48
Views
5
CrossRef citations to date
0
Altmetric
Review

Ion channels of primate ovarian endocrine cells: identification and functional significance

&
Pages 549-555 | Published online: 10 Jan 2014

References

  • Lang F, Foller M, Lang KS et al. Ion channels in cell proliferation and apoptotic cell death. J. Membr. Biol.205(3), 147–157 (2005).
  • Bulling A, Berg FD, Berg U et al. Identification of an ovarian voltage-activated Na+ channel type: hints to involvement in luteolysis. Mol. Endocrinol.14(7), 1064–1074 (2000).
  • Mattioli M, Barboni B, Bacci ML, Seren E. Maturation of pig oocytes: observations on membrane potential. Biol. Reprod.43(2), 318–322 (1990).
  • Higuchi T, Kaneko A, Abel JH Jr, Niswender GD. Relationship between membrane potential and progesterone release in ovine corpora lutea. Endocrinology99(4), 1023–1032 (1976).
  • Veldhuis JD, Klase PA. Mechanisms by which calcium ions regulate the steroidogenic actions of luteinizing hormone in isolated ovarian cells in vitro. Endocrinology111(1), 1–6 (1982).
  • Mason DE, Mitchell KE, Li Y, Finley MR, Freeman LC. Molecular basis of voltage-dependent potassium currents in porcine granulosa cells. Mol. Pharmacol.61(1), 201–213 (2002).
  • Kunz L, Rämsch R, Krieger A et al. Voltage-dependent K+ channel acts as a sex steroid sensor in endocrine cells of the human ovary. J. Cell. Physiol.206(1), 167–174 (2006).
  • Mealing G, Morley P, Whitfield JF, Tsang BK, Schwartz JL. Granulosa cells have calcium-dependent action potentials and a calcium-dependent chloride conductance. Pflugers Arch.428(3–4), 307–314 (1994).
  • Chiang M, Strong JA, Asem EK. Luteinizing hormone activates chloride currents in hen ovarian granulosa cells. Comp. Biochem. Physiol. A. Physiol.116(4), 361–368 (1997).
  • Qin W, Rane SG, Asem EK. Low extracellular Ca2+ activates a transient Cl- current in chicken ovarian granulosa cells. Am. J. Physiol. Cell Physiol.279(2), C319–C325 (2000).
  • Qin W, Rane SG, Asem EK. Basal lamina of ovarian follicle regulates an inward Cl- current in differentiated granulosa cells. Am. J. Physiol. Cell Physiol.282(1), C34–C48 (2002).
  • Manikkam M, Li Y, Mitchell BM, Mason DE, Freeman LC. Potassium channel antagonists influence porcine granulosa cell proliferation, differentiation, and apoptosis. Biol. Reprod.67(1), 88–98 (2002).
  • Mattioli M, Barboni B, Seren E. Luteinizing hormone inhibits potassium outward currents in swine granulosa cells by intracellular calcium mobilization. Endocrinology129(5), 2740–2745 (1991).
  • Mattioli M, Barboni B, DeFelice LJ. Calcium and potassium currents in porcine granulosa cells maintained in follicular or monolayer tissue culture. J. Membr. Biol.134(1), 75–83 (1993).
  • Kusaka M, Tohse N, Nakaya H, Tanaka T, Kanno M, Fujimoto S. Membrane currents of porcine granulosa cells in primary culture: characterization and effects of luteinizing hormone. Biol. Reprod.49(1), 95–103 (1993).
  • Li Y, Ganta S, von Stein FB, Mason DE, Mitchell BM, Freeman LC. 4-aminopyridine decreases progesterone production by porcine granulosa cells. Reprod. Biol. Endocrinol.1, 31 (2003).
  • Schwartz JL, Mealing GA, Asem EK, Whitfield JF, Tsang BK. Ionic currents in avian granulosa cells. FEBS Lett.241(1–2), 169–172 (1988).
  • Asem EK, Schwartz JL, Mealing GA, Tsang BK, Whitfield JF. Evidence for two distinct potassium channels in avian granulosa cells. Biochem. Biophys. Res. Commun.155(2), 761–766 (1988).
  • Schwartz JL, Asem EK, Mealing GA et al. T- and L-calcium channels in steroid-producing chicken granulosa cells in primary culture. Endocrinology125(4), 1973–1982 (1989).
  • Asem EK, Qin W, Rane SG. Effect of basal lamina of ovarian follicle on T- and L-type Ca2+ currents in differentiated granulosa cells. Am. J. Physiol. Endocrinol. Metab.282(1), E184–E196 (2002).
  • Wan X, Desilets M, Soboloff J, Morris C, Tsang BK. Muscarinic activation inhibits T-type Ca2+ current in hen granulosa cells. Endocrinology137(6), 2514–2521 (1996).
  • Agoston A, Kunz L, Krieger A, Mayerhofer A. Two types of calcium channels in human ovarian endocrine cells: involvement in steroidogenesis. J. Clin. Endocrinol. Metab.89(9), 4503–4512 (2004).
  • Platano D, Magli MC, Pia Ferraretti A, Gianaroli L, Aicardi G. L- and T-type voltage-gated Ca2+ channels in human granulosa cells: functional characterization and cholinergic regulation. J. Clin. Endocrinol. Metab.90(4), 2192–2197 (2005).
  • Mayerhofer A, Dimitrijevic N, Kunz L. The expression and biological role of the non-neuronal cholinergic system in the ovary. Life Sci.72(18–19), 2039–2045 (2003).
  • Mayerhofer A, Kunz L. A non-neuronal cholinergic system of the ovarian follicle. Ann. Anat.187(5–6), 521–528 (2005).
  • Wessler I, Kilbinger H, Bittinger F, Unger R, Kirkpatrick CJ. The non-neuronal cholinergic system in humans: expression, function and pathophysiology. Life Sci.72(18–19), 2055–2061 (2003).
  • Fritz S, Föhr KJ, Boddien S, Berg U, Brucker C, Mayerhofer A. Functional and molecular characterization of a muscarinic receptor type and evidence for expression of choline-acetyltransferase and vesicular acetylcholine transporter in human granulosa-luteal cells. J. Clin. Endo. Metab.84, 1744–1750 (1999).
  • Fritz S, Wessler I, Breitling R et al. Expression of muscarinic receptor types in the primate ovary and evidence for nonneuronal acetylcholine synthesis. J. Clin. Endo. Metab.86(1), 349–354 (2001).
  • Mayerhofer A, Fritz S. Ovarian acetylcholine and muscarinic receptors: hints of a novel intrinsic ovarian regulatory system. Microsc. Res. Tech.59, 503–508 (2002).
  • Fritz S, Kunz L, Dimitrijevic N, Grünert R, Heiss C, Mayerhofer A. Muscarinic receptors in human luteinized granulosa cells: activation blocks gap junctions and induces the transcription factor early growth response factor-1. J. Clin. Endocrinol. Metab.87(3), 1362–1367 (2002).
  • Kunz L, Thalhammer A, Berg FD et al. Ca2+ activated, large conductance K+ channel in the ovary: identification, characterization, and functional involvement in steroidogenesis. J. Clin. Endocrinol. Metab.87(12), 5566–5574 (2002).
  • White HS. Comparative anticonvulsant and mechanistic profile of the established and newer antiepileptic drugs. Epilepsia40(Suppl. 5), S2–S10 (1999).
  • Bilo L, Meo R, Valentino R, Di Carlo C, Striano S, Nappi C. Characterization of reproductive endocrine disorders in women with epilepsy. J. Clin. Endocrinol. Metab.86(7), 2950–2956 (2001).
  • Isojarvi JI. Reproductive dysfunction in women with epilepsy. Neurology61(6 Suppl. 2), S27–S34 (2003).
  • Mikkonen K, Vainionpaa LK, Pakarinen AJ et al. Long-term reproductive endocrine health in young women with epilepsy during puberty. Neurology62(3), 445–450 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.