30
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular basis and clinical features of nephrogenic diabetes insipidus

, , , , , , , & show all
Pages 727-741 | Published online: 10 Jan 2014

References

  • Forssman H. The recognition of nephrogenic diabetes insipidus. A very small page from the history of medicine. Acta Med. Scand.197(1–2), 1–6 (1975).
  • Cannon JF. Diabetes insipidus; clinical and experimental studies with consideration of genetic relationships. AMA Arch. Intern. Med.96(2), 215–272 (1955).
  • Bode HH, Crawford JD. Nephrogenic diabetes insipidus in North America. The Hopewell hypothesis. N. Engl. J. Med.280(14), 750–754 (1969).
  • Bichet DG, Razi M, Arthus MF et al. Epinephrine and dDAVP administration in patients with congenital nephrogenic diabetes insipidus. Evidence for a pre-cyclic AMP V2 receptor defective mechanism. Kidney Int.36(5), 859–866 (1989).
  • Jans DA, van Oost BA, Ropers HH, Fahrenholz F. Derivatives of somatic cell hybrids which carry the human gene locus for nephrogenic diabetes insipidus (NDI) express functional vasopressin renal V2-type receptors. J. Biol. Chem.265(26), 15379–15382 (1990).
  • Rosenthal W, Seibold A, Antaramian A et al. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature359(6392), 233–235 (1992).
  • Birnbaumer M, Seibold A, Gilbert S et al. Molecular cloning of the receptor for human antidiuretic hormone. Nature357(6376), 333–335 (1992).
  • van den Ouweland AM, Dreesen JC, Verdijk M et al. Mutations in the vasopressin type 2 receptor gene (AVPR2) associated with nephrogenic diabetes insipidus. Nat. Genet.2(2), 99–102 (1992).
  • Deen PM, Verdijk MA, Knoers NV et al. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science264(5155), 92–95 (1994).
  • Mulders SM, Bichet DG, Rijss JP et al. An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J. Clin. Invest.102(1), 57–66 (1998).
  • Robertson GL. Differential diagnosis of polyuria. Annu. Rev. Med.39, 425–442 (1988).
  • van Lieburg AF, Knoers NV, Monnens LA. Clinical presentation and follow-up of 30 patients with congenital nephrogenic diabetes insipidus. J. Am. Soc. Nephrol.10(9), 1958–1964 (1999).
  • Kanno K, Sasaki S, Hirata Y et al. Urinary excretion of aquaporin-2 in patients with diabetes insipidus. N. Engl. J. Med.332(23), 1540–1545 (1995).
  • Deen PM, van Aubel RA, van Lieburg AF, van Os CH. Urinary content of aquaporin 1 and 2 in nephrogenic diabetes insipidus. J. Am. Soc. Nephrol.7(6), 836–841 (1996).
  • Sadeghi H, Robertson GL, Bichet DG, Innamorati G, Birnbaumer M. Biochemical basis of partial nephrogenic diabetes insipidus phenotypes. Mol. Endocrinol.11(12), 1806–1813 (1997).
  • Ala Y, Morin D, Mouillac B et al. Functional studies of twelve mutant V2 vasopressin receptors related to nephrogenic diabetes insipidus: molecular basis of a mild clinical phenotype. J. Am. Soc. Nephrol.9(10), 1861–1872 (1998).
  • Boccalandro C, De Mattia F, Guo DC et al. Characterization of an aquaporin-2 water channel gene mutation causing partial nephrogenic diabetes insipidus in a Mexican family: evidence of increased frequency of the mutation in the town of origin. J. Am. Soc. Nephrol.15(5), 1223–1231 (2004).
  • van Lieburg AF, Verdijk MA, Schoute F et al. Clinical phenotype of nephrogenic diabetes insipidus in females heterozygous for a vasopressin type 2 receptor mutation. Hum. Genet.96(1), 70–78 (1995).
  • Nomura Y, Onigata K, Nagashima T et al. Detection of skewed X-inactivation in two female carriers of vasopressin type 2 receptor gene mutation. J. Clin. Endocrinol. Metab.82(10), 3434–3437 (1997).
  • Kinoshita K, Miura Y, Nagasaki H et al. A novel deletion mutation in the arginine vasopressin receptor 2 gene and skewed X chromosome inactivation in a female patient with congenital nephrogenic diabetes insipidus. J. Endocrinol. Invest.27(2), 167–170 (2004).
  • Pasel K, Schulz A, Timmermann K et al. Functional characterization of the molecular defects causing nephrogenic diabetes insipidus in eight families. J. Clin. Endocrinol. Metab.85(4), 1703–1710 (2000).
  • Uribarri J, Kaskas M. Hereditary nephrogenic diabetes insipidus and bilateral nonobstructive hydronephrosis. Nephron65(3), 346–349 (1993).
  • Nakada T, Miyauchi T, Sumiya H, Shimazaki J. Nonobstructive urinary tract dilatation in nephrogenic diabetes insipidus. Int. Urol. Nephrol.22(5), 419–427 (1990).
  • Shalev H, Romanovsky I, Knoers NV, Lupa S, Landau D. Bladder function impairment in aquaporin-2 defective nephrogenic diabetes insipidus. Nephrol. Dial. Transplant.19(3), 608–613 (2004).
  • Ulinski T, Grapin C, Forin V et al. Severe bladder dysfunction in a family with ADH receptor gene mutation responsible for X-linked nephrogenic diabetes insipidus. Nephrol. Dial. Transplant.19(11), 2928–2929 (2004).
  • Zender HO, Ruedin P, Moser F, Bolle JF, Leski M. Traumatic rupture of the urinary tract in a patient presenting nephrogenic diabetes insipidus associated with hydronephrosis and chronic renal failure: case report and review of the literature. Clin. Nephrol.38(4), 196–202 (1992).
  • Mendonca EV, Stone RC, Rosa FC. Prevention of intracranial calcifications and brain damage associated with nephrogenic diabetes insipidus. Pediatr. Nephrol.8(2), 263 (1994).
  • Schofer O, Beetz R, Bohl J et al. Mental retardation syndrome with renal concentration deficiency and intracerebral calcification. Eur. J. Pediatr.149(7), 470–474 (1990).
  • Zaki M, Schöneberg T, Al Ajrawi T et al. Nephrogenic diabetes insipidus, thiazide treatment and renal cell carcinoma. Nephrol. Dial. Transplant.21(4), 1082–1086 (2006).
  • Ray M, Dixit A, Singhi P. Nephrogenic diabetes insipidus with intracranial calcifications. Indian Pediatr.39(2), 197–202 (2002).
  • Nozue T, Uemasu F, Endoh H et al. Intracranial calcifications associated with nephrogenic diabetes insipidus. Pediatr. Nephrol.7(1), 74–76 (1993).
  • Tohyama J, Inagaki M, Koeda T, Ohno K, Takeshita K. Intracranial calcification in siblings with nephrogenic diabetes insipidus: CT and MRI. Neuroradiology35(7), 553–555 (1993).
  • Di Rocco M, Picco P, Gandullia P, Borrone C. Intracranial calcifications and nephrogenic diabetes insipidus. Eur. J. Pediatr.150(8), 599–600 (1991).
  • Freycon MT, Lavocat MP, Freycon F. Familial nephrogenic diabetes insipidus with chronic hypernatremia and cerebral calcifications. Pediatrie43(5), 409–413 (1988).
  • Kanzaki S, Omura T, Miyake M et al. Intracranial calcification in nephrogenic diabetes insipidus. JAMA254(23), 3349–3350 (1985).
  • Bagga A, Kumar A, Bajaj G, Gupta A, Srivastava RN. Intracranial calcification in nephrogenic diabetes insipidus. Clin. Pediatr. (Phila.)35(1), 34–36 (1996).
  • Nunes ML, da Costa JC, Severini MH. Early onset bilateral calcifications and epilepsy. Pediatr. Neurol.13(1), 80–82 (1995).
  • Forssman H. Is hereditary diabetes insipidus of nephrogenic type associated with mental deficiency? Acta Psychiatr. Neurol. Scand.30(4), 577–587 (1955).
  • Hoekstra JA, van Lieburg AF, Monnens LA, Hulstijn-Dirkmaat GM, Knoers VV. Cognitive and psychosocial functioning of patients with congenital nephrogenic diabetes insipidus. Am. J. Med. Genet.61(1), 81–88 (1996).
  • Comacchio F, Boggian O, Poletto E et al. Meniere’s disease in congenital nephrogenic diabetes insipidus: report of two twins. Am. J. Otol.13(5), 477–481 (1992).
  • Schulz A, Sangkuhl K, Lennert T et al. Aminoglycoside pretreatment partially restores the function of truncated V(2) vasopressin receptors found in patients with nephrogenic diabetes insipidus. J. Clin. Endocrinol. Metab.87(11), 5247–5257 (2002).
  • Schmieder RE, Delles C, Messerli FH. Diuretic therapy and the risk for renal cell carcinoma. J. Nephrol.13(5), 343–346 (2000).
  • Messerli FH. Risk factors for renal cell carcinoma: hypertension or diuretics? Kidney Int.67(2), 774–775 (2005).
  • Liu J, Wess J. Different single receptor domains determine the distinct G protein coupling profiles of members of the vasopressin receptor family. J. Biol. Chem.271(15), 8772–8778 (1996).
  • Ecelbarger CA, Chou CL, Lolait SJ, Knepper MA, DiGiovanni SR. Evidence for dual signaling pathways for V2 vasopressin receptor in rat inner medullary collecting duct. Am J. Physiol.270(4 Pt 2), F623–F633 (1996).
  • Kojro E, Fahrenholz F. Ligand-induced cleavage of the V2 vasopressin receptor by a plasma membrane metalloproteinase. J. Biol. Chem.270(12), 6476–6481 (1995).
  • Kojro E, Postina R, Gilbert S et al. Structural requirements for V2 vasopressin receptor proteolytic cleavage. Eur. J. Biochem.266(2), 538–548 (1999).
  • Sadeghi H, Birnbaumer M. O-Glycosylation of the V2 vasopressin receptor. Glycobiology,9(7), 731–737 (1999).
  • Sadeghi HM, Innamorati G, Dagarag M, Birnbaumer M. Palmitoylation of the V2 vasopressin receptor. Mol. Pharmacol.52(1), 21–29 (1997).
  • Ren XR, Reiter E, Ahn S et al. Different G protein-coupled receptor kinases govern G protein and β-arrestin-mediated signaling of V2 vasopressin receptor. Proc. Natl Acad. Sci. USA102(5), 1448–1453 (2005).
  • Terrillon S, Durroux T, Mouillac B et al. Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Mol. Endocrinol.17(4), 677–691 (2003).
  • Schulz A, Grosse R, Schultz G, Gudermann T, Schöneberg T. Structural implication for receptor oligomerization from functional reconstitution studies of mutant V2 vasopressin receptors. J. Biol. Chem.275(4), 2381–2389 (2000).
  • Schöneberg T, Schulz A, Biebermann H et al. Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol. Ther.104(3), 173–206 (2004).
  • Cooper DN, Krawczak M. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum. Genet.83(2), 181–188 (1989).
  • Sangkuhl K, Rompler H, Busch W, Karges B, Schöneberg T. Nephrogenic diabetes insipidus caused by mutation of Tyr205: a key residue of V2 vasopressin receptor function. Hum. Mutat.25(5), 505 (2005).
  • Schülein R, Zuhlke K, Krause G, Rosenthal W. Functional rescue of the nephrogenic diabetes insipidus-causing vasopressin V2 receptor mutants G185C and R202C by a second site suppressor mutation. J. Biol. Chem.276(11), 8384–8392 (2001).
  • Erlenbach I, Wess J. Molecular basis of V2 vasopressin receptor/Gs coupling selectivity. J. Biol. Chem.273(41), 26549–26558 (1998).
  • Leanos-Miranda A, Janovick JA, Conn PM. Receptor-misrouting: an unexpectedly prevalent and rescuable etiology in gonadotropin-releasing hormone receptor-mediated hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab.87(10), 4825–4828 (2002).
  • Schülein R. The early stages of the intracellular transport of membrane proteins: clinical and pharmacological implications. Rev. Physiol. Biochem. Pharmacol.151, 45–91 (2004).
  • Morello JP, Salahpour A, Petaja-Repo UE et al. Association of calnexin with wild type and mutant AVPR2 that causes nephrogenic diabetes insipidus. Biochemistry40(23), 6766–6775 (2001).
  • Schöneberg T, Schulz A, Biebermann H et al. V2 vasopressin receptor dysfunction in nephrogenic diabetes insipidus caused by different molecular mechanisms. Hum. Mutat.12(3), 196–205 (1998).
  • Feldman BJ, Rosenthal SM, Vargas GA et al. Nephrogenic syndrome of inappropriate antidiuresis. N. Engl. J. Med.352(18), 1884–1890 (2005).
  • Rosenthal W, Seibold A, Antaramian A et al. Mutations in the vasopressin V2 receptor gene in families with nephrogenic diabetes insipidus and functional expression of the Q-2 mutant. Cell Mol. Biol. (Noisy-le-grand)40(3), 429–436 (1994).
  • Shoji Y, Takahashi T, Suzuki Y et al. Mutational analyses of AVPR2 gene in three Japanese families with X-linked nephrogenic diabetes insipidus: two recurrent mutations, R137H and deltaV278, caused by the hypermutability at CpG dinucleotides. Hum. Mutat.1(Suppl.), S278–S283 (1998).
  • Schöneberg T, Pasel K, von Baehr V et al. Compound deletion of the rhoGAP C1 and V2 vasopressin receptor genes in a patient with nephrogenic diabetes insipidus. Hum. Mutat.14(2), 163–174 (1999).
  • Demura M, Takeda Y, Yoneda T et al. Two novel types of contiguous gene deletion of the AVPR2 and ARHGAP4 genes in unrelated Japanese kindreds with nephrogenic diabetes insipidus. Hum. Mutat.19(1), 23–29 (2002).
  • Tribioli C, Droetto S, Bione S et al. An X chromosome-linked gene encoding a protein with characteristics of a rhoGAP predominantly expressed in hematopoietic cells. Proc. Natl Acad. Sci. USA93(2), 695–699 (1996).
  • Foletta VC, Brown FD, Young WS 3rd. Cloning of rat ARHGAP4/C1, a RhoGAP family member expressed in the nervous system that colocalizes with the Golgi complex and microtubules. Brain Res. Mol. Brain Res.107(1), 65–79 (2002).
  • Christerson LB, Gallagher E, Vanderbilt CA et al. p115 Rho GTPase activating protein interacts with MEKK1. J. Cell Physiol.192(2), 200–208 (2002).
  • Arthus MF, Lonergan M, Crumley MJ et al. Report of 33 novel AVPR2 mutations and analysis of 117 families with X-linked nephrogenic diabetes insipidus. J. Am. Soc. Nephrol.11(6), 1044–1054 (2000).
  • Kamperis K, Siggaard C, Herlin T et al. A novel splicing mutation in the V2 vasopressin receptor. Pediatr. Nephrol.15(1–2), 43–49 (2000).
  • Verkman AS. Novel roles of aquaporins revealed by phenotype analysis of knockout mice. Rev. Physiol. Biochem. Pharmacol.155, 31–55 (2005).
  • Nielsen S, Chou CL, Marples D et al. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc. Natl Acad. Sci. USA92(4), 1013–1017 (1995).
  • Klussmann E, Maric K, Wiesner B, Beyermann M, Rosenthal W. Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J. Biol. Chem.274(8), 4934–4938 (1999).
  • Kuwahara M, Fushimi K, Terada Y et al. cAMP-dependent phosphorylation stimulates water permeability of aquaporin-collecting duct water channel protein expressed in Xenopus oocytes. J. Biol. Chem.270(18), 10384–10387 (1995).
  • Kamsteeg EJ, Heijnen I, van Os CH, Deen PM. The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J. Cell Biol.151(4), 919–930 (2000).
  • Noda Y, Sasaki S. Regulation of aquaporin-2 trafficking and its binding protein complex. Biochim. Biophys. Acta1758(8), 1117–1125 (2006).
  • Deen PM, van Balkom BW, Kamsteeg EJ. Routing of the aquaporin-2 water channel in health and disease. Eur. J. Cell Biol.79(8), 523–530 (2000).
  • de Mattia F, Savelkoul PJ, Bichet DG et al. A novel mechanism in recessive nephrogenic diabetes insipidus: wild-type aquaporin-2 rescues the apical membrane expression of intracellularly retained AQP2-P262L. Hum. Mol. Genet.13(24), 3045–3056 (2004).
  • Deen PM, Croes H, van Aubel RA, Ginsel LA, van Os CH. Water channels encoded by mutant aquaporin-2 genes in nephrogenic diabetes insipidus are impaired in their cellular routing. J. Clin. Invest.95(5), 2291–2296 (1995).
  • Kamsteeg EJ, Bichet DG, Konings IB et al. Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus. J. Cell Biol.163(5), 1099–1109 (2003).
  • Kamsteeg EJ, Wormhoudt TA, Rijss JP, van Os CH, Deen PM. An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus. EMBO J.18(9), 2394–2400 (1999).
  • Marr N, Bichet DG, Lonergan M et al. Heteroligomerization of an aquaporin-2 mutant with wild-type aquaporin-2 and their misrouting to late endosomes/lysosomes explains dominant nephrogenic diabetes insipidus. Hum. Mol. Genet.11(7), 779–789 (2002).
  • de Mattia F, Savelkoul PJ, Kamsteeg EJ et al. Lack of arginine vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2-R254L explains dominant nephrogenic diabetes insipidus. J. Am. Soc. Nephrol.16(10), 2872–2880 (2005).
  • Naik DV, Valtin H. Hereditary vasopressin-resistant urinary concentrating defects in mice. Am J. Physiol.217(4), 1183–1190 (1969).
  • Luzius H, Jans DA, Grunbaum EG et al. A low affinity vasopressin V2-receptor in inherited nephrogenic diabetes insipidus. J. Recept. Res.12(3), 351–368 (1992).
  • Braun EJ, Stallone JN. The occurrence of nephrogenic diabetes insipidus in domestic fowl. Am. J. Physiol.256(4 Pt 2), F639–F645 (1989).
  • Singer I, Rotenberg D, Puschett JB. Lithium-induced nephrogenic diabetes insipidus: in vivo and in vitro studies. J. Clin. Invest.51(5), 1081–1091 (1972).
  • Yun J, Schöneberg T, Liu J et al. Generation and phenotype of mice harboring a nonsense mutation in the V2 vasopressin receptor gene. J. Clin. Invest.106(11), 1361–1371 (2000).
  • Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Neonatal mortality in an aquaporin-2 knock-in mouse model of recessive nephrogenic diabetes insipidus. J. Biol. Chem.276(4), 2775–2779 (2001).
  • Yang B, Zhao D, Qian L, Verkman AS. Mouse model of inducible nephrogenic diabetes insipidus produced by floxed aquaporin-2 gene deleltion. Am. J. Physiol. Renal Physiol.291(2), F465–F472 (2006).
  • Lloyd DJ, Hall FW, Tarantino LM, Gekakis N. Diabetes insipidus in mice with a mutation in aquaporin-2. PLoS Genet.1(2), E20 (2005).
  • McDill BW, Li SZ, Kovach PA, Ding L, Chen F. Congenital progressive hydronephrosis (cph) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation. Proc. Natl Acad. Sci. USA103(18), 6952–6957 (2006).
  • Padfield PL, Morton JJ, Lindop G, Timbury GC. Lithium induced nephrogenic diabetes insipidus: changes in plasma vasopressin and angiotensin II. Clin. Nephrol.3(6), 220–224 (1975).
  • Padfield PL, Park SJ, Morton JJ, Braidwood AE. Plasma levels of antidiuretic hormone in patients receiving prolonged lithium therapy. Br. J. Psychiatry130, 144–147 (1977).
  • Bichet DG, Razi M, Lonergan M et al. Hemodynamic and coagulation responses to 1-desamino[8-D-arginine] vasopressin in patients with congenital nephrogenic diabetes insipidus. N. Engl. J. Med.318(14), 881–887 (1988).
  • Tanoue A, Ito S, Honda K et al. The vasopressin V1b receptor critically regulates hypothalamic–pituitary–adrenal axis activity under both stress and resting conditions. J. Clin. Invest.113(2), 302–309 (2004).
  • Wersinger SR, Ginns EI, O’Carroll AM, Lolait SJ, Young WS 3rd. Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol. Psychiatry7(9), 975–984 (2002).
  • Khokhar AM, Slater JD, Ma J, Ramage CM. The cardiovascular effect of vasopressin in relation to its plasma concentration in man and its relevance to high blood pressure. Clin. Endocrinol. (Oxf.)13(3), 259–266 (1980).
  • Bichet DG, Arthus MF, Lonergan M. Platelet vasopressin receptors in patients with congenital nephrogenic diabetes insipidus. Kidney Int.39(4), 693–699 (1991).
  • Sangkuhl K, Schulz A, Römpler H et al. Aminoglycoside-mediated rescue of a disease-causing nonsense mutation in the V2 vasopressin receptor gene in vitro and in vivo. Hum. Mol. Genet.13(9), 893–903 (2004).
  • Kim YH, Kwon TH, Christensen BM et al. Altered expression of renal acid-base transporters in rats with lithium-induced NDI. Am. J. Physiol. Renal Physiol.285(6), F1244–F1257 (2003).
  • Kwon TH, Laursen UH, Marples D et al. Altered expression of renal AQPs and Na+ transporters in rats with lithium-induced NDI. Am. J. Physiol. Renal Physiol.279(3), F552–F564 (2000).
  • Dembowski J, Gekle D, Thoenes W, Wernze H. Hyperreninism and hypertrophy of the juxtaglomerular apparatus in familial nephrogenic diabetes insipidus. Klin. Wochenschr.51(23), 1159–1163 (1973).
  • Saruta T, Fujimaki M, Ogihara T et al. Evaluation of the renin-angiotensin system in diabetes insipidus and psychogenic polydipsia. Nephron32(1), 14–17 (1982).
  • Minami J, On K, Inada H et al. A case of congenital nephrogenic diabetes insipidus accompanied by hypertension. Nippon Jinzo Gakkai Shi43(1), 35–38 (2001).
  • Balment RJ, Jones IC, Henderson IW. Time course of lithium-induced alterations in renal and endocrine function in normal and Brattleboro rats with hypothalamic diabetes insipidus. Br. J. Pharmacol.59(4), 627–634 (1977).
  • Wilson TW. Renal prostaglandin synthesis and angiotensin-converting enzyme inhibition. J. Cardiovasc. Pharmacol.19(Suppl. 6), S39–S44 (1992).
  • Friis-Hansen B, Skadhauge E, Zetterstroem R. Fluid and electrolyte metabolism in nephrogenic diabetes insipidus. Two cases. Acta Paediatr.146(Suppl.), 157–167 (1963).
  • Kuzemko JA, Robson JE. Chlorothiazide in the treatment of nephrogenic diabetes insipidus. Br. J. Clin. Pract.20(10), 521–524 (1966).
  • Goldfarb DS, Chan AJ, Hernandez D, Charney AN. Effect of thiazides on colonic NaCl absorption: role of carbonic anhydrase. Am J. Physiol.261(3 Pt 2), F452–F458 (1991).
  • Meyerson LR, Nesta D. [3H]acetazolamide binding to carbonic anhydrase in normal and transformed cells. Biochem. Pharmacol.41(6–7), 995–1000 (1991).
  • Konoshita T, Kuroda M, Kawane T et al. Treatment of congenital nephrogenic diabetes insipidus with hydrochlorothiazide and amiloride in an adult patient. Horm. Res.61(2), 63–67 (2004).
  • Kirchlechner V, Koller DY, Seidl R, Waldhauser F. Treatment of nephrogenic diabetes insipidus with hydrochlorothiazide and amiloride. Arch. Dis. Child.80(6), 548–552 (1999).
  • Uyeki TM, Barry FL, Rosenthal SM, Mathias RS. Successful treatment with hydrochlorothiazide and amiloride in an infant with congenital nephrogenic diabetes insipidus. Pediatr. Nephrol.7(5), 554–556 (1993).
  • Alon U, Chan JC. Hydrochlorothiazide-amiloride in the treatment of congenital nephrogenic diabetes insipidus. Am. J. Nephrol.5(1), 9–13 (1985).
  • Rascher W, Rosendahl W, Henrichs IA, Maier R, Seyberth HW. Congenital nephrogenic diabetes insipidus-vasopressin and prostaglandins in response to treatment with hydrochlorothiazide and indomethacin. Pediatr. Nephrol.1(3), 485–490 (1987).
  • Kaulitz R, Brodehl J. Long-term course of 6 boys with congenital nephrogenic diabetes insipidus. Klin. Padiatr.201(6), 425–430 (1989).
  • Pattaragarn A, Alon US. Treatment of congenital nephrogenic diabetes insipidus by hydrochlorothiazide and cyclooxygenase-2 inhibitor. Pediatr. Nephrol.18(10), 1073–1076 (2003).
  • Soylu A, Kasap B, Ogun N et al. Efficacy of COX-2 inhibitors in a case of congenital nephrogenic diabetes insipidus. Pediatr. Nephrol.20(12), 1814–1817 (2005).
  • Dies F, Suarez MA, Rivera A. Treatment of diabetes insipidus with orally administered compounds. Clin. Pharmacol. Ther.12, 602–611 (1963).
  • Cenani A, Friederiszick FK. Familial renal diabetes insipidus. Z. Kinderheilkd.88, 329–346 (1963).
  • Nielsen J, Kwon TH, Praetorius J et al. Aldosterone increases urine production and decreases apical AQP2 expression in rats with diabetes insipidus. Am. J. Physiol. Renal Physiol.290(2), F438–F449 (2006).
  • Coffey AK, O’Sullivan DJ, Homma S, Dousa TP, Valtin H. Induction of intramembranous particle clusters in mice with nephrogenic diabetes insipidus. Am. J. Physiol.261(4 Pt 2), F640–F646 (1991).
  • Bichet DG, Ruel N, Arthus MF, Lonergan M. Rolipram, a phosphodiesterase inhibitor, in the treatment of two male patients with congenital nephrogenic diabetes insipidus. Nephron56(4), 449–450 (1990).
  • Bouley R, Breton S, Sun T et al. Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J. Clin. Invest.106(9), 1115–1126 (2000).
  • Brown D. The ins and outs of aquaporin-2 trafficking. Am. J. Physiol. Renal Physiol.284(5), F893–F901 (2003).
  • Bouley R, Pastor-Soler N, Cohen O et al. Stimulation of AQP2 membrane insertion in renal epithelial cells in vitro and in vivo by the cGMP phosphodiesterase inhibitor sildenafil citrate (Viagra). Am. J. Physiol. Renal Physiol.288(6), F1103–F1112 (2005).
  • Tamarappoo BK, Verkman AS. Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J. Clin. Invest.101(10), 2257–2267 (1998).
  • Tamarappoo BK, Yang B, Verkman AS. Misfolding of mutant aquaporin-2 water channels in nephrogenic diabetes insipidus. J. Biol. Chem.274(49), 34825–34831 (1999).
  • Morello JP, Salahpour A, Laperriere A et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J. Clin. Invest.105(7), 887–895 (2000).
  • Wüller S, Wiesner B, Löffler A et al. Pharmacochaperones post-translationally enhance cell surface expression by increasing conformational stability of wild-type and mutant vasopressin V2 receptors. J. Biol. Chem.279(45), 47254–47263 (2004).
  • Bernier V, Lagace M, Lonergan M et al. Functional rescue of the constitutively internalized V2 vasopressin receptor mutant R137H by the pharmacological chaperone action of SR49059. Mol. Endocrinol.18(8), 2074–2084 (2004).
  • Bernier V, Morello JP, Zarruk A et al. Pharmacologic chaperones as a potential treatment for X-linked nephrogenic diabetes insipidus. J. Am. Soc. Nephrol.17(1), 232–243 (2006).
  • Wilschanski M, Yahav Y, Yaacov Y et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N. Engl. J. Med.349(15), 1433–1441 (2003).
  • Grayson C, Chapple JP, Willison KR et al. In vitro analysis of aminoglycoside therapy for the Arg120stop nonsense mutation in RP2 patients. J. Med. Genet.39(1), 62–67 (2002).
  • Keeling KM, Brooks DA, Hopwood JJ et al. Gentamicin-mediated suppression of Hurler syndrome stop mutations restores a low level of α-L-iduronidase activity and reduces lysosomal glycosaminoglycan accumulation. Hum. Mol. Genet.10(3), 291–299 (2001).
  • Nejsum LN. The renal plumbing system: aquaporin water channels. Cell. Mol. Life Sci.62(15), 1692–1706 (2005).
  • Robben JH, Sze M, Knoers NV, Deen PM. Rescue of vasopressin V2 receptor mutants by chemical chaperones: specificity and mechanism. Mol. Biol. Cell17(1), 379–386 (2006).
  • Schöneberg T, Yun J, Wenkert D, Wess J. Functional rescue of mutant V2 vasopressin receptors causing nephrogenic diabetes insipidus by a co-expressed receptor polypeptide. EMBO J.15(6), 1283–1291 (1996).
  • Schöneberg T, Sandig V, Wess J, Gudermann T, Schultz G. Reconstitution of mutant V2 vasopressin receptors by adenovirus-mediated gene transfer. Molecular basis and clinical implication. J. Clin. Invest.100(6), 1547–1556 (1997).
  • Barak LS, Oakley RH, Laporte SA, Caron MG. Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc. Natl Acad. Sci. USA98(1), 93–98 (2001).
  • Ma T, Yang B, Gillespie A et al. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J. Biol. Chem.273(8), 4296–4299 (1998).
  • Ma T, Song Y, Yang B et al. Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc. Natl Acad. Sci. USA97(8), 4386–4391 (2000).
  • Ma T, Yang B, Gillespie A et al. Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J. Clin. Invest.100(5), 957–962 (1997).
  • Lorenz JN, Baird NR, Judd LM et al. Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter’s syndrome. J. Biol. Chem.277(40), 37871–37880 (2002).
  • Lu M, Wang T, Yan Q et al. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter’s) knockout mice. J. Biol. Chem.277(40), 37881–37887 (2002).
  • Takahashi N, Chernavvsky DR, Gomez RA et al. Uncompensated polyuria in a mouse model of Bartter’s syndrome. Proc. Natl Acad. Sci. USA97(10), 5434–5439 (2000).
  • Uchida S, Marumo F. Severely impaired urine-concentrating ability in mice lacking the CLC-K1 chloride channel. Exp. Nephrol.8(6), 361–365 (2000).
  • Akizuki N, Uchida S, Sasaki S, Marumo F. Impaired solute accumulation in inner medulla of Clcnk1-/- mice kidney. Am. J. Physiol. Renal Physiol.280(1), F79–F87 (2001).
  • Ho HT, Chung SK, Law JW et al. Aldose reductase-deficient mice develop nephrogenic diabetes insipidus. Mol. Cell. Biol.20(16), 5840–5846 (2000).
  • Amlal H, Ledoussal C, Sheriff S, Shull GE, Soleimani M. Downregulation of renal AQP2 water channel and NKCC2 in mice lacking the apical Na+-H+ exchanger NHE3. J. Physiol.553(Pt 2), 511–522 (2003).
  • Yanai K, Saito T, Kakinuma Y et al. Renin-dependent cardiovascular functions and renin-independent blood-brain barrier functions revealed by renin-deficient mice. J. Biol. Chem.275(1), 5–8 (2000).
  • Takahashi N, Lopez ML, Cowhig JE, Jr. et al. Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J. Am. Soc. Nephrol.16(1), 125–132 (2005).
  • Kotelevtsev Y, Brown RW, Fleming S et al. Hypertension in mice lacking 11β-hydroxysteroid dehydrogenase type 2. J. Clin. Invest.103(5), 683–689 (1999).
  • Behr R, Brestelli J, Fulmer JT et al. Mild nephrogenic diabetes insipidus caused by Foxa1 deficiency. J. Biol. Chem.279(40), 41936–41941 (2004).
  • Morishita T, Tsutsui M, Shimokawa H et al. Nephrogenic diabetes insipidus in mice lacking all nitric oxide synthase isoforms. Proc. Natl Acad. Sci. USA102(30), 10616–10621 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.