68
Views
1
CrossRef citations to date
0
Altmetric
Review

Roles of peptides and steroids in sleep disorders

Pages 609-622 | Published online: 10 Jan 2014

References

  • Borbély AA, Baumann F, Brandeis D, Strauch I, Lehmann D. Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr. Clin. Neurophysiol.51, 483–495 (1981).
  • Weitzman ED. Circadian rhythms and episodic hormone secretion in man. Annu. Rev. Med.27, 225–243 (1976).
  • Åström C, Lindholm J. Growth hormone-deficient young adults have decreased deep sleep. Neuroendocrinology51, 82–84 (1990).
  • Åström C, Jochumsen PL. Decrease in delta sleep in growth hormone deficiency assessed by a new power spectrum analysis. Sleep12, 508–515 (1989).
  • Guilhaume A, Benoit O, Gourmelen M, Richardet JM. Relationship between sleep stage IV deficit and reversible hGH deficiency in psychosocial dwarfism. Pediatr. Res.16, 299–303 (1982).
  • Schneider HJ, Oertel H, Murck H et al. Night steep EEG and daytime steep propensity in adult hypopituitary patients with growth hormone deficiency before and after six months of growth hormone replacement. Psychoneuroendocrinology30, 29–37 (2005).
  • Hart TB, Radow SK, Blackard WG, Tucker HSG, Cooper KR. Sleep apnea in active acromegaly. Arch. Intern. Med.145, 865–866 (1985).
  • Åström C, Christensen L, Gjerris F, Trojaborg W. Sleep in acromegaly before and after treatment with adenomectomy. Neuroendocrinology53, 328–331 (1991).
  • Rosenhagen MC, Uhr M, Schüssler P, Steiger A. Elevated plasma ghrelin levels in night-eating syndrome. Am. J. Psychiatry162, 813 (2005).
  • Bliwise DL. Sleep in normal aging and dementia. Sleep16, 40–81 (1993).
  • Ehlers CL, Kupfer DJ. Slow-wave sleep: do young adult men and women age differently? J. Sleep Res.6, 211–215 (1997).
  • Van Cauter E, Leproult R, Plat L. Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA284, 861–868 (2000).
  • Franken P, Chollet D, Tafti M. The homeostatic regulation of sleep need is under genetic control. J. Neurosci.21, 2610–2621 (2001).
  • Bredow S, Taishi P, Obál F Jr, Guha-Thakurta N, Krueger JM. Hypothalamic growth hormone-releasing hormone mRNA varies across the day in rat. NeuroReport7, 2501–2505 (1996).
  • De A, Churchill L, Obál F Jr, Simasko SM, Krueger JM. GHRH and IL1 β increase cytoplasmic Ca2+ levels in cultured hypothalamic GABAergic neurons. Brain Res.949, 209–212 (2002).
  • Ehlers CL, Reed TK, Henriksen SJ. Effects of corticotropin-releasing factor and growth hormone- releasing factor on sleep and activity in rats. Neuroendocrinology42, 467–474 (1986).
  • Obál FJr, Alföldi P, Cady AB et al. Growth hormone-releasing factor enhances sleep in rats and rabbits. Am. J. Physiol.255, R310–R316 (1988).
  • Zhang J, Obál FJr, Zheng T et al. Intrapreoptic microinjection of GHRH or its antagonist alters sleep in rats. J. Neurosci.19, 2187–2194 (1999).
  • Obál F Jr, Floyd R, Kapás L, Bodosi B, Krueger JM. Effects of systemic GHRH on sleep in intact and in hypophysectomized rats. Am. J. Physiol.270, E230–E237 (1996).
  • Steiger A, Guldner J, Hemmeter U et al. Effects of growth hormone-releasing hormone and somatostatin on sleep EEG and nocturnal hormone secretion in male controls. Neuroendocrinology56, 566–573 (1992).
  • Kerkhofs M, Van Cauter E, Van Onderbergen A et al. Sleep-promoting effects of growth hormone-releasing hormone in normal men. Am. J. Physiol.264, E594–E598 (1993).
  • Marshall L, Derad L, Strasburger CJ, Fehm HL, Born J. A determinant factor in the efficacy of GHRH administration in promoting sleep: high peak concentration versus recurrent increasing slopes. Psychoneuroendocrinology24, 363–370 (1999).
  • Perras B, Marshall L, Köhler G, Born J, Fehm HL. Sleep and endocrine changes after intranasal administration of growth hormone-releasing hormone in young and aged humans. Psychoneuroendocrinology24, 743–757 (1999).
  • Schier T, Guldner J, Colla M, Holsboer F, Steiger A. Changes in sleep–endocrine activity after growth hormone-releasing hormone depend on time of administration. J. Neuroendocrinol.9, 201–205 (1997).
  • Guldner J, Schier T, Friess E et al. Reduced efficacy of growth hormone-releasing hormone in modulating sleep–endocrine activity in the elderly. Neurobiol. Aging18, 491–495 (1997).
  • Perras B, Pannenborg H, Marshall L et al. Beneficial treatment of age-related sleep disturbances with prolonged intranasal vasopressin. J. Clin. Psychopharmacol.19, 28–36 (1999).
  • Murck H, Frieboes RM, Schier T, Steiger A. Longtime administration of growth hormone-releasing hormone (GHRH) does not restore the reduced efficiency of GHRH on sleep–endocrine activity in 2 old-aged subjects – a preliminary study. Pharmacopsychiatry30, 122–124 (1997).
  • Antonijevic IA, Murck H, Frieboes RM, Barthelmes J, Steiger A. Sexually dimorphic effects of GHRH on sleep–endocrine activity in patients with depression and normal controls - part I: the sleep EEG. Sleep Res. Online3, 5–13 (2000).
  • Antonijevic IA, Murck H, Frieboes RM, Steiger A. Sexually dimorphic effects of GHRH on sleep–endocrine activity in patients with depression and normal controls - part II: hormone secretion. Sleep Res. Online3, 15–21 (2000).
  • Obál F Jr, Payne L, Kapás L, Opp M, Krueger JM. Inhibition of growth hormone-releasing factor suppresses both sleep and growth hormone secretion in the rat. Brain Res.557, 149–153 (1991).
  • Obál F Jr, Payne L, Opp M et al. Growth hormone-releasing hormone antibodies suppress sleep and prevent enhancement of sleep after sleep deprivation. Am. J. Physiol.263, R1078–R1085 (1992).
  • Obál F Jr, Fang J, Taishi P et al. Deficiency of growth hormone-releasing hormone signaling is associated with sleep alterations in the dwarf rat. J. Neurosci.21, 2912–2918 (2001).
  • Obál F Jr, Krueger JM. GHRH and sleep. Sleep Med. Rev.8, 367–377 (2004).
  • Mendelson WB, Slater S, Gold P, Gillin JC. The effect of growth hormone administration on human sleep: a dose-response study. Biol. Psychiatry15, 613–618 (1980).
  • Beranek L, Hajdu I, Gardi J et al. Central administration of the somatostatin analog octreotide induces captopril-insensitive sleep responses. Am. J. Physiol.277, R1297–R1304 (1999).
  • Ziegenbein M, Held K, Künzel H et al. The somatostatin analogue octreotide impairs sleep and decreases EEG sigma power in young male subjects. Biol. Psychiatry29, 146–151 (2004).
  • Frieboes RM, Murck H, Schier T, Holsboer F, Steiger A. Somatostatin impairs sleep in elderly human subjects. Neuropsychopharmacology16, 339–345 (1997).
  • Leresche N, Asprodini E, Emri Z, Cope DW, Crunelli V. Somatostatin inhibits gabaergic transmission in the sensory thalamus via presynaptic receptors. Neuroscience98, 513–522 (2000).
  • Weikel JC, Wichniak A, Ising M et al. Ghrelin promotes slow-wave sleep in humans. Am. J. Physiol.284, E407–E415 (2003).
  • Obál FJr, Alt J, Taishi P, Gardi J, Krueger JM. Sleep in mice with non-functional growth hormone-releasing hormone receptors. Am. J. Physiol.284, R131–R139 (2003).
  • Copinschi G, Leproult R, Van Onderbergen A et al. Prolonged oral treatment with MK-677, a novel growth hormone secretagogue, improves sleep quality in man. Neuroendocrinology66, 278–286 (1997).
  • Schmid DA, Held K, Ising M et al. Ghrelin stimulates appetite, imagination of food, GH, ACTH and cortisol, but does not affect leptin in normal controls. Neuropsychopharmacology30, 1187–1192 (2005).
  • Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature407, 908–913 (2000).
  • Spiegel K, Tasali E, Penev P, Van Cauter E. Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern Med.141, 846–850 (2004).
  • Gangwisch JE, Malaspina D, Boden-Albala B, Heymsfield SB. Inadequate sleep as a risk factor for obesity: Analyses of the NHANES I. Sleep28, 1289–1296 (2005).
  • Gillin JC, Jacobs LS, Snyder F, Henkin RI. Effects of ACTH on the sleep of normal subjects and patients with Addison's disease. Neuroendocrinology15, 21–31 (1974).
  • Krieger DT, Glick SM. Sleep EEG stages and plasma growth hormone concentration in states of endogenous and exogenous hypercortisolemia or ACTH elevation. J. Clin. Endocrinol. Metab.39, 986–1000 (1974).
  • Garcia-Borreguero D, Wehr TA, Larrosa O et al. Glucocorticoid replacement is permissive for rapid eye movement sleep and sleep consolidation in patients with adrenal insufficiency. J. Clin. Endocrinol. Metab.85, 4201–4206 (2000).
  • Vgontzas AN, Chrousos GP. Sleep, the hypothalamic-pituitary-adrenal axis, and cytokines: multiple interactions and disturbances in sleep disorders. Endocrinol. Metab. Clin. North Am.31, 15–36 (2002).
  • Shipley JE, Schteingart DE, Tandon R, Starkman MN. Sleep architecture and sleep apnea in patients with Cushing's disease. Sleep15, 514–518 (1992).
  • Ehlers CL, Kupfer DJ. Hypothalamic peptide modulation of EEG sleep in depression: a further application of the S-process hypothesis. Biol. Psychiatry22, 513–517 (1987).
  • Holsboer F. The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J. Psychiatr. Res.33, 181–214 (1999).
  • Steiger A, von Bardeleben U, Herth T, Holsboer F. Sleep EEG and nocturnal secretion of cortisol and growth hormone in male patients with endogenous depression before treatment and after recovery. J. Affect. Disord.16, 189–195 (1989).
  • Linkowski P, Mendlewicz J, Kerkhofs M et al. 24-hour profiles of adrenocorticotropin, cortisol, and growth hormone in major depressive illness: effect of antidepressant treatment. J. Clin. Endocrinol. Metab.65, 141–152 (1987).
  • Wong ML, Kling MA, Munson PJ et al. Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: relation to hypercortisolism and corticotropin-releasing hormone. Proc. Natl Acad. Sci. USA97, 325–330 (2000).
  • Jarrett DB, Miewald JM, Kupfer DJ. Recurrent depression is associated with a persistent reduction in sleep-related growth hormone secretion. Arch. Gen. Psychiatry47, 113–118 (1990).
  • Voderholzer U, Laakmann G, Wittmann R et al. Profiles of spontaneous 24-hour and stimulated growth hormone secretion in male patients with endogenous depression. Psychiatry Res.47, 215–227 (1993).
  • Peteranderl C, Antonijevic IA, Steiger A et al. Nocturnal secretion of TSH and ACTH in male patients with depression and healthy controls. J. Psychiatr. Res.36(3), 189–196 (2002).
  • Steiger A, von Bardeleben U, Guldner J et al. The sleep EEG and nocturnal hormonal secretion. Studies on changes during the course of depression and on effects of CNS- active drugs. Prog. Neuropsychopharmacol. Biol. Psychiatry17, 125–137 (1993).
  • Puig-Antich J, Dahl R, Ryan N et al. Cortisol secretion in prepubertal children with major depressive disorder. Arch. Gen. Psychiatry46, 801–809 (1989).
  • Kupfer DJ, Ehlers CL, Frank E et al. Electroencephalographic sleep studies in depressed patients during long-term recovery. Psychiatry Res.49, 121–138 (1993).
  • Vogel GW, Thurmond A, Gibbons P, Sloan K, Walker M. REM sleep reduction effects on depression syndromes. Arch. Gen. Psychiatry32, 765–777 (1975).
  • Holsboer F, Barden N. Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocr. Rev.17, 187–205 (1996).
  • Holsboer F. The corticosteroid receptor hypothesis of depression. Biol. Psychiatry23, 477–501 (2000).
  • Reul JM, Stec I, Söder M, Holsboer F. Chronic treatment of rats with the antidepressant amitriptyline attenuates the activity of the hypothalamic-pituitary- adrenocortical system. Endocrinology133, 312–320 (1993).
  • Sonntag A, Rothe B, Guldner J et al. Trimipramine and imipramine exert different effects on the sleep EEG and on nocturnal hormone secretion during treatment of major depression. Depression4, 1–13 (1996).
  • Schüle C, Baghai T, Goy J et al. The influence of mirtazapine on anterior pituitary hormone secretion in healthy male subjects. Psychopharmacology163, 95–101 (2002).
  • Laakmann G, Hennig J, Baghai T, Schüle C. Mirtazapine acutely inhibits salivary cortisol concentrations in depressed patients. Ann. NY Acad. Sci.1032, 279–282 (2004).
  • Schmid DA, Wichniak A, Uhr M et al. Changes of sleep architecture, spectral composition of sleep EEG, the nocturnal secretion of cortisol, ACTH, GH, prolactin, melatonin, ghrelin and leptin and the DEX-CRH test in depressed patients during treatment with mirtazapine. Neuropsychopharmacology31, 832–844 (2006).
  • Frieboes RM, Müller U, Murck H et al. Nocturnal hormone secretion and the sleep EEG in patients several months after traumatic brain injury. J. Neuropsychiatry Clin. Neurosci.11, 354–360 (1999).
  • Krieg JC, Lauer CJ, Schreiber W, Holsboer F. Neuroendocrine, polysomnographic and psychometric observations in healthy subjects at high familial risk for affective disorders: the current state of the "Munich vulnerability study". J. Affect. Disord.62, 33–37 (2001).
  • Rodenbeck A, Huether G, Rüther E, Hajak G. Interactions between evening and nocturnal cortisol secretion and sleep parameters in patients with severe chronic primary insomnia. Neurosci. Lett.324, 159–163 (2002).
  • Vgontzas AN, Bixler EO, Wittman AM et al. Middle-aged men show higher sensitivity of sleep to the arousing effects of corticotropin-releasing hormone than young men: clinical implications. J. Clin. Endocrinol. Metab.86, 1489–1495 (2001).
  • Riemann D, Klein T, Rodenbeck A et al. Nocturnal cortisol and melatonin secretion in primary insomnia. Psychiatry Res.113, 17–27 (2002).
  • Backhaus J, Junghanns K, Hohagen F. Sleep disturbances are correlated with decreased morning awakening salivary cortisol. Psychoneuroendocrinology29, 1184–1191 (2004).
  • Vollrath M, Wicki W, Angst J. The Zurich Study. VIII. Insomnia: Association with depression, anxiety, somatic syndromes, and course of insomnia. Eur. Arch. Psychiatry Neurol. Sci.239, 113–124 (1989).
  • Buckley TM, Schatzberg AF. On the interactions of the hypothaloamic–pituitary–adrenal (HPA) axis and sleep: Normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J. Clin. Endocrinol. Metab.90, 3106–3114 (2005).
  • Desir D, Van Cauter E, Fang VS et al. Effects of "jet lag" on hormonal patterns. Procedures, variations in total plasma proteins, and disruption of adrenocorticotropin-cortisol periodicity. J. Clin. Endocrinol. Metab.52, 628–641 (1981).
  • Weibel L, Brandenberger G. Disturbances in hormonal profiles of night workers during their usual sleep and work times. J. Biol. Rhythms13, 202–208 (1998).
  • Watts AG, Tanimura S, Sanchez-Watts G. Corticotropin-releasing hormone and arginine vasopressin gene transcription in the hypothalamic paraventricular nucleus of unstressed rats: daily rhythms and their interactions with corticosterone. Endocrinology145, 529–540 (2004).
  • Opp MR. Rat strain differences suggest a role for corticotropin-releasing hormone in modulating sleep. Physiol. Behav.63, 67–74 (1997).
  • Chang FC, Opp MR. A corticotropin-releasing hormone antisense oligodeoxynucleotide reduces spontaneous waking in the rat. Regul. Pept.117, 43–52 (2004).
  • Opp M, Obál F Jr, Krueger JM. Corticotropin-releasing factor attenuates interleukin 1-induced sleep and fever in rabbits. Am. J. Physiol.257, R528–R535 (1989).
  • Marrosu F, Gessa GL, Giagheddu M, Fratta W. Corticotropin-releasing factor (CRF) increases paradoxical sleep (PS) rebound in PS-deprived rats. Brain Res.515, 315–318 (1990).
  • Holsboer F, von Bardeleben U, Steiger A. Effects of intravenous corticotropin-releasing hormone upon sleep-related growth hormone surge and sleep EEG in man. Neuroendocrinology48, 32–38 (1988).
  • Kellner M, Yassouridis A, Manz B et al. Corticotropin-releasing hormone inhibits melatonin secretion in healthy volunteers – a potential link to low-melatonin syndrome in depression? Neuroendocrinology16, 339–345 (1997).
  • Chang FC, Opp MR. Blockade of corticotropin-releasing hormone receptors reduces spontaneous waking in the rat. Am. J. Physiol.275, R793–R802 (1998).
  • Gonzalez MMC, Valatx JL. Effect of intracerebroventricular administration of alpha-helical CRH (9–41) on the sleep/waking cycle in rats under normal conditions or after subjection to an acute stressful stimulus. J. Sleep Res.6, 164–170 (1997).
  • Gonzalez MMC, Valatx JL. Involvement of stress in the sleep rebound mechanism induced by sleep deprivation in the rat: use of alpha-helical CRH (9–41). Behav. Pharmacol.9, 655–662 (1998).
  • Held K, Antonijevic IA, Murck H, Künzel H, Steiger A. Alpha-helical CRH exerts CRH agonistic effects on sleep–endocrine activity in humans. Neuropsychobiology52, 62–67 (2005).
  • Held K, Künzel H, Ising M et al. Treatment with the CRH1-receptor antagonist R121919 improves sleep EEG in patients with depression. J. Psychiatr.Res.38, 129–136 (2004).
  • Arnauld E, Bibene V, Meynard J, Rodriguez F, Vincent JD. Effects of chronic icv infusion of vasopressin on sleep-waking cycle of rats. Am. J. Physiol.256, R674–R684 (1989).
  • Born J, De Kloet ER, Wenz H, Kern W, Fehm HL. Gluco- and antimineralocorticoid effects on human sleep: a role of central corticosteroid receptors. Am. J. Physiol.260, E183–E188 (1991).
  • Friess E, von Bardeleben U, Wiedemann K, Lauer C, Holsboer F. Effects of pulsatile cortisol infusion on sleep EEG and nocturnal growth hormone release in healthy men. J. Sleep Res.3, 73–79 (1994).
  • Friess E, Tagaya H, Grethe C, Trachsel L, Holsboer F. Acute cortisol administration promotes sleep intensity in man. Neuropsychopharmacology29, 598–604 (2004).
  • Bohlhalter S, Murck H, Holsboer F, Steiger A. Cortisol enhances non-REM sleep and growth hormone secretion in elderly subjects. Neurobiol. Aging18, 423–429 (1997).
  • Schmid DA, Brunner H, Holsboer F, Friess E. Cortisol promotes nonREM sleep in patients with major depression. Int.J.Neuropsychopharmacol.3(Suppl. 1), S302 (2000).
  • Born J, Späth-Schwalbe E, Schwakenhofer H, Kern W, Fehm HL. Influences of corticotropin-releasing hormone, adrenocorticotropin, and cortisol on sleep in normal man. J. Clin. Endocrinol. Metab.68, 904–911 (1989).
  • Friess E, Wiedemann K, Steiger A, Holsboer F. The hypothalamic-pituitary-adrenocortical system and sleep in man. Adv. Neuroimmunol.5, 111–125 (1995).
  • Jahn H, Kiefer F, Schick M et al. sleep–endocrine effects of the 11-β-Ιydroxasteroiddehydrogenase inhibitor metyrapone. Sleep26, 823–829 (2003).
  • Antonijevic IA, Steiger A. Depression-like changes of the sleep EEG during high dose corticosteroid treatment in patients with multiple sclerosis. Psychoneuroendocrinology28, 780–795 (2003).
  • Wiedemann K, Lauer C, Loycke A et al. Antiglucocorticoid treatment disrupts endocrine cycle and nocturnal sleep pattern. Eur. Arch. Psychiatry Clin. Neurosci.241, 372–375 (1992).
  • Wiedemann K, Lauer C, Pollmächer T, Holsboer F. Sleep–endocrine effects of antigluco- and antimineralocorticoids in healthy males. Am. J. Physiol.267, E109–E114 (1994).
  • Wiedemann K, Lauer CJ, Hirschmann M, Knaudt K, Holsboer F. Sleep–endocrine effects of mifepristone and megestrol acetate in healthy men. Am. J. Physiol.274, E139–E145 (1998).
  • Andersen ML, Tufik S. Effects of progesterone blockade over cocaine-induced genital reflexes of paradoxical sleep-deprived male rats. Horm. Behav.47, 477–484 (2005).
  • Schulz H, Brandenberger G, Gudewill C et al. Plasma renin activity and sleep–wake structure of narcoleptic patients and control subjects under continuous bedrest. Sleep15, 423 (1992).
  • de Lecea L, Kilduff TS, Peyron C et al. The hypocretins – hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA95, 322–327 (1998).
  • Sakurai T, Amemiya A, Ishii M et al. Orexins and orexin receptors – a family of hypothalamic neuropeptides and g protein-coupled receptors that regulate feeding behavior. Cell92, 696 (1998).
  • Chemelli RM, Willie JT, Sinton CM et al. Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation. Cell 98, 437–451 (1999).
  • Lin L, Faraco J, Li R et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell98, 365–376 (1999).
  • Thannickal TC, Moore RY, Nienhuis R et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron27, 469–474 (2000).
  • Peyron C, Faraco J, Rogers W et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Natl Med.6, 991–997 (2000).
  • Dalal MA, Schuld A, Haack M et al. Normal plasma levels of orexin A (hypocretin-1) in narcoleptic patients. Neurology56, 1749–1751 (2001).
  • Hara J, Beuckmann CT, Nambu T et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron30, 345–354 (2001).
  • Siegel JM. Hypocretin (orexin): Role in normal behavior and neuropathology. Annu. Rev. Psychol.55, 125–148 (2004).
  • Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci.24, 726–731 (2001).
  • John J, Wu MF, Siegel JM. Systemic administration of hypocretin-1 reduces cataplexy and normalizes sleep and waking durations in narcoleptic dogs. Sleep Res.3, 23–28 (2000).
  • Overeem S, Kok SW, Lammers GJ et al. Somatotropic axis in hypocretin-deficient narcoleptic humans: altered circadian distribution of GH-secretory events. Am. J. Physiol.284, E641–E647 (2003).
  • Lopez M, Seoane LM, Tovar S et al. Orexin-A regulates growth hormone-releasing hormone mRNA content in a nucleus-specific manner and somatostatin mRNA content in a growth hormone-dependent fashion in the rat hypothalamus. Eur. J. Neurosci.19, 2080–2088 (2004).
  • Roky R, Obál F Jr, Valatx JL et al. Prolactin and rapid eye movement sleep regulation. Sleep18, 536–542 (1995).
  • Van Coevorden A, Mockel J, Laurent E et al. Neuroendocrine rhythms and sleep in aging men. Am. J. Physiol.260, E651–E661 (1991).
  • Steiger A, Holsboer F. Nocturnal secretion of prolactin and cortisol and the sleep EEG in patients with major endogenous depression during an acute episode and after full remission. Psychiatry Res.72, 81–88 (1997).
  • Frieboes RM, Murck H, Stalla GK, Antonijevic IA, Steiger A. Enhanced slow wave sleep in patients with prolactinoma. J. Clin. Endocrinol. Metab.83, 2706–2710 (1998).
  • Roky R, Valatx JL, Paut-Pagano L, Jouvet M. Hypothalamic injection of prolactin or its antibody alters the rat sleep–wake cycle. Physiol. Behav.55, 1015–1019 (1994).
  • Roky R, Valatx JL, Jouvet M. Effect of prolactin on the sleep–wake cycle in the rat. Neurosci. Lett.156, 117–120 (1993).
  • Jouvet M, Buda C, Cespuglio R et al. Hypnogenic effects of some hypothalamo-pituitary peptides. Clin. Neuropharmacol.9(Suppl. 4), 465–467 (1986).
  • Valatx JL, Roky R, Trouillas J, Paut-Pagano L, Jouvet M. Paradoxical sleep alteration by tumoral hyperprolactinemia J. Sleep Res.3(Suppl. 1), 260 (1994).
  • Obál F Jr, Kacsóh B, Alföldi P et al. Antiserum to prolactin decreases rapid eye movement sleep (REM sleep) in the male rat. Physiol. Behav.52, 1063–1068 (1992).
  • Obál F Jr, Kacsóh B, Bredow S, Guha-Thakurta N, Krueger JM. Sleep in rats rendered chronically hyperprolactinemic with anterior pituitary grafts. Brain Res.755, 130–136 (1997).
  • Drucker-Colin R, Bernal-Pedraza J, Fernandez-Cancino F, Oksenberg A. Is vasoactive intestinal polypeptide (VIP) a sleep factor? Peptides5, 837–840 (1984).
  • Riou F, Cespuglio R, Jouvet M. Endogenous peptides and sleep in the rat. III. The hypnogenic properties of vasoactive intestinal polypeptide. Neuropeptides2, 265–277 (1982).
  • Murck H, Guldner J, Colla-Müller M et al. VIP decelerates non-REM-REM cycles and modulates hormone secretion during sleep in men. Am. J. Physiol.271, R905–R911 (1996).
  • Mirmiran M, Swaab DF, Kok JH et al. Circadian rhythms and the suprachiasmatic nucleus in perinatal development, aging and Alzheimer's disease. Prog. Brain Res.93, 151–163 (1992).
  • Toppila J, Stenberg D, Alanko L et al. REM sleep deprivation induces galanin gene expression in the rat brain. Neurosci. Lett.183, 171–174 (1995).
  • Murck H, Antonijevic IA, Frieboes RM et al. Galanin has REM-sleep deprivation-like effects on the sleep EEG in healthy young men. J. Psychiatr. Res.33, 225–232 (1997).
  • Murck H, Held K, Ziegenbein M et al. Intravenous administration of the neuropeptide galanin has fast antidepressant efficacy and affects the sleep EEG. Psychoneuroendocrinology29, 1205–1211 (2004).
  • Harfstrand A, Eneroth P, Agnati L, Fuxe K. Further studies on the effects of central administration of neuropeptide Y on neuroendocrine function in the male rat: relationship to hypothalamic catecholamines. Regul. Pept.17, 167–179 (1987).
  • Haas DA, George SR. Neuropeptide Y-induced effects on hypothalamic corticotropin-releasing factor content and release are dependent on noradrenergic/adrenergic neurotransmission. Brain Res.498, 333–338 (1989).
  • Ehlers CL, Somes C, Lopez A, Kirby D, Rivier JE. Electrophysiological actions of neuropeptide Y and its analogs: new measures for anxiolytic therapy? Biol. Psychiatry17, 34–43 (1997).
  • Ehlers CL, Somes C, Seifritz E, Rivier JE. CRF/NPY interactions: a potential role in sleep dysregulation in depression and anxiety. Depress. Anxiety6, 1–9 (1997).
  • Antonijevic IA, Murck H, Bohlhalter S et al. NPY promotes sleep and inhibits ACTH and cortisol release in young men. Neuropharmacology39, 1474–1481 (2000).
  • Held K, Antonijevic IA, Murck H, Künzel H, Steiger A. Neuropeptide Y (NPY) shortens sleep latency and enhances prolactin but does not suppress ACTH and cortisol in depressed patients and controls. Psychoneuroendocrinology31, 100–107 (2006).
  • Antonijevic IA, Murck H, Frieboes RM, Uhr M, Steiger A. On the role of menopause for sleep–endocrine alterations associated with major depression. Psychoneuroendocrinology28, 401–418 (2003).
  • Colvin GB, Whitmoyer DI, Sawyer CH. Circadian sleep-wakefulness patterns in rats after ovariectomy and treatment with estrogen. Exp. Neurol.25, 616–625 (1969).
  • Kimura M, Inoué S. Is hormone replacement therapy worth trying to treat postmenopausal insomnia? A basic study. Sleep Biol. Rhythms1, 233–234 (2003).
  • Antonijevic IA, Stalla GK, Steiger A. Modulation of the sleep electroencephalogram by estrogen replacement in postmenopausal women. J. Obstet. Gynaecol.182, 277–282 (2000).
  • Parry BL, Martinez F, Maurer EL et al. Sleep, rhythms and women's mood. Part II. Menopause. Sleep Med. Rev.10, 197–208 (2006).
  • Merryman W, Boiman R, Barnes L, Rothchild I. Progesterone “anaesthesia” in human subjects. J. Clin. Endocrinol. Metab.14, 1567–1569 (1954).
  • Friess E, Tagaya H, Trachsel L, Holsboer F, Rupprecht R. Progesterone-induced changes in sleep in male subjects. Am. J. Physiol.272, E885–E891 (1997).
  • Lancel M, Faulhaber J, Schiffelholz T et al. Allopregnanolone affects sleep in a benzodiazepine-like fashion. J. Pharmacol. Exp. Ther.282, 1213–1218 (1997).
  • Schüssler P, Kluge M, Dresler M et al. Effects of progesterone on sleep and cognition in healthy postmenopausal women Exp. Clin. Endocrinol. Diabetes113(Suppl. 1), 33 (2005).
  • Friess E, Trachsel L, Guldner J et al. DHEA administration increases rapid eye movement sleep and EEG power in the sigma frequency range. Am. J. Physiol.268, E107–E113 (1995).
  • Schiffelholz T, Holsboer F, Lancel M. High doses of systemic DHEA-sulfate do not affect sleep structure and elicit moderate changes in non-REM sleep EEG in rats. Physiol. Behav.69, 399–404 (2000).
  • Lancel M, Steiger A. Sleep and its modulation by drugs that affect GABA(A) receptor function. Angewandte Chemie International Ed.38, 2853–2864 (1999).
  • Wafford KA, Ebert B. Gaboxadol – a new awakening in sleep. Current Opinion in Pharmacology6, 30–36 (2006).
  • Riemann D, Voderholzer U, Cohrs S et al. Trimipramine in primary insomnia: results of a polysomnographic double-blind controlled study. Pharmacopsychiatry35, 165–174 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.