519–526 (2004).
  • Johnson CS, Hershberger PA, Trump DL. Vitamin D-related therapies in prostate cancer. Cancer Met. Rev.21(2), 147–158 (2002).
  • Westerhoff HV, Palsson BO. The evolution of molecular biology into systems biology. Nature Biotechnol. 22(10), 1249–1252 (2004).
  • Al Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF. Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev. 14(1), 43–47 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.