42
Views
1
CrossRef citations to date
0
Altmetric
Review

Current strategies and perspectives in insulin gene therapy for diabetes

&
Pages 27-34 | Published online: 10 Jan 2014

References

  • Devendra D, Liu E, Eisenbarth GS. Type 1 diabetes: recent developments. Br. Med. J. 328(7442), 750–754 (2004).
  • Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. β-cell deficit and increased β cell apoptosis in humans with Type 2 diabetes. Diabetes 52(1), 102–110 (2003).
  • Burke GW, Giancio G. Islet cell transplantation: should we use more than one pancreas? Transplant Proc. 34(5), 1925–1926 (2002).
  • Easom RA. β-granule transport and exocytosis. Semin. Cell Dev. Biol. 11(4), 253–266 (2000).
  • Herenu CB, Morel GR, Bellini MJ et al. Gene therapy in the neuroendocrine system. Front. Horm. Res. 35, 135–142 (2006).
  • Motoyoshi S, Shirotani T, Araki E et al. Cellular characterization of pituitary adenoma cell line (AtT20 cell) transfected with insulin, glucose transporter Type 2 (GLUT2) and glucokinase genes: insulin secretion in response to physiological concentrations of glucose. Diabetologia 41(12), 1492–1501 (1998).
  • Wu L, Nicholson W, Wu CY et al. Engineering physiologically regulated insulin secretion in non-β cells by expressing glucagon-like peptide 1 receptor. Gene Ther. 10(19), 1712–1720 (2003).
  • Corbett JA. K cells: a novel target for insulin gene therapy for the prevention of diabetes. Trends Endocrinol. Metab. 12(4), 140–142 (2001).
  • Ramshur EB, Rull TR, Wice BM. Novel insulin/GIP co-producing cell lines provide unexpected insights into Gut K-cell function in vivo. J. Cell. Physiol. 192(3), 339–350 (2002).
  • Cheung AT, Dayanandan B, Lewis JT et al. Glucose-dependent insulin release from genetically engineered K cells. Science 290(5498), 1959–1962 (2000).
  • Grapin-Botton A. Ductal cells in the pancreas. Int. J. Biochem. Cell Biol. 37(3), 504–510 (2005).
  • Shifrin AL, Auricchio A, Yu QC, Wilson J, Raper SE. Adenoviral vector-mediated insulin gene transfer in the mouse pancreas corrects streptozotocin-induced hyperglycemia. Gene Ther. 8(19), 1480–1489 (2001).
  • Wang Z, Zhu T, Rehman KK et al. Widespread and stable pancreatic gene transfer by adeno-associated virus vectors via different routes. Diabetes 55(4), 875–884 (2006).
  • Bonner-Weir S, Weir GS. New sources of pancreatic β-cells. Nat. Biotechnol. 23(7), 857–861 (2005).
  • Thule PM, Liu JM. Regulated hepatic insulin gene therapy of STZ-diabetic rats. Gene Ther. 7(20), 1744–1752 (2000).
  • Shaw JA, Delday MI, Hart AW, Docherty HM, Maltin CA, Docherty K. Secretion of bioactive human insulin following plasmid-mediated gene transfer to non-neuroendocrine cell lines, primary cultures and rat skeletal muscle in vivo. J. Endocrinol. 172(3), 653–672 (2002).
  • Auricchio A, Gao GP, Yu QC et al. Constitutive and regulated expression of processed insulin following in vivo hepatic gene transfer. Gene Ther. 9(14), 963–971 (2002).
  • Alam T, Sollinger HW. Glucose-regulated insulin production in hepatocytes. Transplantation 74(12), 1781–1787 (2002).
  • Chen R, Meseck ML, McEvoy RC, Woo SL. Glucose-stimulated and self-limiting insulin production by glucose 6-phosphatase promoter driven insulin expression in hepatoma cells. Gene Ther. 7(21), 1802–1809 (2000).
  • Chen R, Meseck ML, Woo SL. Auto-regulated hepatic insulin gene expression in Type 1 diabetic rats. Mol. Ther. 3(4), 584–590 (2001).
  • Lee HC, Kim SJ, Kim KS, Shin HC, Yoon JW. Remission in models of Type 1 diabetes by gene therapy using a single-chain insulin analogue. Nature 408(6811), 483–488 (2000).
  • Wanke IE, Wong NC. Specific problems facing gene therapy for insulin-dependent diabetes mellitus: glucose-regulated insulin secretion from hepatocytes. Proc. West. Pharmacol. Soc. 40, 131–133 (1997).
  • Olson DE, Paveglio SA, Huey PU, Porter MH, Thule PM. Glucose-responsive hepatic insulin gene therapy of spontaneously diabetic BB/Wor rats. Hum. Gene Ther. 14(15), 1401–1413 (2003).
  • Lee HC. Recent advance in hepatic insulin gene therapy. Diabetes Res. Clin. Pract. 66(Suppl. 1), S3–S10 (2004).
  • Rivera VM, Wang X, Wardwell S et al. Regulation of protein secretion through controlled aggregation in the endoplasmic reticulum. Science 287(5454), 826–830 (2000).
  • Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49(2), 157–162 (2000).
  • Chen X, Patil JG, Lok SH, Kon OL. Human liver-derived cells stably modified for regulated proinsulin secretion function as bioimplants in vivo. J. Gene Med. 4(4), 447–458 (2002).
  • Xu R, Janson CG, Mastakov M et al. Quantitative comparison of expression with adeno-associated virus (AAV-2) brain-specific gene cassettes. Gene Ther. 8(17), 1323–1332 (2001).
  • Liu M, Ramos-Castaneda J, Arvan P. Role of the connecting peptide in insulin biosynthesis. J. Biol. Chem. 278(17), 14798–14805 (2003).
  • Wahren J, Jornvall H. C-peptide makes a comeback. Diabetes Metab. Res. Rev. 19(5), 345–347 (2003).
  • Simonson GD, Groskreutz DJ, Gorman CM, McDonald MJ. Synthesis and processing of genetically modified human proinsulin by rat myoblast primary cultures. Hum. Gene Ther. 7(1), 71–78 (1996).
  • Gros L, Riu E, Momtoliu L, Ontiverus M, Lebrigand L, Bosch F. Insulin production by engineered muscle cells. Hum. Gene Ther. 10(7), 1207–1217 (1999).
  • Falqui L, Martinenghi S, Severini GM et al. Reversal of diabetes in mice by implantation of human fibroblasts genetically engineered to release mature human insulin. Hum. Gene Ther. 10(11), 1753–1762 (1999).
  • Wilson MO, Scouqall KT, Ratanamart J, McIntyre EA, Shaw JA. Tetracycline-regulated secretion of human (pro)insulin following plasmid-mediated transfection of human muscle. J. Mol. Endocrinol. 34(2), 391–403 (2005).
  • Scougall KT, Shaw JA. Tetracycline-regulated secretion of human insulin in transfected primary myoblasts. Biochem. Biophys. Res. Commun. 304(1), 167–175 (2003).
  • Scougall KT, Maltin CA, Shaw JA. Tetracycline-regulated secretion of human insulin in a transfected non-endocrine cell line. J. Mol. Endocrinol. 30(3), 331–346 (2003).
  • Lu D, Tamemoto H, Shibata H, Saito H. Regulatable production of insulin from primary-cultured hepatocytes: insulin production is up-regulated by glucagon and cAMP and down-regulated by insulin. Gene Ther. 5(7), 888–895 (1998).
  • Qin XY, Shen KT, Song LJ, Zhang X, Han ZG. Regulated production of mature insulin in rat hepatoma cells: insulin production is up-regulated by dexamethasone and down-regulated by insulin. Acta Biochim. Biophys. Sin. 38(2), 89–94 (2006).
  • Cournarie F, Azzout-Marniche D, Foretz M, Guitchard C, Ferre B, Foufelle F. The inhibitory effect of glucose on phosphoenolpyruvate carboxykinase gene expression in cultured hepatocytes is transcriptional and requires glucose metabolism. FEBS Lett. 460(3), 527–532 (1999).
  • Quinn PG, Yeagley D. Insulin regulation of PEPCK gene expression: a model for rapid and reversible modulation. Curr. Drug Targets Immune Endocr. Metabol. Disord. 5(4), 423–437 (2005).
  • Olefsky JM. Gene therapy for rats and mice. Nature 408(6811), 420–421 (2000).
  • Paillard F. Insulin-secreting cells for diabetes. Hum. Gene Ther. 10(11), 1741–1742 (1999).
  • Habener JF, Kemp DM, Thomas MK. Transcriptional regulation in pancreatic development. Endocrinology 146(3), 1025–1034 (2005).
  • Melloul D. Transcription factors in islet development and physiology: role of PDX-1 in β-cell function. Ann. NY Acad. Sci. 1014, 28–37 (2004).
  • Ber I, Shternhall K, Perl S et al. Functional, persistent, and extended liver to pancreas transdifferentiation. J. Biol. Chem. 278(34), 31950–31957 (2003).
  • Ferber S, Halkin A, Cohen H et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat. Med. 6(5), 568–572 (2000).
  • Sapir T, Shtrernhall K, Meivar-Levy Y et al. Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells. Proc. Natl Acad. Sci. USA 102(22), 7964–7969 (2005).
  • Koizumi M, Doi R, Toyoda E et al. Hepatic regeneration and enforced PDX-1 expression accelerate transdifferentiation in liver. Surgery 136(2), 449–457 (2004).
  • Kaneto H, Nakatani Y, Miyatsuka M et al. PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes 54(4), 1009–1022 (2005).
  • Miyatsuka T, Kaneto H, Kajimoto Y et al. Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis. Biochem. Biophys. Res. Commun. 310(3), 1017–1025 (2003).
  • Kaneto H, Matsuoka TA, Nakatani Y et al. A crucial role of MafA as a novel therapeutic target for diabetes. J. Biol. Chem. 280(15), 15047–15052 (2005).
  • Rosskamp RH. Long-acting insulin analogues. Diabetes Care 22(Suppl. 2), B109–B113 (1999).
  • Bolli GB. Rational use of insulin analogues in the treatment of Type 1 diabetes mellitus. Pediatr. Endocrinol. Rev. 1(1), 9–21 (2003).
  • Wang F, Carabino JM, Vergara CM. Insulin glargine: a systematic review of a long-acting insulin analogue. Clin. Ther. 25(6), 1541–1577 (2003).
  • Thirion C, Larochelle N, Volpers C et al. Strategies for muscle-specific targeting of adenoviral gene transfer vectors. Neuromuscul. Disord. 12(Suppl. 1), S30–S39 (2002).
  • Jiang Z, Schiedner G, Gilchrist SC, Kochanek S, Clemens PR. CTLA4Ig delivered by high-capacity adenoviral vector induces stable expression of dystrophin in mdx mouse muscle. Gene Ther. 11(19) 1453–1461 (2004).
  • Goncalves MA, van Nierop GP, Tijssen MR et al. Transfer of the full-length dystrophin-coding sequence into muscle cells by a dual high-capacity hybrid viral vector with site-specific integration ability. J. Virol. 79(5), 3146–3162 (2005).
  • Gregorevic P, Blankinship MJ, Allen JM et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat. Med. 10(8), 828–834 (2004).
  • Van Linthout S, Madeddu P. Ex vivo gene transfer for improvement of transplanted pancreatic islet viability and function. Curr. Pharm. Des. 11(22), 2927–2940 (2005).
  • Atouf F, Choi Y, Fowler MJ et al. Generation of islet-like hormone-producing cells in vitro from adult human pancreas. Cell Transplant. 14(10), 735–748 (2005).
  • Todorov I, Omori K, Pascual M et al. Generation of human islets through expansion and differentiation of non-islet pancreatic cells discarded (pancreatic discard) after islet isolation. Pancreas 32(2) 130–138 (2006).
  • Lipsett M, Aikin R, Castellarin M et al. Islet neogenesis: a potential therapeutic tool in Type 1 diabetes. Int. J. Biochem. Cell Biol. 38(5–6), 715–720 (2006).
  • Narang AS, Mahato RI. Biological and biomaterial approaches for improved islet transplantation. Pharmacol. Rev. 58(2), 194–243 (2006).
  • Bradley SP, Rastellini C, da Costa MA et al. Gene silencing in the endocrine pancreas mediated by short-interfering RNA. Pancreas 31(4), 373–379 (2005).
  • Hagerkvist R, Mokhtari D, Myers JW, Tengholm A, Welsh N. siRNA produced by recombinant dicer mediates efficient gene silencing in islet cells. Ann. NY Acad. Sci. 1040, 114–122 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.