43
Views
1
CrossRef citations to date
0
Altmetric
Review

Proteomics for diabetes research: an update and future perspectives

Pages 507-515 | Published online: 10 Jan 2014

References

  • Toye A, Gauguier D. Genetics and functional genomics of type 2 diabetes mellitus. Genome Biol.4, 241 (2003).
  • Sparre T, Bergholdt R, Nerup J, Pociot F. Application of genomics and proteomics in Type 1 diabetes pathogenesis research. Expert Rev. Mol. Diagn.3, 743–757 (2003).
  • Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat. Biotechnol.21, 255–261 (2003).
  • Tooyama I, Sato H, Yasuhara O et al. Correlation of the expression level of C1q mRNA and the number of C1q- positive plaques in the Alzheimer disease temporal cortex. Analysis of C1q mRNA and its protein using adjacent or nearby sections. Dement. Geriatr. Cogn Disord.12, 237–242 (2001).
  • Tong X, Kawabata H, Koeffler HP. Iron deficiency can upregulate expression of transferrin receptor at both the mRNA and protein level. Br. J. Haematol.116, 458–464 (2002).
  • Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol.19, 1720–1730 (1999).
  • Ji P, Xuan JW, Onita T et al. Correlation study showing no concordance between EPAS-1/HIF-2α mRNA and protein expression in transitional cellcancer of the bladder. Urology61, 851–857 (2003).
  • Aebersold R. Constellations in a cellular universe. Nature422, 115–116 (2003).
  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem.250, 4007–4021 (1975).
  • Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik26, 231–243 (1975).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature422, 198–207 (2003).
  • Cho A, Normile D. Nobel Prize in Chemistry. Mastering macromolecules. Science298, 527–528 (2002).
  • Wasinger VC, Cordwell SJ, Cerpa–Poljak A et al. Progress with gene-product mapping of the mollicutes: Mycoplasma genitalium. Electrophoresis16, 1090–1094 (1995).
  • Peng J, Gygi SP. Proteomics: the move to mixtures. J. Mass Spectrom.36, 1083–1091 (2001).
  • Patterson SD. Proteomics: the industrialization of protein chemistry. Curr. Opin. Biotechnol.11, 413–418 (2000).
  • Yanagida M. Functional proteomics; current achievements. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.771, 89–106 (2002).
  • Klein E, Klein JB, Thongboonkerd V. Two-dimensional gel electrophoresis: a fundamental tool for expression proteomics studies. Contrib. Nephrol.141, 25–39 (2004).
  • Henzel WJ, Watanabe C, Stults JT. Protein identification: the origins of peptide mass fingerprinting. J. Am. Soc. Mass Spectrom.14, 931–942 (2003).
  • Pierce WM, Cai J. Applications of mass spectrometry in proteomics. Contrib. Nephrol.141, 40–58 (2004).
  • Karas M, Gluckmann M, Schafer J. Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J. Mass Spectrom.35, 1–12 (2000).
  • McCormack AL, Schieltz DM, Goode B et al. Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. Anal. Chem.69, 767–776 (1997).
  • Wu CC, MacCoss MJ, Howell KE, Yates JR III. A method for the comprehensive proteomic analysis of membrane proteins. Nat. Biotechnol.21, 532–538 (2003).
  • Gygi SP, Rist B, Griffin TJ, Eng J, Aebersold R. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J. Proteome. Res.1, 47–54 (2002).
  • Washburn MP, Wolters D, Yates JR III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.19, 242–247 (2001).
  • Mabuchi H, Nakahashi H. Profiling of urinary medium-sized peptides in normal and uremic urine by high-performance liquid chromatography. J. Chromatogr.233, 107–113 (1982).
  • Heine G, Raida M, Forssmann WG. Mapping of peptides and protein fragments in human urine using liquid chromatography-mass spectrometry. J. Chromatogr.776, 117–124 (1997).
  • Jensen PK, Pasa-Tolic L, Peden KK et al. Mass spectrometric detection for capillary isoelectric focusing separations of complex protein mixtures. Electrophoresis21, 1372–1380 (2000).
  • Gelpi E. Interfaces for coupled liquid-phase separation/mass spectrometry techniques. An update on recent developments. J. Mass Spectrom.37, 241–253 (2002).
  • Schmitt-Kopplin P, Frommberger M. Capillary electrophoresis-mass spectrometry: 15 years of developments and applications. Electrophoresis24, 3837–3867 (2003).
  • Hernandez-Borges J, Neususs C, Cifuentes A, Pelzing M. On-line capillary electrophoresis-mass spectrometry for the analysis of biomolecules. Electrophoresis25, 2257–2281 (2004).
  • Kolch W, Neususs C, Pelzing M, Mischak H. Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom. Rev.24, 959–977 (2005).
  • Simpson DC, Smith RD. Combining capillary electrophoresis with mass spectrometry for applications in proteomics. Electrophoresis26, 1291–1305 (2005).
  • Musyimi HK, Narcisse DA, Zhang X, Stryjewski W, Soper SA, Murray KK. Online CE-MALDI-TOF MS using a rotating ball interface. Anal. Chem.76, 5968–5973 (2004).
  • Zuberovic A, Ullsten S, Hellman U, Markides KE, Bergquist J. Capillary electrophoresis off-line matrix-assisted laser desorption/ionisation mass spectrometry of intact and digested proteins using cationic-coated capillaries. Rapid Commun. Mass Spectrom.18, 2946–2952 (2004).
  • Hu L, Evers S, Lu ZH, Shen Y, Chen J. Two-dimensional protein database of human pancreas. Electrophoresis25, 512–518 (2004).
  • Sanchez JC, Chiappe D, Converset V et al. The mouse SWISS-2D PAGE database: a tool for proteomics study of diabetes and obesity. Proteomics1, 136–163 (2001).
  • Taylor SW, Fahy E, Zhang B et al. Characterization of the human heart mitochondrial proteome. Nat. Biotechnol.21, 281–286 (2003).
  • Lopez MF, Kristal BS, Chernokalskaya E et al. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis21, 3427–3440 (2000).
  • Mootha VK, Bunkenborg J, Olsen JV et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell115, 629–640 (2003).
  • Vo TD, Greenberg HJ, Palsson BO. Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J. Biol. Chem.279, 39532–39540 (2004).
  • Thiele I, Price ND, Vo TD, Palsson BO. Candidate metabolic network states in human mitochondria: Impact of diabetes, ischemia, and diet. J. Biol. Chem.280, 11683–11695 (2005).
  • Korc M. Diabetes mellitus in the era of proteomics. Mol. Cell Proteomics2, 399–404 (2003).
  • Sparre T, Larsen MR, Heding PE, Karlsen AE, Jensen ON, Pociot F. Unraveling the pathogenesis of type 1 diabetes with proteomics: present and future directions. Mol. Cell Proteomics4, 441–457 (2005).
  • Scott EM, Carter AM, Findlay JB. The application of proteomics to diabetes. Diab. Vasc. Dis. Res.2, 54–60 (2005).
  • Sparre T, Bjerre CU, Mose LP et al. IL-1β induced protein changes in diabetes prone BB rat islets of Langerhans identified by proteome analysis. Diabetologia45, 1550–1561 (2002).
  • Nielsen K, Sparre T, Larsen MR et al. Protein expression changes in a cell system of β-cell maturation reflect an acquired sensitivity to IL-1β. Diabetologia47, 62–74 (2004).
  • Sparre T, Christensen UB, Gotfredsen CF et al. Changes in expression of IL-1β influenced proteins in transplanted islets during development of diabetes in diabetes-prone BB rats. Diabetologia47, 892–908 (2004).
  • Nielsen K, Karlsen AE, Deckert M et al. β-cell maturation leads to in vitro sensitivity to cytotoxins. Diabetes48, 2324–2332 (1999).
  • Gerling IC, Singh S, Lenchik NI, Marshall DR, Wu J. New data analysis and mining approaches identify unique proteome and transcriptome markers of susceptibility to autoimmune diabetes. Mol. Cell Proteomics5, 293–305 (2006).
  • Thongboonkerd V, Barati MT, McLeish KR et al. Alterations in the renal elastin-elastase system in Type 1 diabetic nephropathy identified by proteomic analysis. J. Am. Soc. Nephrol.15, 650–662 (2004).
  • Thongboonkerd V, Barati MT, McLeish KR, Pierce WM, Epstein PN, Klein JB. Proteomics and diabetic nephropathy. Contrib. Nephrol.141, 142–154 (2004).
  • Thongboonkerd V, Barati MT, McLeish KR et al. Altered elastase inhibitor and elastin expression in Type 2 diabetic kidneys defined by proteomic analysis. J. Am. Soc. Nephrol.14(Suppl.), 600A (2003).
  • Thongboonkerd V, Zheng S, McLeish KR, Epstein PN, Klein JB. Proteomic identification and immunolocalization of increased renal calbindin-D28k expression in OVE26 diabetic mice. Rev. Diab. Stud.2, 17–24 (2005).
  • Carlson EC, Audette JL, Klevay LM, Nguyen H, Epstein PN. Ultrastructural and functional analyses of nephropathy in calmodulin- induced diabetic transgenic mice. Anat. Rec.247, 9–19 (1997).
  • Epstein PN, Overbeek PA, Means AR. Calmodulin-induced early-onset diabetes in transgenic mice. Cell58, 1067–1073 (1989).
  • Zheng S, Noonan WT, Metreveli NS et al. Development of late-stage diabetic nephropathy in OVE26 diabetic mice. Diabetes53, 3248–3257 (2004).
  • Sharma K, McCue P, Dunn SR. Diabetic kidney disease in the db/db mouse. Am. J. Physiol Renal Physiol.284, F1138–F1144 (2003).
  • Sharma K, Lee S, Han S et al. Two-dimensional fluorescence difference gel electrophoresis analysis of the urine proteome in human diabetic nephropathy. Proteomics5, 2648–2655 (2005).
  • Meier M, Kaiser T, Herrmann A et al. Identification of urinary protein pattern in type 1 diabetic adolescents with early diabetic nephropathy by a novel combined proteome analysis. J. Diabetes Complications19, 223–232 (2005).
  • Mischak H, Kaiser T, Walden M et al. Proteomic analysis for the assessment of diabetic renal damage in humans. Clin. Sci. (Lond.)107, 485–495 (2004).
  • Lim CK, Lord G. Current developments in LC-MS for pharmaceutical analysis. Biol. Pharm. Bull.25, 547–557 (2002).
  • Iyer RA, Malhotra B, Khan S et al. Comparative biotransformation of radiolabeled 14C omapatrilat and stable-labeled 13C2 omapatrilat after oral administration to rats, dogs, and humans. Drug Metab Dispos.31, 67–75 (2003).
  • Kim Y, Hwang J, Kim M, Lee W. Determination of Tripamide in human urine by high-performance liquid chromatography and high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom.17, 301–306 (2003).
  • Garzotti M. Lacidipine, a potential peroxynitrite scavenger: investigation of activity by liquid chromatography and mass spectrometry. Rapid Commun. Mass Spectrom.17, 272–278 (2003).
  • Jain KK. Proteomics and drug discovery. Contrib. Nephrol.141, 308–327 (2004).
  • Chapman AB, Schwartz GL, Boerwinkle E, Turner ST. Predictors of antihypertensive response to a standard dose of hydrochlorothiazide for essential hypertension. Kidney Int.61, 1047–1055 (2002).
  • Trotta R, Donati MB, Iacoviello L. Trends in pharmacogenomics of drugs acting on hypertension. Pharmacol. Res.49, 351–356 (2004).
  • Cadman PE, O’Connor DT. Pharmacogenomics of hypertension. Curr. Opin. Nephrol. Hypertens.12, 61–70 (2003).
  • Edvardsson U, Brockenhuus vL, Panfilov O, Nystrom AC, Nilsson F, Dahllof B. Hepatic protein expression of lean mice and obese diabetic mice treated with peroxisome proliferator-activated receptor activators. Proteomics3, 468–478 (2003).
  • Sanchez JC, Converset V, Nolan A et al. Effect of rosiglitazone on the differential expression of diabetes- associated proteins in pancreatic islets of C57Bl/6 lep/lep mice. Mol. Cell Proteomics1, 509–516 (2002).
  • Sanchez JC, Converset V, Nolan A et al. Effect of rosiglitazone on the differential expression of obesity and insulin resistance associated proteins in lep/lep mice. Proteomics3, 1500–1520 (2003).
  • Andersen HU, Fey SJ, Larsen PM et al. Interleukin-1β induced changes in the protein expression of rat islets: a computerized database. Electrophoresis18, 2091–2103 (1997).
  • Larsen PM, Fey SJ, Larsen MR et al. Proteome analysis of interleukin-1β-induced changes in protein expression in rat islets of Langerhans. Diabetes50, 1056–1063 (2001).
  • Sparre T, Reusens B, Cherif H et al. Intrauterine programming of fetal islet gene expression in rats – effects of maternal protein restriction during gestation revealed by proteome analysis. Diabetologia46, 1497–1511 (2003).
  • Christensen UB, Larsen PM, Fey SJ et al. Islet protein expression changes during diabetes development in islet syngrafts in BB-DP rats and during rejection of BB-DP islet allografts. Autoimmunity32, 1–15 (2000).
  • Ahmed M, Bergsten P. Glucose-induced changes of multiple mouse islet proteins analysed by two-dimensional gel electrophoresis and mass spectrometry. Diabetologia48, 477–485 (2005).
  • Shen X, Zheng S, Thongboonkerd V et al. Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am. J. Physiol. Endocrinol. Metab.287, E896–E905 (2004).
  • Bickel CA, Knepper MA, Verbalis JG, Ecelbarger CA. Dysregulation of renal salt and water transport proteins in diabetic Zucker rats. Kidney Int.61, 2099–2110 (2002).
  • Song J, Knepper MA, Verbalis JG, Ecelbarger CA. Increased renal ENaC subunit and sodium transporter abundances in streptozotocin-induced type 1 diabetes. Am. J. Physiol Renal Physiol.285, F1125–F1137 (2003).
  • Edvardsson U, Alexandersson M, Brockenhuus vL et al. A proteome analysis of livers from obese (ob/ob) mice treated with the peroxisome proliferator WY14,643. Electrophoresis20, 935–942 (1999).
  • Jiang M, Jia L, Jiang W et al. Protein disregulation in red blood cell membranes of type 2 diabetic patients. Biochem. Biophys. Res. Commun.309, 196–200 (2003).
  • Tsuneki H, Ishizuka M, Terasawa M, Wu JB, Sasaoka T, Kimura I. Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans. BMC Pharmacol.4, 18 (2004).
  • Zhang R, Barker L, Pinchev D et al. Mining biomarkers in human sera using proteomic tools. Proteomics4, 244–256 (2004).
  • Basso D, Greco E, Fogar P et al. Pancreatic cancer-associated diabetes mellitus: an open field for proteomic applications. Clin. Chim. Acta357, 184–189 (2005).
  • Davidsson P, Hulthe J, Fagerberg B et al. A proteomic study of the apolipoproteins in LDL subclasses in patients with the metabolic syndrome and type 2 diabetes. J. Lipid Res.46, 1999–2006 (2005).
  • Thongboonkerd V, Klein JB, Jevans AW, McLeish KR. Urinary proteomics and biomarker discovery for glomerular diseases. Contrib. Nephrol.141, 292–307 (2004).
  • Yamane K, Minamoto A, Yamashita H et al. Proteome analysis of human vitreous proteins. Mol. Cell Proteomics2, 1177–1187 (2003).
  • Ouchi M, West K, Crabb JW, Kinoshita S, Kamei M. Proteomic analysis of vitreous from diabetic macular edema. Exp. Eye Res.81, 176–182 (2005).
  • Brock JW, Hinton DJ, Cotham WE et al. Proteomic analysis of the site specificity of glycation and carboxymethylation of ribonuclease. J. Proteome. Res.2, 506–513 (2003).
  • Lapolla A, Gerhardinger C, Baldo L et al. A study on in vitro glycation processes by matrix-assisted laser desorption ionization mass spectrometry. Biochim. Biophys. Acta1225, 33–38 (1993).
  • Lapolla A, Fedele D, Aronica R et al. A highly specific method for the characterization of glycation and glyco-oxidation products of globins. Rapid Commun. Mass Spectrom.11, 613–617 (1997).
  • Lapolla A, Fedele D, Aronica R et al. Evaluation of IgG glycation levels by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom.11, 1342–1346 (1997).
  • Lapolla A, Fedele D, Plebani M et al. Evaluation of glycated globins by matrix-assisted laser desorption/ionization mass spectrometry. Clin. Chem.45, 288–290 (1999).
  • Oh-Ishi M, Ueno T, Maeda T. Proteomic method detects oxidatively induced protein carbonyls in muscles of a diabetes model Otsuka Long-evans Tokushima Fatty (OLETF) rat. Free Radic. Biol. Med.34, 11–22 (2003).
  • Turko IV, Li L, Aulak KS, Stuehr DJ, Chang JY, Murad F. Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J. Biol. Chem.278, 33972–33977 (2003).
  • Hojlund K, Wrzesinski K, Larsen PM et al. Proteome analysis reveals phosphorylation of ATP synthase β-subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes. J. Biol. Chem.278, 10436–10442 (2003).
  • Morel NM, Holland JM, van der GJ et al. Primer on medical genomics. Part XIV: introduction to systems biology – a new approach to understanding disease and treatment. Mayo Clin. Proc.79, 651–658 (2004).
  • Ge H, Walhout AJ, Vidal M. Integrating ‘omic’ information: a bridge between genomics and systems biology. Trends Genet.19, 551–560 (2003).
  • Weston AD, Hood L. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J. Proteome. Res.3, 179–196 (2004).

Websites

  • Expert protein analysis system (ExPASy) proteomics server www.expasy.org
  • SWISS-2DPAGE 2D polyacrylamide gel electrophoresis database www.expasy.org/ch2d/
  • WORLD-2DPAGE www.expasy.org/ch2d/2d-index.html
  • 2D hunt (2D electrophoresis finder) www.expasy.org/ch2d/2DHunt/
  • NCI 2DWG image metadatabase www-lecb.ncifcrf.gov/2dwgDB/
  • Human mitochondrial metabolic network http://systemsbiology.ucsd.edu/organisms/mitochondria/index.html

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.