15
Views
1
CrossRef citations to date
0
Altmetric
Review

Gene therapy for thyroid cancer

, , &
Pages 367-378 | Published online: 10 Jan 2014

References

  • Sherman SI. Thyroid carcinoma. Lancet361(9356), 501–511 (2003).
  • Iervasi A, Iervasi G, Bottoni A et al. Diagnostic performance of a new highly sensitive thyroglobulin immunoassay. J. Endocrinol.82(2), 287–294 (2004).
  • Machens A, Ukkat J, Brauckhoff M, Gimm O, Dralle H. Advances in the management of hereditary medullary thyroid cancer. J. Int. Med.257(1), 50–59 (2005).
  • Jhiang SM. The RET proto-oncogene in human cancers. Oncogene19(49), 5590–5597 (2000).
  • Santoro M, Melillo RM, Carlomagno F, Vecchio G, Fusco A. Minireview: RET: normal and abnormal functions. Endocrinology145(12), 5448–5451 (2004).
  • Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res.63(7), 1454–1457 (2003).
  • Carta C, Moretti S, Passeri L et al. Genotyping of an Italian papillary thyroid carcinoma cohort revealed high prevalence of BRAF mutations, absence of RAS mutations and allowed the detection of a new mutation of BRAF oncoprotein (BRAF). Clin. Endocrinol. (Oxford)64(1), 105–109 (2006).
  • Nikiforova MN, Kimura ET, Gandhi M et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab.88(11), 5399–5404 (2003).
  • Ciampi R, Knauf JA, Kerler R et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J. Clin. Invest.115(1), 94–101 (2005).
  • Xing M. BRAF mutation in thyroid cancer. Endocrinol. Relat. Cancer12(2), 245–262 (2005).
  • Alsanea O. Familial non medullary thyroid cancer. Curr. Treat. Options Oncol.1(4), 345–351 (2000).
  • Leboulleux S, Baudin E, Travagli JP, Schlumberger M. Medullary thyroid carcinoma. Clin. Endocrinol. (Oxford)61(3), 299–310 (2004).
  • Gimm O. Thyroid cancer. Cancer Lett.163(2), 143–156 (2001).
  • Zhang R, Straus FH, DeGroot LJ. Adenoviral-mediated gene therapy for thyroid carcinoma using thymidine kinase controlled by thyroglobulin promoter demonstrates high specificity and low toxicity. Thyroid11(2), 115–123 (2001).
  • Takeda T, Inaba H, Yamazaki M et al. Tumor-specific gene therapy for undifferentiated thyroid carcinoma utilizing the telomerase reverse transcriptase promoter. J. Clin. Endocrinol. Metab.88(8), 3531–3538 (2003).
  • Kitazono M, Chuman Y, Aikou T, Fojo T. Adenovirus HSV-TK construct with thyroid-specific promoter: enhancement of activity and specificity with histone deacetylase inhibitors and agents modulating the camp pathway. Int. J. Cancer99(3), 453–459 (2002).
  • Minemura K, Takeda T, Minemura K et al. Cell-specific induction of sensitivity to ganciclovir in medullary thyroid carcinoma cells by adenovirus-mediated gene transfer of herpes simplex virus thymidine kinase. Endocrinology141(5), 1814–1822 (2000).
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature392(6673), 245–252 (1998).
  • Schott M, Seissler J. Dendritic cell vaccination: new hope for the treatment of metastasized endocrine malignancies. Trends Endocrinol. Metab.14(4), 156–162 (2003).
  • Vile RG, Russell SJ. Retroviruses as vectors. Br. Med. Bull.1(1), 12–30 (1995).
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science302(5644), 415–419 (2003).
  • Barzon L, Stefani AL, Pacenti M, Palu G. Versatility of gene therapy vectors through viruses. Expert Opin. Biol. Ther.5(5), 639–662 (2005).
  • Yi Y, Hahm SH, Lee KH. Retroviral gene therapy: safety issues and possible solutions. Curr. Gene Ther.5(1), 25–35 (2005).
  • Ritter T, Lehmann M, Volk HD. Improvements in gene therapy: averting the immune response to adenoviral vectors. Biol. Drugs16(1), 3–10 (2002).
  • Barzon L, Boscaro M, Palu G. Endocrine aspects of cancer gene therapy. Endocrinol. Rev.25(1), 1–44 (2004).
  • Braiden V, Nagayama Y, Iitaka M, Namba H, Niwa M, Yamashita S. Retrovirus-mediated suicide gene/prodrug therapy targeting thyroid carcinoma using a thyroid-specific promoter. Endocrinology139(9), 3996–3999 (1998).
  • Zhang R, Straus FH, DeGroot LJ. Cell-specific viral gene therapy of a Hurthle cell tumor. J. Clin. Endocrinol. Metab.87(3), 1407–1414 (2002).
  • Kitazono M, Chuman Y, Aikou T, Fojo T. Construction of gene therapy vectors targeting thyroid cells: enhancement of activity and specificity with histone deacetylase inhibitors and agents modulating the cyclic adenosine 3´,5´-monophosphate pathway and demonstration of activity in follicular and anaplastic thyroid carcinoma cells. J. Clin. Endocrinol. Metab.86(2), 834–840 (2001).
  • Takeda T, Yamazaki M, Minemura K et al. A tandemly repeated thyroglobulin core promoter has potential to enhance efficacy for tissue-specific gene therapy for thyroid carcinomas. Cancer Gene Ther.9(10), 864–874 (2002).
  • Barzon L, Barzon L, Bonaguro R et al. Transcriptionally targeted retroviral vector for combined suicide and immunomodulating gene therapy of thyroid cancer. J. Clin. Endocrinol. Metab.87(11), 5304–5311 (2002).
  • Nagayama Y, Nishihara E, Iitaka M, Namba H, Yamashita S, Niwa M. Enhanced efficacy of transcriptionally targeted suicide gene/prodrug therapy for thyroid carcinoma with the Cre-loxP system. Cancer Res.59(13), 3049–3052 (1999).
  • Mian C, Lacroix L, Alzieu L et al. Sodium iodide symporter and pendrin expression in human thyroid tissues. Thyroid11(9), 825–830 (2001).
  • Cho JY. A transporter gene (sodium iodide symporter) for dual purposes in gene therapy: imaging and therapy. Curr. Gene Ther.2(4), 393–402 (2002).
  • Boland A, Ricard M, Opolon P et al. Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res.60(13), 3484–3492 (2000).
  • Mandell RB, Mandell LZ, Link CJ Jr. Radioisotope concentrator gene therapy using the sodium/iodide symporter gene. Cancer Res.59(3), 661–668 (1999).
  • Spitzweg C, Morris JC. The sodium iodide symporter: its pathophysiological and therapeutic implications. Clin. Endocrinol. (Oxford)57(5), 559–574 (2002).
  • Smit JW, Shroder-van der Elst JP, Karperien M et al. Re-establishment of in vitro and in vivoiodide uptake by transfection of the human sodium iodide symporter (hNIS) in a hNIS defective human thyroid carcinoma cell line. Thyroid10(11), 939–943 (2000).
  • Huang M, Batra RK, Kogai T et al. Ectopic expression of the thyroperoxidase gene augments radioiodide uptake and retention mediated by the sodium iodide symporter in non-small cell lung cancer. Cancer Gene Ther.8(8), 612–618 (2001).
  • Boland A, Magnon C, Filetti S et al. Transposition of the thyroid iodide uptake and organification system in non thyroid tumor cells by adenoviral vector-mediated gene transfers. Thyroid12(1), 19–26 (2002).
  • Wenzel A, Upadhyay G, Schmitt TL, Loos U. Iodination of proteins in TPO transfected thyroid cancer cells is independent of NIS. Mol. Cell Endocrinol.213(1), 99–108 (2003).
  • Greten TF, Jaffee EM. Cancer vaccines. J. Clin. Oncol.17(3), 1047–1060 (1999).
  • Dranoff G, Jaffee E, Lazenby A et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA90(8), 3539–3543 (1993).
  • Lamont AG, Adorini L. IL-12: a key cytokine in immune regulation. Immunol. Today17(5), 214–217 (1996).
  • Melero I, Mazzolini G, Narvaiza I, Qian C, Chen L, Prieto J. IL-12 gene therapy for cancer: in synergy with other immunotherapies. Trends Immunol.22(3), 113–115 (2001).
  • Zhang R, Baunoch D, DeGroot LJ. Genetic immunotherapy for medullary thyroid carcinoma: destruction of tumors in mice by in vivo delivery of adenoviral vector transducing the murine interleukin-2 gene. Thyroid8(12), 1137–1146 (1998).
  • Zhang R, DeGroot LJ. Genetic immunotherapy of established tumours with adenoviral vectors transducing murine interleukin-12 (mIL12) subunits in a rat medullary thyroid carcinoma model. Clin. Endocrinol. (Oxford)52(6), 687–694 (2000).
  • Barzon L, Pacenti M, Taccaliti A et al. A pilot study of combined suicide/cytokine gene therapy in two patients with end-stage anaplastic thyroid carcinoma. J. Clin. Endocrinol. Metab.90(5), 2831–2834 (2005).
  • Maxon HR III, Smith HS. Radioiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol. Metab. Clin. North Am.19(3), 685–718 (1990).
  • Drosten M, Frilling A, Stiewe T, Putzer BM. A new therapeutic approach in medullary thyroid cancer treatment: inhibition of oncogenic RET signaling by adenoviral vector-mediated expression of a dominant-negative RET mutant. Surgery132(6), 991–997 (2002).
  • Drosten M, Stiewe T, Putzer BM. Antitumor capacity of a dominant-negative RET proto-oncogene mutant in a medullary thyroid carcinoma model. Hum. Gene Ther.14(10), 971–982 (2003).
  • Zhang R, DeGroot LJ. Gene therapy of established medullary thyroid carcinoma with herpes simplex viral thymidine kinase in a rat tumor model: relationship of bystander effect and antitumor efficacy. Thyroid10(4), 313–319 (2000).
  • Drosten M, Putzer BM. Gene therapeutic approaches for medullary thyroid carcinoma treatment. J. Mol. Med.81(7), 411–419 (2003).
  • Jiang S, Altmann A, Grimm D et al. Tissue-specific gene expression in medullary thyroid carcinoma cells employing calcitonin regulatory elements and AAV vectors. Cancer Gene Ther.8(7), 469–472 (2001).
  • Yamazaki M, Zhang R, Straus FH et al. Effective gene therapy for medullary thyroid carcinoma using recombinant adenovirus inducing tumor-specific expression of interleukin-12. Gene Ther.9(1), 64–74 (2002).
  • Bockmann M, Drosten M, Putzer BM. Discovery of targeting peptides for selective therapy of medullary thyroid carcinoma. J. Gene Med.7(2), 179–188 (2005).
  • Haupt K, Siegel F, Lu M et al. Induction of a cellular and humoral immune response against preprocalcitonin by genetic I: a potential new treatment for medullary thyroid carcinoma. Endocrinology142(3), 1017–1023 (2001).
  • Chiocca EA. Oncolytic viruses. Nature Rev. Cancer2(12), 938–950 (2002).
  • Schott M, Scherbaum WA. Immunotherapy and gene therapy of thyroid cancer. Minerva Endocrinol.29(4), 175–187 (2004).
  • Wickham TJ. Ligand-directed targeting of genes to the site of disease. Nature Med.9(1), 135–139 (2003).
  • Fagin JA. Tumor suppressor genes in human thyroid neoplasms: p53 mutations are associated undifferentiated thyroid cancers. J. Endocrinol. Invest.18(2), 140–142 (1995).
  • Fagin JA, Tang SH, Zeki K, Di Lauro R, Fusco A, Gonsky R. Re-expression of thyroid peroxidase in a derivative of an undifferentiated thyroid carcinoma cell line by introduction of wild-type p53. Cancer Res.56(4), 765–771 (1996).
  • Fang B, Roth JA. Tumor-suppressing gene therapy. Cancer Biol. Ther.2(4 Suppl. 1), S115–S121 (2003).
  • Kim SB, Ahn IM, Park HJ et al. Growth inhibition and chemosensitivity of poorly differentiated human thyroid cancer cell line (NPA) transfected with p53 gene. Head Neck23(3), 223–229 (2001).
  • Xing M, Usadel H, Cohen Y et al. Methylation of the thyroid-stimulating hormone receptor gene in epithelial thyroid tumors: a marker of malignancy and a cause of gene silencing. Cancer Res.63(9), 2316–2321 (2003).
  • Kang HC, Ohmori M, Harii N, Endo T, Onaya T. Pax-8 is essential for regulation of the thyroglobulin gene by transforming growth factor-β1. Endocrinology142(1), 267–275 (2001).
  • Shimura H, Suzuki H, Miyazaki A et al. Transcriptional activation of the thyroglobulin promoter directing suicide gene expression by thyroid transcription factor-1 in thyroid cancer cells. Cancer Res.61(9), 3640–3646 (2001).
  • Kim NW, Piatyszek MA, Prowse KR et al. Specific association of human telomerase activity with immortal cells and cancer. Science266(5193), 2011–2015 (1994).
  • Giet R, Petretti C, Prigent C. Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol.15(5), 241–250 (2005).
  • Ota T, Suto S, Katayama H et al. Increased mitotic phosphorylation of histone H3 attributable to AIM-1/Aurora-B overexpression contributes to chromosome number instability. Cancer Res.62(18), 5168–5177 (2002).
  • Sorrentino R, Libertini S, Pallante PL et al. Aurora B overexpression associates with the thyroid carcinoma undifferentiated phenotype and is required for thyroid carcinoma cell proliferation. J. Clin. Endocrinol. Metab.90(2), 928–935 (2005).
  • Pallante P, Berlingieri MT, Troncone G et al. UbcH10 overexpression may represent a marker of anaplastic thyroid carcinomas. Br. J. Cancer93(4), 464–471 (2005).
  • Hershko A, Ciechanover A. The ubiquitin system. Ann. Rev. Biochem.67, 425–479 (1998).
  • Joazeiro CA, Weissman AM. RING finger proteins: mediators of ubiquitin ligase activity. Cell102(5), 549–552 (2000).
  • Bischoff JR, Kirn DH, Williams A et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science274(5286), 373–376 (1996).
  • Vollmer CM, Ribas A, Butterfield LH et al. p53 selective and nonselective replication of an E1B-deleted adenovirus in hepatocellular carcinoma. Cancer Res.59(17), 4369–4374 (1999).
  • Portella G, Pacelli R, Libertini S et al. ONYX-015 enhances radiation-induced death of human anaplastic thyroid carcinoma cells. J. Clin. Endocrinol. Metab.88(10), 5027–5032 (2003).
  • Marsee DK, Vadysirisack DD, Morrison CD et al. Variable expression of coxsackie-adenovirus receptor in thyroid tumors: implications for adenoviral gene therapy. Thyroid15(9), 977–987 (2005).
  • Kesmodel S, Prabakaran I, Canter R, Menon C, Molnar-Kimber K, Fraker D. Virus-mediated oncolysis of thyroid cancer by a replication-selective adenovirus driven by a thyroglobulin promoter-enhancer region. J. Clin. Endocrinol. Metab.90(6), 3440–3448 (2005).
  • Berlingieri MT, Santoro M, Battaglia C, Grieco M, Fusco A. The adenovirus E1A gene blocks the differentiation of a thyroid epithelial cell line, however the neoplastic phenotype is achieved only after cooperation with other oncogenes. Oncogene8(2), 249–255 (1993).
  • Sauthoff H, Pipiya T, Heitner S et al. Impact of E1a modifications on tumor-selective adenoviral replication and toxicity. Mol. Ther.10(4), 749–757 (2004).
  • Schott M, Seissler J, Lettmann M, Fouxon V, Scherbaum WA, Feldkamp J. Immunotherapy for medullary thyroid carcinoma by dendritic cell vaccination. J. Clin. Endocrinol. Metab.86(10), 4965–4969 (2001).
  • Stift A, Sachet M, Yagubian R et al. Dendritic cell vaccination in medullary thyroid carcinoma. Clin. Cancer Res.10(9), 2944–2953 (2004).
  • Nemunaitis J, Cunningham C, Buchanan A et al. Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Ther.8(10), 746–759 (2001).
  • Nagayama Y, Shigematsu K, Namba H, Zeki K, Yamashita S, Niwa M. Inhibition of angiogenesis and tumorigenesis, and induction of dormancy by p53 in a p53-null thyroid carcinoma cell line in vivo. Anticancer Res.20(4), 2723–2728 (2000).
  • Nagayama Y, Yokoi H, Takeda K et al. Adenovirus-mediated tumor suppressor p53 gene therapy for anaplastic thyroid carcinoma in vitro and in vivo. J. Clin. Endocrinol. Metab.85(11), 4081–4086 (2000).
  • Chung HK, Yi YW, Jung NC et al. Gadd45γ expression is reduced in anaplastic thyroid cancer and its re-expression results in apoptosis. J. Clin. Endocrinol. Metab.88(8), 3913–3920 (2003).
  • Weng LP, Gimm O, Kum JB et al. Transient ectopic expression of PTEN in thyroid cancer cell lines induces cell cycle arrest and cell type-dependent cell death. Hum. Mol. Genet.10(3), 251–258 (2001).
  • Iuliano R, Trapasso F, Le Pera I et al. An adenovirus carrying the rat protein tyrosine phosphatase suppresses the growth of human thyroid carcinoma cell lines in vitro and in vivo. Cancer Res.63(4), 882–886 (2003).
  • Cerutti J, Trapasso F, Battaglia C et al. Block of c-myc expression by antisense oligonucleotides inhibits proliferation of human thyroid carcinoma cell lines. Clin. Cancer Res.2(1), 119–126 (1996).
  • Berlingieri MT, Manfioletti G, Santoro M et al. Inhibition of HMGI-C protein synthesis suppresses retrovirally induced neoplastic transformation of rat thyroid cells. Mol. Cell Biol.15(3), 1545–1553 (1995).
  • Scala S, Portella G, Fedele M, Chiappetta G, Fusco A. Adenovirus-mediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias. Proc. Natl Acad. Sci. USA97(8), 4256–4261 (2000).
  • Martelli ML, Iuliano R, Le Pera I et al. Inhibitory effects of peroxisome poliferator-activated receptor γ on thyroid carcinoma cell growth. J. Clin. Endocrinol. Metab.87(10), 4728–4735 (2002).
  • Braiden V, Nagayama Y, Iitaka M, Namba H, Niwa M, Yamashita S. Retrovirus-mediated suicide gene/prodrug therapy targeting thyroid carcinoma using a thyroid-specific promoter. Endocrinology139(9), 3996–3999 (1998).
  • Nishihara E, Nagayama Y, Mawatari F et al. Retrovirus-mediated herpes simplex virus thymidine kinase gene transduction renders human thyroid carcinoma cell lines sensitive to ganciclovir and radiation in vitro and in vivo. Endocrinology138(11), 4577–4583 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.