26
Views
0
CrossRef citations to date
0
Altmetric
Review

Glucocorticoid sensitivity: pathology, mutations and clinical implications

, &
Pages 403-412 | Published online: 10 Jan 2014

References

  • Kralli A, Bohen SP, Yamamoto KR. LEM1, an ATP-binding-cassette transporter, selectively modulates the biological potency of steroid hormones. Proc. Natl Acad. Sci. USA92, 4701–4705 (1995).
  • Diaz-Borjon A, Richaud-Patin Y, Alvarado DLB, Jakez-Ocampo J, Ruiz-Arguelles A, Llorente L. Multidrug resistance-1 (MDR-1) in rheumatic autoimmune disorders. Part II: increased P-glycoprotein activity in lymphocytes from systemic lupus erythematosus patients might affect steroid requirements for disease control. Joint Bone Spine67, 40–48 (2000).
  • Tomlinson JW, Walker EA, Bujalska IJ et al. 11β-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocrinol. Rev.25, 831–866 (2004).
  • Seckl JR. 11β-hydroxysteroid dehydrogenases: changing glucocorticoid action. Curr. Opin. Pharmacol.4, 597–602 (2004).
  • Kershaw EE, Morton NM, Dhillon H, Ramage L, Seckl JR, Flier JS. Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity. Diabetes54, 1023–1031 (2005).
  • Stewart PM. Tissue-specific Cushing’s syndrome, 11β-hydroxysteroid dehydrogenases and the redefinition of corticosteroid hormone action. Eur. J. Endocrinol.149, 163–168 (2003).
  • Holmes MC, Sangra M, French KL. 11β-hydroxysteroid dehydrogenase type 2 protects the neonatal cerebellum from deleterious effects of glucocorticoids. Neuroscience137(3), 865–873 (2005).
  • Paterson JM, Seckl JR, Mullins JJ. Genetic manipulation of 11β-hydroxysteroid dehydrogenases in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol.289, R642–R652 (2005).
  • Seckl JR, Yau J, Holmes M. 11β-hydroxysteroid dehydrogenases: a novel control of glucocorticoid action in the brain. Endocrinol. Res.28, 701–707 (2002).
  • Draper N, Stewart PM. 11β-hydroxysteroid dehydrogenase and the pre-receptor regulation of corticosteroid hormone action. J. Endocrinol.186, 251–271 (2005).
  • Lu NZ, Cidlowski JA. The origin and functions of multiple human glucocorticoid receptor isoforms. Ann. NY Acad. Sci.1024, 102–123 (2004).
  • Yudt MR, Jewell CM, Bienstock RJ, Cidlowski JA. Molecular origins for the dominant negative function of human glucocorticoid receptor β. Mol. Cell Biol.23, 4319–4330 (2003).
  • Bamberger CM, Schulte HM, Chrousos GP. Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocr. Rev.17, 245–261 (1996).
  • Lu NZ, Cidlowski JA. Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol. Cell18, 331–342 (2005).
  • Seckl JR, Walker BR. 11β-hydroxysteroid dehydrogenase type 1 as a modulator of glucocorticoid action: from metabolism to memory. Trends Endocrinol. Metab.15, 418–424 (2004).
  • Seckl JR, Walker BR. Minireview: 11β-hydroxysteroid dehydrogenase type 1- a tissue-specific amplifier of glucocorticoid action. Endocrinology142, 1371–1376 (2001).
  • Draper N, Echwald SM, Lavery GG. Association studies between microsatellite markers within the gene encoding human 11β-hydroxysteroid dehydrogenase type 1 and body mass index, waist to hip ratio, and glucocorticoid metabolism. J. Clin. Endocrinol. Metab.87, 4984–4990 (2002).
  • Masuzaki H, Yamamoto H, Kenyon CJ. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J. Clin. Invest.112, 83–90 (2003).
  • Masuzaki H, Paterson J, Shinyama H et al. A transgenic model of visceral obesity and the metabolic syndrome. Science294, 2166–2170 (2001).
  • Alberts P, Nilsson C, Selen G et al. Selective inhibition of 11β-hydroxysteroid dehydrogenase type 1 improves hepatic insulin sensitivity in hyperglycemic mice strains. Endocrinology144, 4755–4762 (2003).
  • Alberts P, Engblom L, Edling N et al. Selective inhibition of 11β-hydroxysteroid dehydrogenase type 1 decreases blood glucose concentrations in hyperglycaemic mice. Diabetologia45, 1528–1532 (2002).
  • Barf T, Vallgarda J, Emond R et al. Arylsulfonamidothiazoles as a new class of potential antidiabetic drugs. Discovery of potent and selective inhibitors of the 11β-hydroxysteroid dehydrogenase type 1. J. Med. Chem.45, 3813–3815 (2002).
  • Chrousos GP. Is 11{β}-hydroxysteroid dehydrogenase type 1 a good therapeutic target for blockade of glucocorticoid actions? Proc. Natl Acad. Sci. USA1011(17), 6329–6330 (2004).
  • Draper N, Walker EA, Bujalska IJ et al. Mutations in the genes encoding 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency. Nature Genet.34, 434–439 (2003).
  • Lavery GG, Walker EA, Draper N et al. Hexose-6-phosphate dehydrogenase knockout mice lack 11β-hydroxysteroid dehydrogenase type 1-mediated glucocorticoid generation. J. Biol. Chem.281(10), 6546–6551 (2006).
  • Galigniana MD, Housley PR, DeFranco DB, Pratt WB. Inhibition of glucocorticoid receptor nucleocytoplasmic shuttling by okadaic acid requires intact cytoskeleton. J. Biol. Chem.274, 16222–16227 (1999).
  • Galigniana MD, Radanyi C, Renoir JM, Housley PR, Pratt WB. Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus. J. Biol. Chem.276, 14884–14889 (2001).
  • Guo Y, Guettouche T, Fenna M et al. Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J. Biol. Chem.276, 45791–45799 (2001).
  • Murphy PJ, Kanelakis KC, Galigniana MD, Morishima Y, Pratt WB. Stoichiometry, abundance, and functional significance of the hsp90/hsp70-based multiprotein chaperone machinery in reticulocyte lysate. J. Biol. Chem.276, 30092–30098 (2001).
  • Elbi C, Walker DA, Romero G et al. Molecular chaperones function as steroid receptor nuclear mobility factors. Proc. Natl Acad. Sci. USA101, 2876–2881 (2004).
  • Hager GL, Lim CS, Elbi C, Baumann CT. Trafficking of nuclear receptors in living cells. J. Steroid Biochem. Mol. Biol.74, 249–254 (2000).
  • Hager GL. The dynamics of intranuclear movement and chromatin remodeling by the glucocorticoid receptor. Ernst Schering Res. Found. Workshop40, 111–129 (2002).
  • Stavreva DA, Muller WG, Hager GL, Smith CL, McNally JG. Rapid glucocorticoid receptor exchange at a promoter is coupled to transcription and regulated by chaperones and proteasomes. Mol. Cell Biol.24, 2682–2697 (2004).
  • Rogatsky I, Wang JC, Derynck MK. Target-specific utilization of transcriptional regulatory surfaces by the glucocorticoid receptor. Proc. Natl Acad. Sci. USA100, 13845–13850 (2003).
  • Rogatsky I, Luecke HF, Leitman DC, Yamamoto KR. Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts. Proc. Natl Acad. Sci. USA99, 16701–16706 (2002).
  • Rogatsky I, Zarember KA, Yamamoto KR. Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones. EMBO J.20, 6071–6083 (2001).
  • Wang JC, Derynck MK, Nonaka DF, Khodabakhsh DB, Haqq C, Yamamoto KR. Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes. Proc. Natl Acad. Sci. USA101, 15603–15608 (2004).
  • Vanderbilt JN, Miesfeld R, Maler BA, Yamamoto KR. Intracellular receptor concentration limits glucocorticoid-dependent enhancer activity. Mol. Endocrinol.1, 68–74 (1987).
  • Alourfi Z, Donn RP, Stevens A, Berry A, McMaster A, Ray DW. Glucocorticoids suppress macrophage migration inhibitory factor (MIF) expression in a cell-type-specific manner. J. Mol. Endocrinol.34, 583–595 (2005).
  • Ray DW, Davis JR, White A, Clark AJ. Glucocorticoid receptor structure and function in glucocorticoid-resistant small cell lung carcinoma cells. Cancer Res.56, 3276–3280 (1996).
  • Baumann CT, Ma H, Wolford R et al. The glucocorticoid receptor interacting protein 1 (GRIP1) localizes in discrete nuclear foci that associate with ND10 bodies and are enriched in components of the 26S proteasome. Mol. Endocrinol.15, 485–500 (2001).
  • Becker M, Baumann C, John S et al. Dynamic behavior of transcription factors on a natural promoter in living cells. EMBO Rep.3, 1188–1194 (2002).
  • Abruzzese RV, Godin D, Mehta V et al. Ligand-dependent regulation of vascular endothelial growth factor and erythropoietin expression by a plasmid-based autoinducible GeneSwitch system. Mol. Ther.2, 276–287 (2000).
  • Han SJ, Demayo FJ, Xu J, Tsai SY, Tsai MJ, O’Malley BW. Steroid receptor coactivators SRC-1 and SRC-3 differentially modulate tissue-specific activation functions of the progesterone receptor. Mol. Endocrinol.20(1), 45–55 (2005).
  • Jung SY, Malovannaya A, Wei J, O’Malley BW, Qin J. Proteomic analysis of steady-state nuclear hormone receptor coactivator complexes. Mol. Endocrinol.19, 2451–2465 (2005).
  • Nawaz Z, O’Malley BW. Urban renewal in the nucleus: is protein turnover by proteasomes absolutely required for nuclear receptor-regulated transcription? Mol. Endocrinol.18, 493–499 (2004).
  • O’Malley BW. A life-long search for the molecular pathways of steroid hormone action. Mol. Endocrinol.19, 1402–1411 (2005).
  • Wu RC, Smith CL, O’Malley BW. Transcriptional regulation by steroid receptor coactivator phosphorylation. Endocr. Rev.26, 393–399 (2005).
  • Cheskis BJ, McKenna NJ, Wong CW et al. Hierarchical affinities and a bipartite interaction model for estrogen receptor isoforms and full-length steroid receptor coactivator (SRC/p160) family members. J. Biol. Chem.278, 13271–13277 (2003).
  • Lonard DM, Tsai SY, O’Malley BW. Selective estrogen receptor modulators 4-hydroxytamoxifen and raloxifene impact the stability and function of SRC-1 and SRC-3 coactivator proteins. Mol. Cell Biol.24, 14–24 (2004).
  • Garside H, Stevens A, Farrow S et al. Glucocorticoid ligands specify different interactions with NF-κB by allosteric effects on the glucocorticoid receptor DNA binding domain. J. Biol. Chem.279, 50050–50059 (2004).
  • Stevens A, Garside H, Berry A, Waters C, White A, Ray D. Dissociation of steroid receptor coactivator 1 and nuclear receptor corepressor recruitment to the human glucocorticoid receptor by modification of the ligand-receptor interface: the role of tyrosine 735. Mol. Endocrinol.17, 845–859 (2003).
  • Kuang SQ, Liao L, Wang S, Medina D, O'Malley BW, Xu J. Mice lacking the amplified in breast cancer 1/steroid receptor coactivator-3 are resistant to chemical carcinogen-induced mammary tumorigenesis. Cancer Res.6, 7993–8002 (2005).
  • O’Malley BW. Results of a search for the mechanisms of steroid receptor regulation of gene expression. Ann. NY Acad. Sci.1038, 80–87 (2004).
  • Wu HY, Hamamori Y, Xu J et al. Nuclear hormone receptor coregulator GRIP1 suppresses, whereas SRC1A and p/CIP coactivate, by domain-specific binding of MyoD. J. Biol. Chem.280, 3129–3137 (2005).
  • Ying H, Furuya F, Willingham MC, Xu J, O’Malley BW, Cheng SY. Dual functions of the steroid hormone receptor coactivator 3 in modulating resistance to thyroid hormone. Mol. Cell Biol.25, 7687–7695 (2005).
  • Ismaili N, Garabedian MJ. Modulation of glucocorticoid receptor function via phosphorylation. Ann. NY Acad. Sci.1024, 86–101 (2004).
  • Krstic MD, Rogatsky I, Yamamoto KR, Garabedian MJ. Mitogen-activated and cyclin-dependent protein kinases selectively and differentially modulate transcriptional enhancement by the glucocorticoid receptor. Mol. Cell Biol.17, 3947–3954 (1997).
  • Szatmary Z, Garabedian MJ, Vilcek J. Inhibition of glucocorticoid receptor-mediated transcriptional activation by p38 mitogen-activated protein (MAP) kinase. J. Biol. Chem.279, 43708–43715 (2004).
  • Wang Z, Garabedian MJ. Modulation of glucocorticoid receptor transcriptional activation, phosphorylation, and growth inhibition by p27Kip1. J. Biol. Chem.278, 50897–50901 (2003).
  • Wang Z, Frederick J, Garabedian MJ. Deciphering the phosphorylation “code” of the glucocorticoid receptor in vivo.J. Biol. Chem.277, 26573–26580 (2002).
  • Nissen RM, Yamamoto KR. The glucocorticoid receptor inhibits NFκB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev.14, 2314–2329 (2000).
  • Stoecklin E, Wissler M, Schaetzle D, Pfitzner E, Groner B. Interactions in the transcriptional regulation exerted by Stat5 and by members of the steroid hormone receptor family. J. Steroid Biochem. Mol. Biol.69, 195–204 (1999).
  • Groner B. Transcription factor regulation in mammary epithelial cells. Domest. Anim. Endocrinol.23, 25–32 (2002).
  • Biola A, Lefebvre P, Perrin-Wolff M, Sturm M, Bertoglio J, Pallardy M. Interleukin-2 inhibits glucocorticoid receptor transcriptional activity through a mechanism involving STAT5 (signal transducer and activator of transcription 5) but not AP-1. Mol. Endocrinol.15, 1062–1076 (2001).
  • Goleva E, Kisich KO, Leung DY. A role for STAT5 in the pathogenesis of IL-2-induced glucocorticoid resistance. J. Immunol.169, 5934–5940 (2002).
  • Biola A, Andreau K, David M et al. The glucocorticoid receptor and STAT6 physically and functionally interact in T-lymphocytes. FEBS Lett.487, 229–233 (2000).
  • Nelson G, Wilde GJ, Spiller DG et al. NF-κB signalling is inhibited by glucocorticoid receptor and STAT6 via distinct mechanisms. J. Cell Sci.116, 2495–2503 (2003).
  • van Rossum EF, Russcher H, Lamberts SW. Genetic polymorphisms and multifactorial diseases: facts and fallacies revealed by the glucocorticoid receptor gene. Trends Endocrinol. Metab.16, 445–450 (2005).
  • van Rossum EF, Feelders RA, van den Beld AW et al. Association of the ER22/23EK polymorphism in the glucocorticoid receptor gene with survival and C-reactive protein levels in elderly men. Am. J. Med.117, 158–162 (2004).
  • van Rossum EF, Lamberts SW. Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition. Recent Prog. Horm. Res.59, 333–357 (2004).
  • de Lange P, Koper JW, Huizenga NA et al. Differential hormone-dependent transcriptional activation and -repression by naturally occurring human glucocorticoid receptor variants. Mol. Endocrinol.11, 1156–1164 (1997).
  • Huizenga NA, Koper JW, de Lange P et al. A polymorphism in the glucocorticoid receptor gene may be associated with and increased sensitivity to glucocorticoids in vivo. J. Clin. Endocrinol. Metab.83, 144–151 (1998).
  • Lin RC, Wang XL, Dalziel B, Caterson ID, Morris BJ. Association of obesity, but not diabetes or hypertension, with glucocorticoid receptor N363S variant. Obes. Res.11, 802–808 (2003).
  • Lin RC, Wang XL, Morris BJ. Association of coronary artery disease with glucocorticoid receptor N363S variant. Hypertension41, 404–407 (2003).
  • Rosmond R. Letter: glucocorticoid receptor N363S variant in obesity: comes into vanity and goes into darkness. Obes. Res.11, 1606–1607 (2003).
  • Ukkola O, Rosmond R, Tremblay A, Bouchard C. Glucocorticoid receptor Bcl I variant is associated with an increased atherogenic profile in response to long-term overfeeding. Atherosclerosis157, 221–224 (2001).
  • van Rossum EF, Koper JW, van den Beld AW et al. Identification of the BclI polymorphism in the glucocorticoid receptor gene: association with sensitivity to glucocorticoids in vivo and body mass index. Clin. Endocrinol. (Oxford)59, 585–592 (2003).
  • Stevens A, Donn R, Ray D. Regulation of glucocorticoid receptor gamma (GRγ) by glucocorticoid receptor haplotype and glucocorticoid. Clin. Endocrinol. (Oxford)61, 327–331 (2004).
  • Stevens A, Ray DW, Zeggini E et al. Glucocorticoid sensitivity is determined by a specific glucocorticoid receptor haplotype. J. Clin. Endocrinol. Metab.89, 892–897 (2004).
  • Charmandari E, Kino T, Souvatzoglou E, Vottero A, Bhattacharyya N, Chrousos GP. Natural glucocorticoid receptor mutants causing generalized glucocorticoid resistance: molecular genotype, genetic transmission, and clinical phenotype. J. Clin. Endocrinol. Metab.89, 1939–1949 (2004).
  • Cleasby ME, Kelly PA, Walker BR, Seckl JR. Programming of rat muscle and fat metabolism by in utero overexposure to glucocorticoids. Endocrinology144, 999–1007 (2003).
  • Cleasby ME, Livingstone DE, Nyirenda MJ, Seckl JR, Walker BR. Is programming of glucocorticoid receptor expression by prenatal dexamethasone in the rat secondary to metabolic derangement in adulthood? Eur. J. Endocrinol.148, 129–138 (2003).
  • Seckl JR, Meaney MJ. Glucocorticoid programming. Ann. NY Acad. Sci.1032, 63–84 (2004).
  • Seckl JR. Prenatal glucocorticoids and long-term programming. Eur. J. Endocrinol.151(Suppl. 3), U49–U62 (2004).
  • Weaver IC, Diorio J, Seckl JR, Szyf M, Meaney MJ. Early environmental regulation of hippocampal glucocorticoid receptor gene expression: characterization of intracellular mediators and potential genomic target sites. Ann. NY Acad. Sci.1024, 182–212 (2004).
  • Hakonarson H, Bjornsdottir US, Halapi E et al. Profiling of genes expressed in peripheral blood mononuclear cells predicts glucocorticoid sensitivity in asthma patients. Proc. Natl Acad. Sci. USA102, 14789–14794 (2005).
  • Barnes PJ. Scientific rationale for inhaled combination therapy with long-acting β2-agonists and corticosteroids. Eur. Respir. J.19, 182–191 (2002).
  • Tantisira KG, Small KM, Litonjua AA, Weiss ST, Liggett SB. Molecular properties and pharmacogenetics of a polymorphism of adenylyl cyclase type 9 in asthma: interaction between β-agonist and corticosteroid pathways. Hum. Mol. Genet.14, 1671–1677 (2005).
  • De Benedetti F, Meazza C, Vivarelli M. Functional and prognostic relevance of the -173 polymorphism of the macrophage migration inhibitory factor gene in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum.48, 1398–1407 (2003).
  • Donn R, Alourfi Z, Zeggini E et al. A functional promoter haplotype of macrophage migration inhibitory factor is linked and associated with juvenile idiopathic arthritis. Arthritis Rheum.50, 1604–1610 (2004).
  • Ito K, Lim S, Caramori G, Chung KF, Barnes PJ, Adcock IM. Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J.15, 1110–1112 (2001).
  • Kagoshima M, Wilcke T, Ito K et al. Glucocorticoid-mediated transrepression is regulated by histone acetylation and DNA methylation. Eur. J. Pharmacol.429, 327–334 (2001).
  • Norman M, Hearing SD. Glucocorticoid resistance – what is known? Curr. Opin. Pharmacol.2, 723–729 (2002).
  • Rogatsky I, Hittelman AB, Pearce D, Garabedian MJ. Distinct glucocorticoid receptor transcriptional regulatory surfaces mediate the cytotoxic and cytostatic effects of glucocorticoids. Mol. Cell Biol.19, 5036–5049 (1999).
  • Herr I, Ucur E, Herzer K et al. Glucocorticoid cotreatment induces apoptosis resistance toward cancer therapy in carcinomas. Cancer Res.63, 3112–3120 (2003).
  • Gaitan D, DeBold CR, Turney MK, Zhou P, Orth DN, Kovacs WJ. Glucocorticoid receptor structure and function in an adrenocorticotropin-secreting small cell lung cancer. Mol. Endocrinol.9, 1193–1201 (1995).
  • Witschi H, Espiritu I, Ly M, Uyeminami D. The chemopreventive effects of orally administered dexamethasone in Strain A/J mice following cessation of smoke exposure. Inhal. Toxicol.17, 119–122 (2005).
  • Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol.27, 24–31 (2006).
  • Raison CL, Borisov AS, Broadwell SD et al. Depression during pegylated interferon-α plus ribavirin therapy: prevalence and prediction. J. Clin. Psychiatry66, 41–48 (2005).
  • Griffin MG, Resick PA, Yehuda R. Enhanced cortisol suppression following dexamethasone administration in domestic violence survivors. Am. J. Psychiatry162, 1192–1199 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.