53
Views
2
CrossRef citations to date
0
Altmetric
Review

PDX-1 and MafA in β-cell differentiation and dysfunction

, , , , &
Pages 587-600 | Published online: 10 Jan 2014

References

  • Shapiro AM, Lakey JR, Ryan EA et al. Islet transplantation in seven patients with Type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med.343, 230–238 (2000).
  • Ryan EA, Lakey JR, Rajotte RV et al. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes50, 710–719 (2000).
  • Weir GC, Laybutt DR, Kaneto H, Bonner-Weir S, Sharma A. β-cell adaptation and decompensation during the progression of diabetes. Diabetes50, S154–S159 (2001).
  • Poitout V, Robertson RP. Secondary β-cell failure in Type 2 diabetes – a convergence of glucotoxicity and lipotoxicity. Endocrinology143, 339–342 (2002).
  • Ohlsson H, Karlsson K, Edlund T. IPF1, a homeodomain-containing-transactivator of the insulin gene. EMBO J.12, 4251–4259 (1993).
  • Miller CP, McGehee RE, Habener JF. IDX-1: a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. EMBO J.13, 1145–1156 (1994).
  • Leonard J, Peers B, Johnson T, Ferreri K, Lee S, Montminy MR. Characterization of somatostatin transactivating factor-1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells. Mol. Endocrinol.7, 1275–1283 (1993).
  • Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature37, 606–609 (1993).
  • Guz Y, Montminy MR, Stein R et al. Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development121, 11–18 (1995).
  • Ahlgren U, Jonsson J, Edlund H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development122, 1409–1416 (1996).
  • Offield MF, Jetton TL, Labosky P et al. PDX-1 is required for pancreas outgrowth and differentiation of the rostral duodenum. Development122, 983–985 (1996).
  • Kaneto H, Miyagawa J, Kajimoto Y et al. Expression of heparin-binding epidermal growth factor-like growth factor during pancreas development: a potential role of PDX-1 in the transcriptional activation. J. Biol. Chem.272, 29137–29143 (1997).
  • Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet.15, 106–110 (1997).
  • Dutta S, Bonner-Weir S, Montminy M, Wright C. Regulatory factor linked to late-onset diabetes? Nature392, 560 (1998).
  • Stoffers DA, Heller RS, Miller CP, Habener JF. Developmental expression of the homeodomain protein IDX-1 mice transgenic for an IDX-1 promoter/LacZ transcriptional reporter. Endocrinology140, 5374–5381 (1999).
  • Holland AM, Hale MA, Kagami H, Hammer RE, MacDonald RJ. Experimental control of pancreatic development and maintenance. Proc. Natl Acad. Sci. USA99, 12236–12241 (2002).
  • Melloul D. Transcription factors in islet development and physiology: role of PDX-1 in beta-cell function. Ann. NY Acad. Sci.1014, 28–37 (2004).
  • Harrison KA, Thaler J, Pfaff SL, Gu H, Kehrl JH. Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nat. Genet.23, 71–75 (1999).
  • Li H, Arber S, Jessell TM, Edlund H. Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat. Genet.23, 67–70 (1999).
  • Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature385, 257–260 (1997).
  • Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P. The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature386, 399–402 (1997).
  • St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, Gruss P. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature387, 406–409 (1997).
  • Sander M, Neubuser A, Kalamaras J, Ee HC, Martin GR, German MS. Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Dev.11, 1662–1673 (1997).
  • Sander M, Sussel L, Conners J et al. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development127, 5533–5540 (2000).
  • Sussel L, Kalamaras J, Hartigan-O’Connor DJ et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development125, 2213–2221 (1998).
  • Fujitani Y, Kajimoto Y, Yasuda T et al. Identification of a portable repression domain and an E1A-responsive activation domain in Pax 4: a possible role of Pax 4 as a transcriptional repressor in the pancreas. Mol. Cell. Biol.19, 8281–8291 (1999).
  • Smith SB, Ee HC, Conners JR, German MS. Paired-homeodomain transcription factor PAX4 acts as a transcriptional repressor in early pancreatic development. Mol. Cell. Biol.19, 8272–8280 (1999).
  • Prado CL, Pugh-Bernard AE, Elghazi L, Sosa-Pineda B, Sussel L. Ghrelin cells replace insulin-producing β cells in two mouse model of pancreas development. Proc. Natl Acad. Sci.101, 2924–2929 (2004).
  • Heller RS, Jenny M, Collombat P et al. Genetic determinants of pancreatic ε-cell development. Dev. Biol.286, 217–224 (2005).
  • Pedersen JK, Nelson SB, Jorgensen MC et al. Endodermal expression of Nkx6 genes depends differentially on Pdx1. Dev. Biol.288, 487–501 (2005).
  • Jacquemin P, Yoshitomi H, Kashima Y, Rousseau GG, Lemaigre FP, Zaret KS. An endothelial-mesenchymal relay pathway regulates early phases of pancreas development. Dev. Biol.290, 189–199 (2006).
  • Ferber S, Halkin A, Cohen H et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat. Med.6, 568–572 (2000).
  • Heller RS, Stoffers DA, Bock T et al. Improved glucose tolerance and acinar dysmorphogenesis by targeted expression of transcription factor PDX-1 to the exocrine pancreas. Diabetes50, 1553–1561 (2001).
  • Kojima H, Nakamura T, Fujita Y et al. Combined expression of pancreatic duodenal homeobox 1 and islet factor 1 induces immature enterocytes to produce insulin. Diabetes51, 1398–1408 (2002).
  • Yoshida S, Kajimoto Y, Yasuda T et al. PDX-1 induces differentiation of intestinal epithelioid IEC-6 into insulin-producing cells. Diabetes51, 2505–2513 (2002).
  • Noguchi H, Kaneto H, Weir GC, Bonner-Weir S. PDX-1 protein containing its own Antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes52, 1732–1737 (2003).
  • Taniguchi H, Yamato E, Tashiro F, Ikegami H, Ogihara T, Miyazaki J. β-Cell neogenesis induced by adenovirus-mediated gene delivery of transcription factor pdx-1 into mouse pancreas. Gene Ther.10, 15–23 (2003).
  • Tang D-Q, Cao L-Z, Burkhardt BR et al.In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes53, 1721–1732 (2004).
  • Miyatsuka T, Kaneto H, Kajimoto Y et al. Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis. Biochem. Biophys. Res. Commun.310, 1017–1025 (2003).
  • Kaneto H, Nakatani Y, Miyatsuka T et al. PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes54, 1009–1022 (2005).
  • Cao L-Z, Tang D-Q, Horb ME, Li S-W, Yang L-J. High glucose is necessary for complete maturation of Pdx 1-VP16-expressing hepatic cells into functional insulin-producing cells. Diabetes53, 3168–3178 (2004).
  • Imai J, Katagiri H, Yamada T et al. Constitutively active PDX1 induced efficient insulin production in adult murine liver. Biochem. Biophys. Res. Commun.326, 402–409 (2005).
  • Petersen HV, Serup P, Leonard J, Michelsen BK, Madsen OD. Transcriptional regulation of the human insulin gene is dependent on the homeodomain protein STF1/IPF1 acting through the CT boxes. Proc. Natl Acad. Sci. USA91, 10465–10469 (1994).
  • Peers B, Leonard J, Sharma S, Teitelman G, Montminy MR. Insulin expression in pancreatic islet cells relies on cooperative interactions between the helix loop helix factor E47 and the homeobox factor STF-1. Mol. Endocrinol.8, 1798–1806 (1994).
  • Waeber G, Thompson N, Nicod P, Bonny C. Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol. Endocrinol.10, 1327–1334 (1996).
  • Watada H, Kajimoto Y, Umayahara Y et al. The human glucokinase gene β-cell-type promoter: an essential role of insulin promoter factor 1 (IPF1)/PDX-1 in its activation in HIT-T15 cells. Diabetes45, 1478–1488 (1994).
  • Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H. β-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes Dev.12, 1763–1768 (1998).
  • Wang H, Maechler P, Ritz-Laser B et al. Pdx1 level defines pancreatic gene expression pattern and cell lineage differentiation. J. Biol. Chem.276, 25279–25286 (2001).
  • Brissova M, Shiota M, Nicholson WE et al. Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion. J. Biol. Chem.277, 1125–11232 (2002).
  • Chakrabarti SK, James JC, Mirmira RG. Quantitative assessment of gene targeting in vitro and in vivo by the pancreatic transcription factor, Pdx1: importance of chromatin structure in directing promoter binding. J. Biol. Chem.277, 13286–13293 (2002).
  • Kulkarni RN, Jhala US, Winnay JN, Krajewski S, Montminy M, Kahn CR. PDX-1 haploinsufficiency limits the compensatory islet hyperplasia that occurs in response to insulin resistance. J. Clin. Invest.114, 828–836 (2004).
  • Holland AM, Gonez LJ, Naselli G, MacDonald RJ, Harrison LC. Conditional expression demonstrates the role of the homeodomain transcription factor Pdx1 in maintenance and regeneration of beta-cells in the adult pancreas. Diabetes54, 2586–2595 (2005).
  • Stoffers DA, Ferrer J, Clarke WL, Habener JF. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat. Genet.17, 138–139 (1997).
  • Naya FJ, Stellrecht CMM, Tsai M-J. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev.9, 1009–1019 (1995).
  • Naya FJ, Huang H, Qiu Y et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev.11, 2323–2334 (1997).
  • Kojima H, Fujimiya M, Matsumura K et al. NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat. Med.9, 595–603 (2003).
  • Noguchi H, Bonner-Weir S, Wei F-Y, Matsushita M, Matsumoto S. BETA2/NeuroD protein can be transduced into cells due to an arginine- and lysine-rich sequence. Diabetes54, 2859–2866 (2005).
  • Malecki MT, Jhala US, Antonellis A et al. Mutations in NeuroD1 are associated with the development of type 2 diabetes mellitus. Nat. Genet.23, 323–328 (1999).
  • Sharma A, Stein R. Glucose-induced transcription of the insulin gene is mediated by factors required for β-cell-type-specific expression. Mol. Cell. Biol.14, 871–879 (1994).
  • German MS, Wang J. The insulin gene contains multiple transcriptional elements that respond to glucose. Mol. Cell. Biol.14, 4067–4075 (1994).
  • Grapin-Botton A, Majithia AR, Melton DA. Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev.15, 444–454 (2001).
  • Apelqvist A, Li H, Sommer L et al. Notch signaling controls pancreatic cell differentiation. Nature400, 877–881 (1999).
  • Schwitzgebel VM, Scheel DW, Conners JR et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development127, 3533–3542 (2000).
  • Gradwohl G, Dierich A, LeMeur M, Guillemot F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl Acad. Sci. USA97, 1607–1611 (2000).
  • Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and distinct from duct progenitors. Development129, 2447–2457 (2002).
  • Heremans Y, Casteele MVD, Veld P et al. Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J. Cell Biol.159, 303–311 (2002).
  • Dominguez-Bendala J, Klein D, Ribeiro M et al. TAT-mediated neurogenin 3 protein transduction stimulates pancreatic endocrine differentiation in vitro. Diabetes54, 720–726 (2005).
  • Bell GI, Polonsky KS. Diabetes mellitus and genetically programmed defects in β-cell function. Nature414, 788–791 (2001).
  • Shih DQ, Heimesaat M, Kuwajima S, Stein R, Wright CV, Stoffel M. Profound defects in pancreatic β-cell function in mice with combined heterozygous mutations in Pdx-1, Hnf-1α, and Hnf-3β. Proc. Natl Acad. Sci. USA99, 3818–3823 (2002).
  • Servitja JM, Ferrer J. Transcriptional networks controlling pancreatic development and β cell function. Diabetologia47, 597–613 (2004).
  • Gerrish K, Gannon M, Shih D et al. Pancreatic β cell-specific transcription of the pdx-1 gene. The role of conserved upstream control regions and their hepatic nuclear factor 3β sites. J. Biol. Chem.275, 3485–3492 (2000).
  • Marshak S, Benshushan E, Shoshkes M, Havin L, Cerasi E, Melloul D. Functional conservation of regulatory elements in the pdx-1 gene: PDX-1 and hepatocyte nuclear factor 3β transcription factors mediate β-cell-specific expression. Mol. Cell. Biol.20, 7583–7590 (2000).
  • Gerrish K, Cissell MA, Stein R. The role of hepatic nuclear factor 1α and PDX-1 in transcriptional regulation of the pdx-1 gene. J. Biol. Chem.276, 47775–47784 (2001).
  • Ben-Shushan E, Marshak S, Shoshkes M, Cerasi E, Melloul D. A pancreatic β-cell-specific enhancer in the human PDX-1 gene is regulated by hepatocyte nuclear factor 3β (HNF-3β), HNF-1α, and SPs transcription factors. J. Biol. Chem.276, 17533–17540 (2001).
  • Samaras SE, Cissell MA, Gerrish K, Wright CV, Gannon M, Stein R. Conserved sequences in a tissue-specific regulatory region of the pdx-1 gene mediate transcription in pancreatic β cells: role for hepatocyte nuclear factor 3β and Pax6. Mol. Cell. Biol.22, 4702–4713 (2002).
  • Samaras SE, Zhao L, Means A, Henderson E, Matsuoka TA, Stein R. The islet β cell-enriched RIPE3b1/Maf transcription factor regulates pdx-1 expression. J. Biol. Chem.278, 12263–12270 (2003).
  • Jacquemin P, Lemaigre FP, Rousseau GG. The Onecut transcription factor HNF-6 (OC-1) is required for timely specification of the pancreas and acts upstream of Pdx-1 in the specification cascade. Dev. Biol.258, 105–116 (2003).
  • Wu KL, Gannon M, Peshavaria M et al. Hepatocyte nuclear factor 3β is involved in pancreatic β-cell-specific transcription of the pdx-1 gene. Mol. Cell. Biol.17, 6002–6013 (1997).
  • Gannon M, Gamer LW, Wright CV. Regulatory regions driving developmental and tissue-specific expression of the essential pancreatic gene pdx1. Dev. Biol.238, 185–201 (2001).
  • Fujitani Y, Fujitani S, Boyer DF et al. Targeted deletion of a cis-regulatory region reveals differential gene dosage requirements for Pdx1 in foregut organ differentiation and pancreas formation. Genes Dev.20, 253–266 (2006).
  • Song SY, Gannon M, Washington MK et al. Expansion of Pdx1-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor α. Gastroenterology117, 1416–1426 (1999).
  • Koizumi M, Doi R, Toyoda E et al. Increased PDX-1 expression is associated with outcome in patients with pancreatic cancer. Surgery134, 260–266 (2003).
  • Jensen JN, Cameron E, Garay MV, Starkey TW, Gianani R, Jensen J. Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration. Gastroenterology128, 728–741 (2005).
  • Miyatsuka T, Kaneto H, Shiraiwa T et al. Persistent expression of PDX-1 causes acinar-to-ductal transition through Stat3 activation. Genes Dev.20, 1435–1440 (2006).
  • Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat. Genet.32, 128–134 (2002).
  • Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science292, 1389–1394 (2001).
  • Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes49, 157–162 (2000).
  • Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki K, Tzukerman M. Insulin production by human embryonic stem cells. Diabetes50, 1691–1697 (2001).
  • Moritoh Y, Yamato E, Yasui Y, Miyazaki S, Miyazaki J. Analysis of insulin-producing cells during in vitro differentiation from feeder-free embryonic stem cells. Diabetes52, 1163–1168 (2003).
  • Hori Y, Rulifson IC, Tsai BC, Heit JJ, Cahoy JD, Kim SK. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc. Natl Acad. Sci. USA99, 16105–16110 (2002).
  • Bonner-Weir S, Taneja M, Weir GC et al. In vitro cultivation of human islets expanded ductal tissue. Proc. Natl Acad. Sci. USA97, 7999–8004 (2000).
  • Ramiya VK, Maraist M, Arfors KE, Schatz DA, Peck AB, Cornelius JG. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat. Med.6, 278–282 (2000).
  • Zulewsky H, Abraham EJ, Gerlach MJ et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes50, 521–533 (2001).
  • Yang L, Li S, Hatch H et al.In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc. Natl Acad. Sci. USA99, 8078–8083 (2002).
  • Zalzman M, Gupta S, Giri RK et al. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc. Natl Acad. Sci. USA100, 7253–7258 (2003).
  • Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Invest.111, 843–850 (2003).
  • Seaberg RM, Smukler SR, Kieffer TJ et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat. Biotechnol.22, 1115–1124 (2004).
  • Suzuki A, Nakauchi H, Taniguchi H. Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting. Diabetes53, 2143–2152 (2004).
  • Horb ME, Shen C-N, Tosh D, Slack JMW. Experimental conversion of liver to pancreas. Curr. Biol.13, 105–115 (2003).
  • Sharma A, Olson LK, Robertson RP, Stein R. The reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to high glucose concentration is associated with the loss of RIPE3b1 and STF-1 transcription factor expression. Mol. Endocrinol.9, 1127–1134 (1995).
  • Olson LK, Redmon JB, Towle HC, Robertson RP. Chronic exposure of HIT cells to high glucose concentrations paradoxically decreases insulin gene transcription and alters binding of insulin gene regulatory protein. J. Clin. Invest.92, 514–519 (1993).
  • Olbrot M, Rud J, Moss LG, Sharma A. Identification of β-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA. Proc. Natl Acad. Sci. USA99, 6737–6742 (2002).
  • Kataoka K, Han SI, Shioda S, Hirai M, Nishizawa M, Handa H. MafA is a glucose-regulated and pancreatic β-cell-specific transcriptional activator for the insulin gene. J. Biol. Chem.277, 49903–49910 (2002).
  • Matsuoka T, Zhao L, Artner I et al. Members of the large Maf transcription family regulate insulin gene transcription in islet β cells. Mol. Cell. Biol.23, 6049–6062 (2003).
  • Matsuoka T, Artner I, Henderson E, Means A, Sander M, Stein R. The MafA transcription factor appears to be responsible for tissue-specific expression of insulin. Proc. Natl Acad. Sci. USA101, 2930–2933 (2004).
  • Kaneto H, Matsuoka T, Nakatani Y et al. A crucial role of MafA as a novel therapeutic target for diabetes. J. Biol. Chem.280, 15047–15052 (2005).
  • Zhang C, Moriguchi T, Kajihara M et al. MafA is a key regulator of glucose-stimulated insulin secretion. Mol. Cell. Biol.25, 4969–4976 (2005).
  • Poitout V, Olson LK, Robertson RP. Chronic exposure of βTC-6 cells to supraphysiologic concentrations of glucose decreases binding of the RIPE3b1 insulin gene transcription activator. J. Clin. Invest.97, 1041–1046 (1996).
  • Jonas J-C, Sharma A, Hasenkamp W et al. Chronic hyperglycemia triggers loss of pancreatic β cell differentiation in an animal model of diabetes. J. Biol. Chem.274, 14112–14121 (1999).
  • Robertson RP, Zhang HJ, Pyzdrowski KL, Walseth TF. Preservation of insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentrations. J. Clin. Invest.90, 320–325 (1992).
  • Dandona P, Thusu K, Cook S et al. Oxidative damage to DNA in diabetes mellitus. Lancet347, 444–445 (1996).
  • Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes48, 1–9 (1999).
  • Ihara Y, Toyokuni S, Uchida K et al. Hyperglycemia causes oxidative stress in pancreatic β-cells of GK rats, a model of type 2 diabetes. Diabetes48, 927–932 (1999).
  • Matsuoka T, Kajimoto Y, Watada H et al. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J. Clin. Invest.99, 144–150 (1997).
  • Kaneto H, Kajimoto Y, Miyagawa J et al. Beneficial effects of antioxidants for diabetes: possible protection of pancreatic β-cells against glucose toxicity. Diabetes48, 2398–2406 (1999).
  • Tanaka Y, Gleason CE, Tran POT, Harmon JS, Robertson RP. Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc. Natl Acad. Sci. USA96, 10857–10862 (1999).
  • Kajimoto Y, Matsuoka T, Kaneto H et al. Induction of glycation suppresses glucokinase gene expression in HIT-T15 cells. Diabetologia42, 1417–1424 (1999).
  • Kaneto H, Xu G, Song K-H et al. Activation of the hexosamine pathway leads to deterioration of pancreatic β-cell function by provoking oxidative stress. J. Biol. Chem.276, 31099–31104 (2001).
  • Tanaka Y, Tran POT, Harmon J, Robertson RP. A role of glutathione peroxidase in protecting pancreatic β cells against oxidative stress in a model of glucose toxicity. Proc. Natl Acad. Sci. USA99, 12363–12368 (2002).
  • Gorogawa S, Kajimoto Y, Umayahara Y et al. Probucol preserves pancreatic β-cell function through reduction of oxidative stress in type 2 diabetes. Diabetes Res. Clin. Prac.57, 1–10 (2002).
  • Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes52, 581–587 (2003).
  • Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction ? Diabetes52, 1–8 (2003).
  • Unger RH. Weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology144, 5159–5165 (2003).
  • Poitout V, Robertson RP. Minireview: Secondary beta-cell failure in type 2 diabetes – a convergence of glucotoxicity and lipotoxicity. Endocrinology143, 339–342 (2002).
  • Moore PC, Ugas MA, Hagman DK, Parazzoli SD, Poitout V. Evidence against the involvement of oxidative stress in fatty acid inhibition of insulin secretion. Diabetes53, 2610–2616 (2004).
  • Hagman DK, Hays LB, Parazzoli SD, Poitout V. Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. J. Biol. Chem.280, 32413–32418 (2005).
  • Sakai K, Matsumoto K, Nishikawa T et al. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic β-cells. Biochem. Biophys. Res. Commun.300, 216–222 (2003).
  • Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J. Biol. Chem.271, 42351–42354 (2004).
  • Kaneto H, Matsuoka T, Nakatani Y et al. Oxidative stress, ER stress, and the JNK pathway in type 2 diabetes. J. Mol. Med.83, 429–439 (2005).
  • Harmon JS, Stein R, Robertson RP. Oxidative stress-mediated, post-translational loss of MafA protein as a contributing mechanism to loss of insulin gene expression in glucotoxic beta cells. J. Biol. Chem.280, 11107–11113 (2005).
  • Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Rad. Biol. Med.20, 463–466 (1996).
  • Tiedge M, Lortz S, Drinkgern J, Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes46, 1733–1742 (1997).
  • Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC. Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J. Biol. Chem.277, 30010–30018 (2002).
  • Kawamori D, Kajimoto Y, Kaneto H et al. Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun N-terminal kinase. Diabetes52, 2896–2904 (2003).
  • Kawamori D, Kaneto H, Nakatani Y et al. The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J. Biol. Chem.281, 1091–1098 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.