18
Views
5
CrossRef citations to date
0
Altmetric
Review

Estrogen in men: effects on bone accrual, maintenance and prevention of bone loss

, &
Pages 281-295 | Published online: 10 Jan 2014

References

  • Orwoll ES. Men, bone and estrogen: unresolved issues. Osteoporos. Int. 14(2), 93–98 (2003).
  • Khosla S, Melton LJ III, Riggs BL. Clinical review 144: estrogen and the male skeleton. J. Clin. Endocrinol. Metab. 87(4), 1443–1450 (2002).
  • Riggs BL, Khosla S, Melton LJ III. Sex steroids and the construction and conservation of the adult skeleton. Endocrinol. Rev. 23(3), 279–302 (2002).
  • Gennari L, Nuti R, Bilezikian JP. Aromatase activity and bone homeostasis in men. J. Clin. Endocrinol. Metab. 89(12), 5898–5907 (2004).
  • Simpson ER. Role of aromatase in sex steroid action. J. Mol. Endocrinol. 25(2), 149–156 (2000).
  • Simpson ER, Clyne C, Rubin G et al. Aromatase – a brief overview. Ann. Rev. Physiol. 64, 93–127 (2002).
  • Simpson E, Jones M, Davis S, Rubin G. Do intracrine mechanisms regulate aromatase expression? J. Steroid. Biochem. Mol. Biol. 69(1–6), 447–452 (1999).
  • Simpson EV, Davis SR. Minireview: aromatase and the regulation of estrogen biosynthesis – some new perspectives. Endocrinology 142(11), 4589–4594 (2001).
  • Labrie F, Luu-The V, Lin SX et al. Intracrinology: role of the family of 17β-hydroxysteroid dehydrogenases in human physiology and disease. J. Mol. Endocrinol. 25(1), 1–16 (2000).
  • de Ronde W, Pols HAP, van Leeuwen JPTM, de Long FH. The importance of estrogen in males. Clin. Endocrinol. 58(5), 529–542 (2003).
  • Vedhuis JD, Lizarralde G, Iranmanesh A. Divergent effects of short term glucocorticoid excess on the gonadotrophic and somatotrophic axis in normal men. J. Clin. Endocrinol. Metab. 74(1), 96–102 (1992).
  • Bartsh W, Horst HJ, Becker H, Nehse G. Sex hormone binding globulin binding capacity, testosterone, 5α-dihydrotestosterone, oestradiol and prolactin in plasma of patients with prostatic carcinoma under various types of hormonal treatment. Acta Endocrinologica 85(3), 650–664 (1977).
  • Moorjani S, Dupont A, Labrie F et al. Changes in plasma lipoproteins during various androgen suppression therapies in men with prostatic carcinoma: effects of orchiectomy, oestrogen and combination treatment with luteinizing hormone-releasing hormone agonist and flutamide. J. Clin. Endocrinol. Metab. 66(12), 314–322 (1988).
  • Chen SA, Besman MJ, Sparkes RS et al. Human aromatase: cDNA cloning, southern blot analysis, and assignment of the gene to chromosome 15. DNA 7(1), 27–38 (1988).
  • Simpson ER. Models of aromatase insufficiency. Semin. Reprod. Med. 22(1), 25–30 (2004).
  • Shozu M, Simpson ER. Aromatase expression of human osteoblast-like cells. Mol. Cell Endocrinol. 39(1–2), 117–129 (1998).
  • Purohit A, Flanagan AM, Reed MJ. Estrogen synthesis by osteoblast cell lines. Endocrinology 131(4), 2027–2029 (1992).
  • Tanaka S, Haji M, Nishi Y, Yanase T, Takayanagi R, Nawata H. Aromatase activity in human osteoblast-like osteosarcoma cell. Calcif. Tissue Int. 52(2), 107–109 (1993).
  • Sasano H, Uzuki M, Sawai T et al. Aromatase in human bone tissue. J. Bone Miner. Res. 12(9), 1416–1423 (1997).
  • Schweikert HU, Wolf L, Romalo G. Oestrogen formation from androstenedione in human bone. Clin. Endocrinol. 43(1), 37–42 (1995).
  • Labrie F, Belanger A, Cusan L, Candas B. Physiological changes in dehydroepiandrosterone are not reflected by serum levels of active androgens and estrogens but of their metabolites: intracrinology. J. Clin. Endocrinol. Metab. 82(8), 2403–2409 (1997).
  • Green S, Walter P, Kumar V, Bornet J, Arpos P, Chambon P. Human estrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 320(6058), 134–139 (1986).
  • Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J. Sequence and expression of human estrogen receptor complementary DNA. Science 231(4742), 1150–1154 (1986).
  • Kuiper GGJM, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc. Natl Acad. Sci. USA 93(12), 5925–5930 (1996).
  • Mosselman S, Polman J, Dijkema R. ERβ: identification and characterization of a novel human estrogen receptor. FEBS Lett. 392(1), 49–53 (1996).
  • Grumbach MM, Auchus RJ. Estrogen: consequences and implications of human mutations in synthesis and action. J. Clin. Endocrinol. Metab. 84(12), 4677–4694 (1999).
  • Bland R. Steroid hormone receptor and action on bone. Clin. Sci. 98(2), 217–240 (2000).
  • Turner RT, Riggs BL, Spelsberg TC. Skeletal effects of estrogen. Endocrinol. Rev. 15(3), 275–300 (1994).
  • Prince RL. Estrogen effects on calciotropic hormones and calcium homeostasis, Endocrinol. Rev. 15(3), 301–309 (1994).
  • Oursler MJ, Osdoby P, Pyfferoen J, Riggs BL, Spelsberg TC. Avian osteoclasts as estrogen target cells. Proc. Natl Acad. Sci. USA 88(15), 6613–6617 (1991).
  • Pacifici R. Cytokines, estrogen and post-menopausal osteoporosis: the second decade. Endocrinology 139(6), 2659–2661 (1998).
  • Manolagas SC, Kousteni S, Jilka RL. Sex steroids and bone. Recent Prog. Horm. Res. 57, 385–409 (2002).
  • Prince RL, Dick I. Oestrogen effects on calcium membrane transport: a new view of the inter-relationship between oestrogen deficiency and age-related osteoporosis. Osteoporos. Int. 7 (3), S150–S154 (1997).
  • Gennari C, Agnusdei D, Nardi P, Civitelli R. Estrogen preserves a normal intestinal responsiveness to 1,25-dihydroxy-vitamin D3 in oophorectomized women. J. Clin. Endocrinol. Metab. 71(5), 1288–1293 (1990).
  • Bilezikian JP. Sex steroids, mice, and men: when androgens and estrogens get very close to each other. J. Bone Miner. Res. 17(4), 563–566 (2002).
  • McCauley LK, Tozum TF, Rosol TJ. Estrogen receptors in skeletal metabolism: lessons from genetically modified models of receptor function. Crit. Rev. Eukaryot. Gene Expr. 12(2), 89–100 (2002).
  • Windahl SH, Andersson G, Gustafsson JA. Elucidation of estrogen receptor function in bone with the use of mouse models. Trends Endocrinol. Metab. 13(5), 195–200 (2002).
  • Gentile MA, Zhang H, Harada S, Rodan GA, Kimmel DB. Bone response to estrogen replacement in OVX double estrogen receptor (α and β) knockout mice. J. Bone Miner. Res. 16(1), S146 (2001).
  • Couse JF, Korach KS. Estrogen receptor null mice: what have we learned and were they lead us? Endocrinol. Rev. 20(3), 358–410 (1999).
  • McCauley LK, Tozum TF, Kozloff KM et al. Transgenic models of metabolic bone disease: impact of estrogen receptor deficiency on skeletal metabolism. Connect. Tissue Res. 44 (1), 250–263 (2003).
  • Tozum TF, Oppenlander ME, Koh-Paige AJ, Robins DM, McCauley LK. Effects of sex steroid receptor specificity in the regulation of skeletal metabolism. Calcif. Tissue Int. 75(1), 60–70 (2004).
  • Vidal O, Lindberg MK, Hollberg K et al. Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc. Natl Acad. Sci. USA 97(10), 5474–5479 (2000).
  • Chagin AS, Lindberg MK, Andersson N et al. Estrogen receptor-β inhibits skeletal growth and has the capacity to mediate growth plate fusion in female mice. J. Bone Miner. Res. 19(1), 72–77 (2004).
  • McDougall KE, Perry MJ, Gibson RL et al. Estrogen-induced osteogenesis in intact female mice lacking ERβ. Am. J. Physiol. Endocrinol. Metab. 283(4), E817–E823 (2002).
  • Windahl SH, Hollberg K, Vidal O, Gustafsson JA, Ohlsson C, Andersson G. Female estrogen receptor β-/- mice are partially protected against age-related trabecular bone loss. J. Bone Miner. Res. 16(8), 1388–1398 (2001).
  • Windahl SH, Vidal O, Andersson G, Gustafsson JA, Ohlsson C. Increased cortical bone mineral content but unchanged trabecular bone mineral density in female ERb(-/-) mice. J. Clin. Invest. 104(7), 895–901 (1999).
  • Sims NA, Dupont S, Krust A et al. Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-β in bone remodeling in females but not in males. Bone 30(1), 18–25 (2002).
  • Parikka V, Peng Z, Hentunen T et al. Estrogen responsiveness of bone formation in vitro and altered bone phenotype in aged estrogen receptor-α-deficient male and female mice. Eur. J. Endocrinol. 152(2), 301–314 (2005).
  • Sims NA, Clement-Lacroix P, Minet D et al. A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor-deficient mice. J. Clin. Invest. 111(9), 1319–1327 (2003).
  • Couse JF, Curtis SW, Washburn TF et al. Analysis of transcription and estrogen insensitivity in the female mouse after targeted disruption of the estrogen receptor gene. Mol. Endocrinol. 9(11), 1441–1454 (1995).
  • Krege JH, Hodgin JB, Couse JF et al. Generation and reproductive phenotype of mice lacking estrogen receptor β. Proc. Natl Acad. Sci. USA 95(26), 15677–15682 (1998).
  • Syed FA, Modder UI, Fraser DG et al. Skeletal effects of estrogen are mediated by opposing actions of classical and nonclassical estrogen receptor pathways. J. Bone Miner. Res. 20(11), 1992–2001 (2005).
  • Jessop HL, Suswillo RF, Rawlinson SC et al. Osteoblast-like cells from estrogen receptor α knockout mice have deficient responses to mechanical strain. J. Bone Miner. Res. 19(6), 938–946 (2004).
  • Saxon LK, Turner CH. Estrogen receptor β: the antimechanostat? Bone 36(2), 185–192 (2005).
  • Fisher CR, Graves KH, Parlow AF, Simpson ER. Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp 19 gene. Proc. Natl. Acad. Sci. USA 95(12), 6965–6970 (1998).
  • Honda S, Harada N, Ito S, Takagi Y, Maeda S. Disruption of sexual behaviour in male aromatase-deficient mice lacking exons 1 and 2 of the cyp 19 gene. Biochem. Biophys. Res. Commun. 252(2), 445–449 (1998).
  • Toda K, Saibara T, Okada T, Onishi S, Shizuta Y. A loss of aggressive behaviour and its reinstantement by oestrogen in mice lacking the aromatase gene (Cyp 19). J. Endocrinol. 168(2), 217–220 (2001).
  • Oz OK, Hirasawa G, Lawson J et al. Bone phenotype of the aromatase deficient mouse. J. Steroid. Biochem. Mol. Biol. 79(1–5), 49–59 (2001).
  • Oz OK, Zerwekh JE, Fisher C et al. Bone has a sexually dimorphic response to aromatase deficiency. J. Bone Miner. Res. 15(3), 507–514 (2000).
  • Miyaura C, Toda K, Inada M et al. Sex- and age-related response to aromatase deficiency in bone. Biochem. Biophys. Res. Commun. 280(4), 1062–1068 (2001).
  • Vanderschueren D, Van Herck E, De Coster R, Bouillon R. Aromatization of androgens is important for skeletal maintenance of aged male rats. Calcif. Tissue Int. 59(3), 179–183 (1996).
  • Vanderschueren D, Boonen S, Ederveen AGH et al. Skeletal effects of estrogen deficiency induced by an aromatase inhibitor in an aged male rat model. Bone 27(5), 611–617 (2000).
  • Vanderschueren D, van Herck E, Nijs J, Ederveen AG, De Coster R, Bouillon R. Aromatase inhibition impairs skeletal modeling and decreases bone mineral density in growing male rats. Endocrinology 138(6), 2301–2307 (1997).
  • Harris HH, Katzenellenbogen JA, Katzenellenbogen BS. Characterization of the biological roles of the estrogen receptor, ERα and ERβ, in estrogen target tissues in vivo through the use of an ERα-selective ligand. Endocrinology 143(11), 4172–4177 (2002).
  • Cutler GB. The role of estrogen in bone growth and maturation during childhood and adolescence. J. Steroid. Biochem. Mol. Biol. 61(3–6), 141–144 (1997).
  • Martinez A, Heinrich JJ, Domene H et al. Growth in Turner’s syndrome: long-term treatment with low dose ethinil estradiol. J. Clin. Endocrinol. Metab. 65(2), 253–257 (1987).
  • Caruso-Nicoletti M, Cassarola F, Skerda M, Ross JL, Loriaux DL, Cutler GB Jr. Short-term, low-dose estradiol accelerates ulnar growth in boys. J. Clin. Endocrinol. Metab. 61(5), 896–898 (1985).
  • Jacklin CN, McBride C, McCrory P, Gallahan L. Neonatal sex steroid hormones and physical size at 4 years. J. Pediatr. Endocrinol. 7(3), 253–259 (1994).
  • Laue L, Kenigsberg D, Pescovitz O et al. Treatment of familial precocious puberty with spironolactone or testolactone N. Engl. J. Med. 320(8), 496–502 (1989).
  • Corvol MT, Carrascosa A, Tsagris L, Blanchard O, Rappaport R. Evidence for a direct in vitro action of sex steroids on rabbit cartilage cells during skeletal growth: influence of age and sex. Endocrinology 120(4), 1422–1429 (1987).
  • Binder G, Grauer M, Whener AV, Wehner F, Ranke MB. Outcome in tall stature: final height and psycological aspects in 220 patients with and without treatment. Eur. J. Pediatr. 156(12), 905–910 (1997).
  • Dhuper S, Warren MP, Brooks-Gun J, Fox R. Effects of hormonal status on bone density in adolescent girls. J. Clin. Endocrinol. Metab. 71(5), 1083–1088 (1990).
  • Armamento-Villareal R, Villareal DT, Avioli LV, Civitelli R. Estrogen status and heredity are major determinants of pre-menopausal bone mass. J. Clin. Invest. 90(6), 2464–2471 (1992).
  • Smith EP, Boyod J, Frank GR et al. Estrogen resistance caused by a mutation in the estrogen receptor gene in a man. N. Engl. J. Med. 331(16), 1056–1061 (1994).
  • Morishima A, Grumbach MM, Simpson ER, Fisher C, Qin K. Aromatase deficiency in male and female sibilings caused by a novel mutation and the physiological role of estrogens. J. Clin. Endocrinol. Metab. 80(12), 3689–3698 (1995).
  • Carani C, Qin K, Simoni M et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N. Engl. J. Med. 337(2), 91–95 (1997).
  • Bilezikian JP, Morishima A, Bell J, Grumbach MM. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N. Engl. J. Med. 339(9), 599–603 (1998).
  • Herrmann BL, Saller B, Janssen OE et al. Impact of estrogen replacement therapy in a male with congenital aromatase deficiency caused by a novel mutation in the CYP19 gene. J. Clin. Endocrinol. Metab. 87(12), 5476–5484 (2002).
  • Maffei L, Murata Y, Rochira V et al. Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: effects of testosterone, alendronate and estradiol treatment. J. Clin. Endocrinol. Metab. 89(1), 61–70 (2004).
  • Rochira V, Faustini-Fustini M, Balestrieri A, Carani C. Estrogen replacement therapy in a man with congenital aromatase deficiency: effects of different doses of transdermal estradiol on bone mineral density and hormonal parameters. J. Clin. Endocrinol. Metab. 85(5), 1841–1845 (2000).
  • Deladoey J, Fluck C, Bex M, Yoshimura N, Harada N, Mullis PE. Aromatase deficiency caused by a novel P450arom gene mutation: impact of absent estrogen production on serum gonadotropin concentration in a boy. J. Clin. Endocrinol. Metab. 84(11), 4050–4054 (1999).
  • Boullion R, Bex M, Vanderschueren D, Boonen S. Estrogen are essential for male pubertal periosteal expansion. J. Clin. Endocrinol. Metab. 89(12), 6025–6029 (2004).
  • Seeman E. Pathogenesis of bone fragility in women and men. Lancet 359(9320), 1841–1850 (2002).
  • Stratakis CA, Vottero A, Brodie A et al. The aromatase excess syndrome is associated with feminization of both sexes and autosomal dominant transmission of aberrant P450 aromatase gene transcription. J. Clin. Endocrinol. Metab. 83(4), 1348–1357 (1998).
  • Shozu M, Sebastian S, Takayama K et al. Estrogen excess associated with novel gain-of-function mutations affecting the aromatase gene. N. Engl. J. Med. 348(19), 1855–1865 (2003).
  • Martin RM, Lin CJ, Nishi M et al. Familial hyperestrogenism in both sexes: clinical, hormonal, and molecular studies of two siblings. J. Clin. Endocrinol. Metab. 88(7), 3027–3034 (2003).
  • Quigley CA, De Bellis A, Marschke KB, El-Awady MK, Wilson EM, French FS. Androgen receptor defects: historical, clinical and molecular perspectives. Endocrinol. Rev. 16(3), 271–316 (1995).
  • Marcus R, Leary D, Schneider DL, Shane E, Favus M, Quigley CA. The contribution of testosterone to skeletal development and maintenance: lessons from the androgen insensitivity syndrome. J. Clin. Endocrinol. Metab. 85(3), 1032–1037 (2000).
  • Wickman S, Kajantie E, Dunkel L. Effects of suppression of estrogen action by the P450 aromatase inhibitor letrozole on bone mineral density and bone turnover in pubertal boys. J. Clin. Endocrinol. Metab. 88(8), 3785–3793 (2003).
  • Richelson LS, Wahner HW, Melton III LJ, Riggs BL. Relative contributions of aging and estrogen deficiency to postmenopausal bone loss. N. Engl. J. Med. 311(20), 1273–1275 (1984).
  • Harman SM, Metter JF, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. J. Clin. Endocrinol. Metab. 86(2), 724–731 (2001).
  • Khosla S, Melton LJ III, Atkinson EJ, O’Fallon WM. Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J. Clin. Endocrinol. Metab. 86(8), 3555–3561 (2001).
  • Gennari L, Merlotti D, Martini G et al. Longitudinal association between sex hormone levels, bone loss, and bone turnover in elderly men. J. Clin. Endocrinol. Metab. 88(11), 5327–5333 (2003).
  • Slemenda CW, Longcope C, Zhou L, Hui SL, Peacock M, Johnston CC. Sex steroids and bone mass in older men: positive associations with serum estrogens and negative associations with androgens. J. Clin. Invest. 100(7), 1755–1759 (1997).
  • Szulc P, Munoz B, Claustrat B et al. Bioavailable estradiol may be an important determinant of osteoporosis in men. The MINOS Study. J. Clin. Endocrinol. Metab. 86(1), 192–199 (2001).
  • Greendale GA, Edelstein S, Barrett-Connor E Endogenous sex steroids and bone mineral density in older women and men: the Rancho Bernardo Study. J. Bone Miner. Res. 12(11), 1833–1843 (1997).
  • Khosla S, Melton III LJ, Atkinson EJ, O’Fallon WM, Klee GG, Riggs BL. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J. Clin. Endocrinol. Metab. 83(7), 2266–2274 (1998).
  • Ongphiphadhanakul B, Rajatanavin R, Chanprasertyothin S, Piaseu N, Chailurkit L Serum estradiol and oestrogen-receptor gene polymorphism are associated with bone mineral density independently of serum testosterone in normal males. Clin. Endocrinol. 49(6), 803–809 (1998).
  • Amin S, Zhang Y, Sawin CT et al. Association of hypogonadism and estradiol levels with bone mineral density in elderly men from the Framingham study. Ann. Intern. Med. 133(12), 951–963 (2000).
  • Barrett-Connor E, Mueller JE, von Muhlen DG, Laughlin GA, Schneider DL, Sartoris DJ. Low levels of estradiol are associated with vertebral fractures in older men, but not women: the Rancho Bernardo Study. J. Clin. Endocrinol. Metab. 85(1), 219–223 (2000).
  • Khosla S, Melton III LJ, Robb RA et al. Relationship of volumetric BMD and structural parameters at different skeletal sites to sex steroid levels in men. J. Bone Miner. Res. 20(5), 730–740 (2005).
  • Khosla S, Riggs BL, Robb RA et al. Relationship of volumetric bone density and structural parameters at different skeletal sites to sex steroid levels in women. J. Clin. Endocrinol. Metab. 90(9), 5096–5103 (2005).
  • Simpson E, Rubin G, Clyne C et al. The role of local estrogen biosynthesis in males and females. Trends Endocrinol. Metab. 11(5), 184–188 (2000).
  • Falahati-Nini A, Riggs BL, Atkinson EJ, O’Fallon WM, Eastell R, Khosla S. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J. Clin. Invest. 106(12), 1553–1560 (2000).
  • Leder BZ, LeBlanc KM, Schoenfeld DA, Eastell R, Finkelstein JS. Differential effects of androgens and estrogens on bone turnover in normal men. J. Clin. Endocrinol. Metab. 88(1), 204–210 (2003).
  • Taxel P, Kennedy DG, Fall PM, Willard AK, Clive JM, Raisz LG. The effect of aromatase inhibition on sex steroids, gonadotropins, and markers of bone turnover in older men. J. Clin. Endocrinol. Metab. 86(6), 2869–2874 (2001).
  • Stepan JJ, Lachman M, Zverina J, Pacovsky V, Baylink DJ. Castrated men exhibit bone loss. Effect of calcitonin treatment on biochemical indeces of bone remodeling. J. Clin. Endocrinol. Metab. 69(3), 523–527 (1989).
  • Labrie F, Belanger A, Luu-The V et al. DHEA and the intracrine formation of androgens and estrogens in peripheral target tissue: its role during aging. Steroids 63(5–6), 322–328 (1998).
  • Kristensen VN, Harada N, Yoshimura N et al. Genetic variants of cyp19 (aromatase) and breast cancer. Oncogene 19(10), 1329–1333 (2000).
  • Siegelmann-Danieli N, Buetow KH. Constitutional genetic variation at the human aromatase gene (Cyp19) and breast cancer risk. Br. J. Cancer 79(3–4), 456–463 (1999).
  • Masi L, Becherini L, Gennari L et al. Polymorphism of the aromatase gene in postmenopausal Italian women: distribution and correlation with bone mass and fracture risk. J. Clin. Endocrinol. Metab. 86(5), 2263–2269 (2001).
  • Salmen T, Heikkinen AM, Mahonen A et al. Relation of aromatase gene polymorphism and hormone replacement therapy to serum estradiol levels, bone mineral density, and fracture risk in early postmenopausal women. Ann. Med. 35(4), 282–288 (2003).
  • Healey CS, Dunning AM, Durocher F et al. Polymorphisms in the human aromatase cytochrome P450 gene (CYP19) and breast cancer risk. Carcinogenesis 21(2), 189–193 (2000).
  • Somner J, McLellan S, Cheung J et al. Polymorphisms in the P450 c17 (17-hydroxylase/17,20-lyase) and P450 c19 (aromatase) genes: association with serum sex steroid concentrations and bone mineral density in postmenopausal women. J. Clin. Endocrinol. Metab. 89(1), 344–351 (2004).
  • Remes T, Vaisanen SB, Mahonen A et al. Aerobic exercise and bone mineral density in middle-aged Finnish men: a controlled randomized trial with reference to androgen receptor, aromatase, and estrogen receptor α gene polymorphisms. Bone 32(4), 412–420 (2003).
  • Van Pottelbergh I, Goemaere S, Kaufman JM. Bioavailable estradiol and aromatase gene polymorphism are determinants of bone mineral density changes in men over 70 years of age. J. Clin. Endocrinol. Metab. 88(7), 3075–3081 (2003).
  • Gennari L, Masi L, Merlotti D et al. A polymorphic CYP19 TTTA repeat influences aromatase activity and estrogen levels in elderly men: effects on bone metabolism. J. Clin. Endocrinol. Metab. 89(6), 2803–2810 (2004).
  • Gennari L, Merlotti D, De Paola V et al. Estrogen receptor gene polymorphisms and the genetics of osteoporosis: a huge review. Am. J. Epidemiol. 161(4), 307–320 (2005).
  • Khosla S, Riggs BL, Atkinson EJ et al. Relationship of estrogen receptor genotypes to bone mineral density and to rates of bone loss in men. J. Clin. Endocrinol. Metab. 89(4), 1808–1816 (2004).
  • Mu YM, Yanase T, Nishi Y, Takayanagi R, Goto K, Nawata H. Combined treatment with specific ligands for PPARγ: RXR nuclear receptor system markedly inhibits the expression of cytochrome P450arom in human granulosa cancer cells. Mol. Cell. Endocrinol. 181(1–2), 239–248 (2001).
  • Mu YM, Yanase T, Nishi Y et al. Insulin sensitizer, troglitazone, directly inhibits aromatase activity in human ovarian granulosa cells. Biochem. Biophys. Res. Commun. 271(3), 710–713 (2000).
  • Rubin GL, Duong JH, Clyne CD et al. Ligands for the peroxisomal proliferator-activated receptor γ and the retinoid X receptor inhibit aromatase cytochrome P450 (CYP19) expression mediated by promoter II in human breast adipose. Endocrinology 143(8), 2863–2871 (2002).
  • Lovekamp-Swan T, Jetten AM, Davis BJ. Dual activation of PPARα and PPARγ by mono-(2-ethylhexyl) phthalate in rat ovarian granulosa cells. Mol. Cell Endocrinol. 201(1–2), 133–141 (2003).
  • Toda K, Okada T, Miyaura C, Saibara T. Fenofibrate, a ligand for PPARα, inhibits aromatase cytocrome P450 expression in the ovary of mouse. J. Lipid Res. 44(2), 265–270 (2003).
  • Takayanagi R, Goto K, Suzuki S, Tanaka S, Shimoda S, Nawata H. Dehydroepiandrosterone (DHEA) as a possible source for estrogen formation in bone cells: correlation between bone mineral density and serum DHEA-sulfate concentration in postmenopausal women, and the presence of aromatase to be enhanced by 1,25-dihydroxyvitamin D3 in human osteoblasts. Mech. Ageing Dev. 123(8), 1107–1114 (2002).
  • Yanase T, Suzuki S, Goto K et al. Aromatase in bone: roles of vitamin D3 and androgens. J. Steroid. Biochem. Mol. Biol. 86(3–5), 393–397 (2003).
  • Tanaka S, Haji M, Takayanagi R, Nawata H. 1,25-dihydroxyvitamin D3 enhances the enzymatic activity and expression of the messenger ribonucleic acid for aromatase cytochrome P450 synergistically with dexamethasone depending on the vitamin D receptor level in cultured human osteoblasts. Endocrinology 137(5), 1860–1869 (1996).
  • Kinuta K, Tanaka H, Moriwake T, Aya K, Kato S, Seino Y. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology 141(4), 1317–1324 (2000).
  • Bulun SE, Noble LS, Takayama K et al. Endocrine disorders associated with inappropriately high aromatase expression. J. Steroid. Biochem. Mol. Biol. 61(3–6), 133–139 (1997).
  • Young J, Bulun SE, Agarwal V et al. Aromatase expression in a feminizing adrenocortical tumor. J. Clin. Endocrinol. Metab. 81(9), 3173–3176 (1996).
  • Aiginger P, Kolbe H, Kuhbock J, Spona J, Geyer G. The endocrinology of testicular germinal cell tumors. Acta Endocrinol. 97(3), 419–426 (1981).
  • Gordon GG, Olivo J, Rafil F, Southren AL. Conversion of androgens to estrogens in cirrhosis of the liver. J. Clin. Endocrinol. Metab. 40(6), 1018–1026 (1975).
  • Longcope C, Pratt JH, Finenberg E. Oestrogen and androgen dynamics in liver disease. J. Endocrinol. Invest. 7(6), 629–634 (1984).
  • Figura N, Gennari L, Merlotti D et al. Osteoporosis and Helicobacter pylori infection in men. Dig. Dis. Sci. 50(5), 847–852 (2005).
  • Ueyama T, Shirasawa N, Numazawa M et al. Gastric parietal cells: potent endocrine role in secreting estrogen as a possible regulator of gastro-hepatic axis. Endocrinology 143(8), 3162–3170 (2002).
  • Rallison ML. Growth disorders in infants, children and adolescents. Wiley, NY, USA 367 (1986).
  • Anderson FH, Francis RM, Peaston RT, Wastel HJ. Androgen supplementation in eugonadal men with osteoporosis: effects of six month’s treatment on markers of bone formation and resorption. J. Bone Miner. Res. 12(3), 472–478 (1997).
  • Kim IY, Seong DH, Kim BC et al. Raloxifene, a selective estrogen receptor modulator, induces apoptosis in androgen-responsive human prostate cancer cell line LNCaP through an androgen-independent pathway. Cancer Res. 62(18), 3649–3653 (2002).
  • Vandekerckhove P, Lilford R, Vail A, Hughes E. Clomiphene or tamoxifen for idiopathic oligo/asthenospermia. Cochrane Database of Systematic Reviews 2 CD000151 (2000).
  • Smith MR, Fallon MA, Lee H, Finkelstein JS. Raloxifene to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer: a randomized controlled trial. J. Clin. Endocrinol. Metab. 89(8), 3841–3846 (2004).
  • Delmas PD, Bjarnason NH, Mitlak BH et al. Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N. Engl. J. Med. 337(23), 1641–1647 (1997).
  • Doran PM, Riggs BL, Atkinson EJ, Khosla S. Effects of raloxifene, a selective estrogen receptor modulator, on bone turnover markers and serum sex steroid and lipid levels in elderly men. J. Bone Miner. Res. 16(11), 2118–2125 (2001).
  • Uebelhart B, Herrmann F, Pavo I, Draper MW, Rizzoli R. Raloxifene treatment is associated with increased serum estradiol and decreased bone remodeling in healthy middle-aged men with low sex hormone levels. J. Bone Miner. Res.19(9), 1518–1524 (2004).
  • Duschek EJ, Gooren LJ, Netelenbos C. Effects of raloxifene on gonadotrophins, sex hormones, bone turnover and lipids in healthy elderly men. Eur. J. Endocrinol. 150(4), 539–546 (2004).
  • Orwoll E, Blank JB, Barrett-Connor E et al. Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study – a large observational study of the determinants of fracture in older men. Contemp. Clin. Trials. 26(5), 569–585 (2005).
  • Kousteni S, Chen JR, Bellido T et al. Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 298(5594), 843–846 (2002).
  • Bilezikian JP, Khosla S, Riggs BL. Estrogen effects on bone in the male skeleton. In: Principles of Bone Biology. Bilezikian JP, Raisz LG, Rodan GA. (Eds). Academic Press, San Diego, USA (2002).
  • Gennari L, Merlotti D, Martini G et al. Longitudinal association between sex hormone levels, bone loss, and bone turnover in elderly men. J. Clin. Endocrinol. Metab. 88, 5327–5333 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.