21
Views
4
CrossRef citations to date
0
Altmetric
Review

Monitoring bone mass, bone density and bone geometry in children and adolescents

Pages 297-307 | Published online: 10 Jan 2014

References

  • Mora S, Gilsanz V. Establishment of peak bone mass. Endocrinol. Metab. Clin. N. Am. 32, 39–63 (2003).
  • Bailey DA, McKay HA, Mirwald RL et al. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: The University of Saskatchewan bone mineral accrual study. J. Bone Miner. Res. 14, 1672–1679 (1999).
  • Heaney RP, Abrams S, Dawson-Hughes B et al. Peak bone mass. Osteoporos. Int. 11, 985–1009 (2000).
  • Ward LM, Glorieux FH. The spectrum of pediatric osteoporosis. In: Pediatric Bone. Biology and Diseases. Glorieux FH, Pettifor JM, Jüppner H (Eds). Academic Press, San Diego, CA, USA, 401–442 (2003).
  • Sochett EB, Makitie O. Osteoporosis in chronically ill children. Ann. Med. 37, 286–294 (2005).
  • Mora S, Barera G. Bone mass and bone metabolism in pediatric gastrointestinal disorders. J. Pediatr. Gastroenterol. Nut. 39, 129–140 (2004).
  • Viganò A, Mora S. Adverse effects of antiretroviral therapy: focus on bone density. Expert Opin. Drug Saf. 3, 199–208 (2004).
  • Soyka LA, Fairfield WP, Klibanski A. Clinical review 117: hormonal determinants and disorders of peak bone mass in children. J. Clin. Endocrinol. Metab. 85, 3951–3963 (2000).
  • Apkon SD. Osteoporosis in children who have disabilities. Phys. Med. Rehabil. Clin. N. Am. 13, 839–855 (2002).
  • Schönau E, Neu CM, Rauch F, Mainz F. The development of bone strength at the proximal radius during childhood and adolescence. J. Clin. Endocrinol. Metab. 86, 613–618 (2001).
  • Blake GM, Fogelman I. Bone densitometry and the diagnosis of osteoporosis. Sem. Nucl. Med.31,69–81 (2001).
  • Njeh CF, Samat SB, Nightingale A, McNeil EA, Boivin CM. Radiation dose and in vitro precision in paediatric bone mineral density measurement using dual x-ray absorptiometry. Br. J. Radiol. 70, 719–727 (1997).
  • Mora S, Bachrach L, Gilsanz V. Noninvasive techniques for bone mass measurement. In: Pediatric Bone. Biology and Disease.Glorieux FH, Pettifor JM, Jüppner H (Eds). Academic Press, San Diego, CA, USA, 303–324 (2003).
  • Neu CM, Manz F, Rauch F, Merkel A, Schönau E. Bone densities and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone 28, 227–232 (2001).
  • van der Meulen MCH, Jepsen KJ, Mikic B. Understanding bone strength: Size isn’t everything. Bone 29,101–104 (2001).
  • Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone 14, 595–608 (1993).
  • Gilsanz V, Roe TF, Mora S, Costin G, Goodman WG. Changes in vertebral bone density in black girls and white girls during childhood and puberty. New Engl. J. Med. 325, 1597–1600 (1991).
  • Mora S, Goodman WG, Loro ML, Roe TF, Sayre J, Gilsanz V. Age-related changes in cortical and cancellous vertebral bone density in girls: assessment with quantitative CT. Am. J. Roentgenol. 162, 405–409 (1994).
  • Mora S, Pitukcheewanont P, Kaufman FR, Nelson JC, Gilsanz V. Biochemical markers of bone turnover and the volume and the density of bone in children at different stages of sexual development. J. Bone Miner. Res. 14, 1664–1671 (1999).
  • Mora S, Pitukcheewanont P, Nelson JC, Gilsanz V. Serum levels of insulin-like growth factor I and the density, volume, and cross-sectional area of cortical bone in children. J. Clin. Endocrinol. Metab. 84, 2780–2783 (1999).
  • Neu CM, Rauch F, Manz F, Schoenau E. Modeling cross-sectional bone size, mass and geometry at the proximal radius: a study of normal bone development using peripheral computed tomography. Osteoporos. Int. 12, 538–547 (2001).
  • Binkley TL, Specker BL. pQCT measurement of bone parameters in young children: validation of technique. J. Clin. Densitom. 3, 9–14 (2000).
  • Binkley T, Specker B, Witting T. Centile curves for bone densitometry measurements in healthy males and females ages 5–22 years. J. Clin. Densitom. 5, 343–353 (2002).
  • Wang Q, Alén M, Nicholson P et al. Growth patterns at distal radius and tibial shaft in pubertal girls: a 2-year longitudinal study. J. Bone Miner. Res. 20, 954–961 (2005).
  • Kontulainen SA, Macdonald HM, Khan KM, McKay HA. Examining bone surfaces across puberty: A 20-month pQCT trial. J. Bone Miner. Res. 20, 1202–1207 (2005).
  • Kaczmarek M, Pakula M, Kubik J. Multiphase nature and structure of biomaterials studied by ultrasound. Ultrasonics 38, 703–707 (2000).
  • Benitez CL, Schneider DL, Barrett-Connor E, Sartoris DJ. Hand ultrasound for osteoporosis screening on postmenopausal women. Osteoporos. Int. 11, 203–210 (2000).
  • Wüster C, Albanese C, De Aloysio D et al. Phalangeal osteosonogrammetry study: age-related changes, diagnostic sensitivity, and discriminatory power. J. Bone Miner. Res. 15, 1603–1614 (2000).
  • Barkmann R, Kantorovich E, Singal C et al. A new method for quantitative ultrasound measurements at multiple skeletal sites – first results of precision and fracture discrimination. J. Clin. Densitom. 3, 1–7 (2000).
  • Falk B, Sandres E, Constantini N, Eliakim A, Zigel L, Foldes AJ. Quantitative ultrasound (QUS) of the tibia: a sensitive tool for the detection of bone changes in growing boys. J. Pediatr. Endocrinol. Metab. 13, 1129–1135 (2000).
  • Sawyer A, Moore S, Fielding KT, Nix DA, Kiratli J, Bachrach LK. Calcaneus ultrasound measurements in a convenience sample of healthy youth. J. Clin. Densitom. 4, 111–120 (2001).
  • Baroncelli GI, Federico G, Bertelloni S, de Terlizzi F, Cadossi R, Saggese G. Bone quality assessment by quantitative ultrasound of proximal phalanxes of the hand in healthy subjects aged 3–21 years. Pediatr. Res. 49, 713–718 (2001).
  • Lequin MH, Hop WCJ, van Rijn RR et al. Comparison between quantitative calcaneal and tibial ultrasound in a Dutch Caucasian pediatric and adolescent population. J. Clin. Densitom. 4, 137–146 (2001).
  • Lequin MH, van Rijn RR, Robben SGF, van Leeuwen WJ, Hop WC, van Kuijk C. Quantitative tibial ultrasonometry versus radiographic phalangeal absorptiometry in a Caucasian pediatric population. Calcif. Tissue Int. 68, 323–329 (2001).
  • Barkmann R, Rohsschneider W, Vierling M et al. German pediatric reference data for quantitative transverse transmission ultrasound of finger phalanges. Osteoporos. Int. 13, 55–61 (2002).
  • Pereda L, Asmeade T, Zaritt J, Carver JD. The use of quantitative ultrasound in assessing bone status in newborn preterm infants. J. Perinatol. 23, 655–659 (2003).
  • Cvijetic S, Colic Baric I, Bolanca S, Juresa V, Dekanic Ozegovic D. Ultrasound bone measurement in children and adolescents. Correlation with nutrition, puberty, anthropometry, and physical activity. J. Clin. Epidemiol. 56, 591–597 (2003).
  • Zadik Z, Price D, Diamond G. Pediatric reference curves for multi-site quantitative ultrasound and its modulators. Osteoporos. Int. 14, 857–852 (2003).
  • Vignolo M, Brignone A, Mascagni A, Ravera G, Biasotti B, Aicardi G. Influence of age, sex, and growth variables on phalangeal quantitative ultrasound measures: a study in healthy children and adolescents. Calcif. Tissue Int.72,681–688 (2003).
  • Moilanen P, Nicholson PH, Karkkainen T, Wang Q, Timonen J, Cheng S. Assessment of the tibia using ultrasonic guided waves in pubertal girls. Osteoporos. Int. 14, 1020–1027 (2003).
  • Dib L, Arabi A, Maalouf J, Nabulsi M, El-Hajj Fuleihan G. Impact of anthropometric, lifestyle, and body composition variables on ultrasound measurements in school children. Bone 36, 736–742 (2005).
  • Mølgaard C, Lykke Thomsen B, Prentice A, Cole TJ, Fleisher Michaelsen K. Whole body bone mineral content in healthy children and adolescents. Arch. Dis. Child. 76, 9–15 (1997).
  • Nevill AM, Holder RL, Maffulli N et al. Adjusting bone mass for differences in projected bone area and other confounding variables: an allometric perspective. J. Bone Miner. Res. 17, 703–708 (2002).
  • Horlick M, Wang J, Pierson RN, Thornton JC. Prediction models for evaluation of total-body bone mass with dual-energy x-ray absorptiometry among children and adolescents. Pediatrics 114, e337–e345 (2004).
  • Fewtrell MS, Gordon I, Biassoni L, Cole TJ. Dual x-ray absorptiometry (DEXA) of the lumbar spine in a clinical paediatric setting: does the method os size-adjustment matter? Bone 37, 413–418 (2005).
  • Leonard MB, Shults J, Elliot DM, Stallings VA, Zemel BS. Interpretation of whole body dual energy x-ray absorptiometry measures in children: Comparison with peripheral quantitative computed tomography. Bone 24, 1044–1052 (2004).
  • Wang J, Thornton JC, Horlick M et al. Dual x-ray absorptiometry in pediatric studies. Changing scan modes alters bone and body composition. J. Clin. Densitom. 2, 135–141 (1999).
  • Simpson DE, Dontu VS, Stephens SE et al. Large variations occur in bone density measurements of children when using different software. Nucl. Med. Commun. 26, 483–487 (2005).
  • Cheng S, Nicholson PHF, Kröger H, Alen M, Tylavsky F. Differences in estimates of change of bone accrual and body composition in children because of scan mode selection with the Prodigy densitometer. J. Clin. Densitom. 8, 65–73 (2005).
  • A practical guide to bone densitometry in children. National Osteoporosis Society (2004).
  • Cram P, Schlechte J, Rosenthal GE, Christensen AJ. Patient preference for being informed of their DEXA scan results. J. Clin. Densitom. 7, 275–280 (2004).
  • Gafni RI, Baron J. Overdiagnosis in children due to misinterpretation of dual-energy x-ray absorptiometry (DEXA). J. Pediatr.144,253–257 (2004).
  • Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO Study Group. World Health Organ. Tech. Rep. Ser. 843, 1–129 (1994).
  • Whyte MP. Misinterpretation of osteodensitometry with high bone density: BMD Z ≤ +2.5 is not “normal”. J. Clin. Densitom. 8, 1–6 (2005).
  • Wren TAL, Liu X, Pitukcheewanont P, Gilsanz V. Bone densitometry in pediatric populations: discrepancies in the diagnosis of osteoporosis by DEXA and CT. J. Pediatr. 146, 776–779 (2005).
  • Fricke O, Tutllewski B, Schwahn B, Schoenau E. Speed of sound: relation to geometric characteristics of bone in children, adolescents, and adults. J. Pediatr. 146, 764–768 (2005).
  • Leib ES, Lewiecki EM, Binkley N, Hamdy RC. Official positions of the International Society for Clinical Densitometry. J. Clin. Densitom. 7, 1–5 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.