70
Views
19
CrossRef citations to date
0
Altmetric
Drug Profile

Exenatide: first-in-class incretin mimetic for the treatment of Type 2 diabetes mellitus

&
Pages 329-341 | Published online: 10 Jan 2014

References

  • Stratton IM, Adler AI, Neil HA et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. Br. Med. J.321(7258), 405–412 (2000).
  • UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet352, 837–853 (1998).
  • DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann. Int. Med.131, 281–303 (1999).
  • DeFronzo R. A. Pharmacologic therapy for type 2 diabetes mellitus (letter). Ann. Intern. Med.133, 73–74 (2000).
  • Diabetes Prevention Research Group. Reduction in the evidence of type 2 diabetes with life-style intervention or metformin. N. Engl. J. Med.346, 393–403 (2002).
  • Buchanan TA, Xiang AH, Peters RK et al. Preservation of pancreatic β-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes51, 2796–2803 (2002).
  • Buchanan TA, Xiang AH, Kjos SL et al. Diabetes rates and β-cell function in the pioglitazone and prevention of diabetes (PIPOD) study. Diabetes54(Suppl. 1), A39 (2000).
  • Dormandy JA, Charbonnel B, Eckland DJA et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the proactive study (PROspective pioglitAzone Clincal Trial In macroVascular Events): a randomized controlled trial. Lancet366, 1279–1289 (2005).
  • Reasner CA, DeFronzo RA. Treatment of type 2 diabetes mellitus: a rational approach based on pathophysiology. Am. Fam. Physician63, 1687 (2001).
  • Bays H, Mandarino L, DeFronzo RA. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferators-activated receptor agonists provide a rational therapeutic approach. J. Clin. Endocrinol. Metab.89, 463–478 (2004).
  • Harris MI. Racial and ethnic differences in health insurance coverage for adults with diabetes. Diabetes Care22, 1679–1682 (1999).
  • Saydah SH, Fradkin J, Cowie CC. Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA291, 335–342 (2004).
  • Koro CE, Bowlin SJ, Bourgeois N, Fedder DO. Glycemic control from 1988 to 2000 among U.S. adults diagnosed with type 2 diabetes: a preliminary report. Diabetes Care27, 17–20 (2004).
  • Defronzo RA. Pathogenesis of type 2 diabetes mellitus. Med. Clin. N. Am.88, 787–835 (2004).
  • Unger RH, Orci L. Glucagon and the α cell: physiology and pathophysiology. N. Engl. J. Med.304, 1518–1524 (1981).
  • Edelman SV, Weyer C. Unresolved challenges with insulin therapy in type 1 and type 2 diabetes: potential benefit of replacing amylin, a second β-cell hormone. Diabetes Technol. Ther.4, 175–189 (2002).
  • Perley MJ, Kipnis DM. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J. Clin. Invest.46, 1954–1962 (1967).
  • Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care26, 2929–2940 (2003).
  • Vilsboll T, Holst JJ. Incretins, insulin secretion and Type 2 diabetes mellitus. Diabetologia47(3), 357–366 (2004).
  • Meier JJ, Nauck MA, Schmidt WE, Gallwitz B. Gastric inhibitory polypeptide: the neglected incretin revisited. Regul. Pept.107, 1–13 (2002).
  • Nauck MA, Heimesaat MM, Orskov C et al. Preserved incretin activity of glucagon-like peptide-1 [7–36amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J. Clin. Invest.91, 301–307 (1993).
  • Toft-Nielsen MB, Damholt MB, Madsbad S et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J. Clin. Endocrinol. Metab.86, 3717–3723 (2001).
  • Holst JJ, Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am. J. Physiol, Endoctinol. Metab.287, E199–E206 (2004).
  • Zander DM, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and β-cell function in type 2 diabetes mellitus: a parallel-group study. Lancet359, 824–830 (2002).
  • DeFronzo RA, Ferrannini E. Regulation of hepatic glucose metabolism in humans. Diabetes Metab. Rev.3, 415–459 (1987).
  • Ferrannini E, Bjorkman O, Reichard GA, Pilo A, Olson M. The disposal of an oral glucose load in health subjects. A quantitative study. Diabetes34, 580–588 (1985).
  • DeFronzo RA. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev.5, 177–269 (1997).
  • Cherrington AD. Banting lecture 1997. Control of glucose uptake and release by the liver in vivo.Diabetes48, 1198–1214 (1999).
  • DeFronzo RA. Lilly lecture. The triumvirate: β-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes37, 667–687 (1988).
  • Kahn SE. Clinical Review 135. The importance of β-cell failure in the development and progression of type 2 diabetes. J. Clin. Endocrinol. Metab.86, 4047–4058 (2001).
  • Bergman RN, Finegood DT, Kahn SE. The evolution of β-cell dysfunction and insulin resistance in type 2 diabetes. Eur. J. Clin. Invest.32, 35–45 (2002).
  • Reaven GM, Hollenbeck C, Jeng C-Y, Wu MS, Chen Y-DI. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 hours in patients with NIDDM. Diabetes37, 1020–1024 (1988).
  • McGarry JD Banting Lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes51, 7–18 (2002).
  • Rossetti L, Giaccari A, DeFronzo RA. Glucose toxicity. Diabetes Care13, 610–630 (1990).
  • Rossetti L, Shulman GI, Zawalich W, DeFronzo RA. Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J. Clin. Invest.80, 1037–1044 (1987).
  • Kashyap S, Belfort R, Gastaldelli A et al. A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes52, 2461–2474 (2003).
  • Gastaldelli A, Ferrannini E, Miyazaki Y, Matsuda M, DeFronzo RA. β-cell dysfunction and glucose intolerance: results from the san antonio metabolism (SAM) study. Diabetologia41, 31–39 (2004).
  • Wang Q, Brubaker PL. Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week old db/db mice. Diabetologia45, 1263–1273 (2002).
  • Gedulin BR, Nikoulina SE, Smith PA et al. Exenatide (exendin-4) improves insulin sensitivity and β-cell mass in insulin resistant obese fa/fa Zucker rats independent of glycemia and body weight. Endocrinology146, 2069–2076 (2005).
  • Ahren B, Pacini G, Foley JE, Schweizer A. Improved meal-related β-cell function and insulin sensitivity by the dipeptidyl peptidase-IV inhibitor vildagliptin in metformin-treated patients with type 2 diabetes over 1 year. Diabetes Care28, 1936–1940 (2005).
  • Muller WA, Faloona GR, Aguilar-Parada E, Unger RH. Abnormal α-cell function in diabetes. response to carbohydrate and protein ingestion. N. Engl. J. Med.283, 109–115 (1970).
  • Unger RH, Aguilar-Parada E, Muller WA, Eisentraut AM. Studies of pancreatic α cell function in normal and diabetic subjects. J. Clin. Invest.49, 837–848 (1970).
  • Aguilar-Parada E, Eisentraut AM, Unger RH. Pancreatic glucagon secretion in normal and diabetic subjects. Am. J. Med. Sci.257, 415–419 (1969).
  • Matsuda M, DeFronzo RA, Consoli A, Bressler P, Del Prato S, Dose response curve relation plasma glucagon to hepatic glucose production and glucose disposal in type 2 diabetes mellitus. Metabolism51, 1111–1119 (2002).
  • Bullock BP, Heller RS, Habener JF. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology137, 2968–2978 (1996).
  • Brubaker PL, Drucker DJ. Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Receptors Channels8, 179–188 (2002).
  • Gedulin B, Lawler R, Jodka C, Young A. Amylin inhibits pentagastrin-stimulated gastric acid secretion: comparison with glucagon-like peptide-1 and exendin-4. Diabetes46, 188A (1997).
  • Nauck M, Stockmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia29, 46–52 (1986).
  • Ahren B. Gut peptides and type 2 diabetes mellitus treatment. Curr. Diab. Rep.3(5), 365–372 (2003).
  • Ahren B. Insulinotropic action of truncated glucagon-like peptide-1 in mice. Acta Physiol. Scand.153, 205–206 (1995).
  • Drucker, DJ, Philippe J, Mojsov S, Chick WL, Habener JF. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc. Natl Acad. Sci. USA84, 3434 (1987).
  • Kashima Y, Miki T, Shibasaki T et al. Critical role of cAMP-GEFII – Rim2 complex in incretin-potentiated insulin secretion. J. Biol. Chem.276, 46046–46053 (2001).
  • Fehmann HC, Goke R, Goke B. Glucagon-like peptide-1(7–37) /(7–36)amide is a new incretin. Mol. Cell Endocrinol.85, C39–C44 (1992).
  • Wang Y, Egan JM, Raygada M, Nadiv O, Roth J, Montrose-Rafizadeh C. Glucagon-like peptide-1 affects gene transcription and messenger ribonucleic acid stability of components of the insulin secretory system in RIN 1046–38 cells. Endocrinology136, 4910–4917 (1995).
  • Fehmann HC, Habener JF. Insulinotropic hormone glucagon-like peptide-I(7–37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma β TC-1 cells. Endocrinology130, 159–166 (1992).
  • Fehmann HC, Habener JF. Galanin inhibits proinsulin gene expression stimulated by the insulinotropic hormone glucagon-like peptide-I(7–37) in mouse insulinoma β TC-1 cells. Endocrinology130, 2890–2896 (1992).
  • Drucker D. J. Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol. Endocrinol.17, 161–171 (2003).
  • Egan JM, Meneilly GS, Elahi D. Effects of 1-mo bolus subcutaneous administration of exendin-4 in type 2 diabetes. Am. J. Physiol. Endocrinol. Metab.284, E1072–E1079 (2003).
  • Egan JM, Clocquet AR, Elahi D. The insulinotropic effect of acute exendin-4 administered to humans: comparison of nondiabetic state to type 2 diabetes. J. Clin. Endocrinol. Metab.87, 1282–1290 (2002).
  • DeFronzo RA, Ratner R, Han J, Kim D, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes mellitus. Diabetes Care28, 1092–1100 (2005).
  • Parkes DG, Pittner R, Jodka C, Smith P, Youg A. Insulinotropic actions of exendin-4 and glucagon-like peptide-1 in vivo and in vitro. Metabolism50, 583–589 (2001).
  • Degn KB, Brock B, Juhl CB et al. Effect of intravenous infusion of exenatide (synthetic exendin-4) on glucose-dependent insulin secretion and counterregulation during hypoglycemia. Diabetes53, 2397–2403 (2004).
  • Kolterman OG, Buse JB, Fineman MS et al. Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J. Clin. Endocrinol. Metab.88, 3082–3089 (2003).
  • Fehse F, Trautmann M, Holst JJ et al. Exenatide augments first and second phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes. J. Clin.Endocrino. Metabol.90(11), 5991–5997 (2005).
  • Kolterman OG, Kim DD, Shen L et al. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am. J. Health Syst. Pharm.62, 173–181 (2005).
  • Mager DE, Abernethy DR, Egan JM, Elahi D. Exedin-4 pharmacodynamics: insights from the hyperglycemic clamp technique. J. Pharm. Exp. Ther.311, 830–835 (2004).
  • Nielsen LL, Young AA, Parkes DG. Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes. Regul. Pept.117, 77–88 (2004).
  • Larsson H, Berglund G, Ahren B. Glucose modulation of insulin and glucagon secretion is altered in impaired glucose tolerance. J. Clin. Endocrinol. Metab.80, 1778–1782 (1995).
  • Ahren B, Larsson H. Impaired glucose tolerance (IGT) is associated with reduced insulin-induced suppression of glucagon concentrations. Diabetologia44, 1998–2003 (2001).
  • Larsson H, Ahren B. Glucose intolerance is predicted by low insulin secretion and high glucagon secretion: outcome of a prospective study in postmenopausal Caucasian women. Diabetologia43, 194–202 (2000).
  • Unger RH. Glucagon physiology and pathophysiology. N. Engl. J. Med.285, 443–449 (1971).
  • Heller RS, Kieffer TJ, Habener JF. Insulinotropic glucagon-like peptide I receptor expression in glucagon-producing α-cells of the rat endocrine pancreas. Diabetes46, 785–791 (1997).
  • Horowitz M, Dent J, Fraser R, Sun W, Hebbard G. Role and integration of mechanisms controlling gastric emptying. Dig. Dis. Sci.39(12 Suppl.), 7S–13S (1994).
  • Phillips WT, Schwartz JG, McMahan CA. Rapid gastric emptying of an oral glucose solution in type 2 diabetic patients. J. Nucl. Med.33, 1496–1500 (1992).
  • Horowitz M, Fraser R. Disordered gastric motor function in diabetes mellitus. Diabetologia37, 543–551 (1994).
  • Schwartz JG, Green GM, Guan D, McMahan CA, Phillips WT. Rapid gastric emptying of a solid pancake meal in type II diabetic patients. Diabetes Care19, 468–471 (1996).
  • Horowitz M, Edelbroek MA, Wishart JM, Straathof JW. Relationship between oral glucose tolerance and gastric emptying in normal healthy subjects. Diabetologia36, 857–862 (1993).
  • Blase E, Taylor K, Gao H-Y et al. Pharmacokinetics of an oral drug (acetaminophen) administered at various times in relation to subcutaneous injection of exenatide (exendin-4) in health subjects. J. Clin. Pharmacol.45, 570–577 (2005).
  • Imeryuz N, Yegen BC, Bozkurt A, Coskun T, Villanueva-Penacarrillo ML, Ulusoy NB. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am. J. Physiol.273, G920–G927 (1997).
  • Orskov C, Poulsen SS, Moller M, Holst JJ. Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I. Diabetes45, 832–835 (1996).
  • Tang-Christensen M, Larsen PJ, Goke R et al. Central administration of GLP-1-(7–36) amide inhibits food and water intake in rats. Am. J. Physiol.271, R848–R856 (1996).
  • Turton MD, O’Shea D, Gunn I et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature379, 69–72 (1996).
  • Ahren B. Glucagon-like peptide-1 (GLP-1): a gut hormone of potential interest in the treatment of diabetes. Bioessays20, 642–651 (1998).
  • Verdich C, Flint A, Gutzwiller JP et al. A meta-analysis of the effect of glucagon-like peptide-1 (7–36) amide on ad libitum energy intake in humans. J. Clin. Endocrinol. Metab.86, 4382–4389 (2001).
  • Yamamoto H, Kishi T, Lee CE et al. Glucagon-like peptide-1-responsive catecholamine neurons in the area postrema link peripheral glucagon-like peptide-1 with central autonomic control sites. J. Neurosci.23, 2939–2946 (2003).
  • Edwards CMB, Stanley SA, Davis R et al. Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in health volunteers. Am. J. Physiol. Endocrinol. Metab.281, E155–E161 (2001).
  • Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Holst JJ. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes44, 1126–1131 (1995).
  • Calara F, Taylor K, Han J et al. A randomized, open-label crossover study examining the effect of injection site on bioavailability of exenatide (synthetic exendin-4). Clin. Ther.27, 210–215 (2005).
  • Linnebjerg H, Kothare P, Park S et al. Exenatide pharmacokinetics in patients with mild to moderate renal dysfunction and end stage renal disease. Diabetes54(Suppl. 1), A116 (2005).
  • Buse JB, Henry RR, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care27, 2628–2635 (2004).
  • Kendall DM, Riddle MC, Rosenstock J et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes mellitus treated with metformin and a sulfonylurea. Diabetes Care28, 1083–1091 (2005).
  • Heine RJ, Van Gaal LF, Jons D, Mihm MJ, Widel MH, Brodows RG. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes. Ann. Intern. Med.143, 559–569 (2005).
  • Fineman MS, Bicsak TA, Shen LZ et al. Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care26, 2370–2377 (2003).
  • Dupre J, Behme MT, McDonald TJ. Exendin-4 normalized postcibal glycemic excursions in type 1 diabetes. J. Clin. Endocrinol. Metab.89, 3469–3473 (2004).
  • Linnebjerg H, Kothare P, Skrivanek Z et al. Exenatide: postprandial glucose pharmacodynamics at various dosing times relative to a meal in patients with type 2 diabetes. Diabetologia47(Suppl. 1), A280 (2004).
  • Ratner R, Stonehouse A, Gao H-Y, Poon T, Kim D. Exenatide maintains glycaemic control for 2 years in patients with type 2 diabetes: data from an ongoing, open-label study. Diabetologia48(Suppl. 1), A288 (2005).
  • Kendall DM, Kim D, Poon T et al. Improvements in cardiovascular risk factors accompanied sustained effects on glycemia and weight reduction in patient with type 2 diabetes treated with exenatide for 82 weeks. Diabetes54(Suppl. 1), A4–A5 (2005).
  • Nystrom T, Gutniak MK, Zhang Q et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patient with stable coronary artery disease. Am. J. Physiol. Endocrinol. Metab.287, E1209–E1215 (2004).
  • Gedulin BR, Smith P, Prickett KS et al. Dose-response for glycaemic and metabolic changes 28 days after single injection of long-acting release exenatide in diabetic fatty Zucker rats. Diabetologia48, 1380–1385 (2005).
  • Fineman MS, Shen LZ, Taylor K, Kim DD, Baron AD. Effectiveness of progressive dose-escalation of exenatide (exendin-4) in reducing dose-limiting side-effects in subjects with type 2 diabetes. Diabetes Metab. Res. Rev.20, 411–417 (2004).

Websites

  • Glycemic control algorithm for Type 2 diabetes mellitus in children and adults www.dshs.state.tx.us/diabetes/PDF/algorithms/PHARM2.PDF
  • Amylin Pharmacetuicals, Inc. Byetta® (exenatide injection) www.byetta.com.
  • Amylin Pharmaceuticals, Inc. Preliminary results from a Phase II study on once weekly exenatide-LAR www.amylin.com

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.