14
Views
3
CrossRef citations to date
0
Altmetric
Review

Targeting vesicular monoamine transporter Type 2 for noninvasive PET-based β-cell mass measurements

&
Pages 35-46 | Published online: 10 Jan 2014

References

  • McCulloch DK, Koerker DJ, Kahn SE, Bonner-Weir S, Palmer JP. Correlations of in vivo β-cell function tests with β-cell mass and pancreatic insulin content in streptozocin-administered baboons. Diabetes40(6), 673–679 (1991).
  • Smyth S, Heron A. Diabetes and obesity: the twin epidemics. Nat. Med.12(1), 75–80 (2006).
  • Garber AJ. Clinical perspectives on Type 2 diabetes in north america. Diabetes Metab.. Rev.11(Suppl. 1), S81–S86 (1995).
  • Nathan DM, Cleary PA, Backlund JY et al. Intensive diabetes treatment and cardiovascular disease in patients with Type 1 diabetes. N. Engl. J. Med.353(25), 2643–2653 (2005).
  • Druss BG, Marcus SC, Olfson M et al. Comparing the national economic burden of five chronic conditions. Health Aff. (Millwood)20(6), 233–241 (2001).
  • Mehl B, Santell J. Projecting future drug expenditures – 2001. Am. J. Health Syst. Pharm.58(2), 125–133 (2001).
  • Ahren B. Autonomic regulation of islet hormone secretion – implications for health and disease. Diabetologia43(4), 393–410 (2000).
  • Kiba T. Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: Recent developments. Pancreas29(2), E51–E58 (2004).
  • Yoon JW, Jun HS. Autoimmune destruction of pancreatic β cells. Am. J. Ther.12(6), 580–591 (2005).
  • Imagawa A, Hanafusa T, Tamura S et al. Pancreatic biopsy as a procedure for detecting in situ autoimmune phenomena in Type 1 diabetes: close correlation between serological markers and histological evidence of cellular autoimmunity. Diabetes50(6), 1269–1273 (2001).
  • Hirtzler R. Serous insulitis in acute diabetes mellitus. Rad. Med. Fak. Zagrebu3182–3184 (1954).
  • Craig ME, Howard NJ, Silink M, Chan A. The rising incidence of childhood Type 1 diabetes in New South Wales, Australia. J. Pediatr. Endocrinol. Metab.13(4), 363–372 (2000).
  • Jun HS, Yoon JW. A new look at viruses in Type 1 diabetes. Diabetes Metab.. Res. Rev.19(1), 8–31 (2003).
  • Vreugdenhil GR, Geluk A, Ottenhoff TH et al. Molecular mimicry in diabetes mellitus: The homologous domain in coxsackie b virus protein 2c and islet autoantigen gad65 is highly conserved in the coxsackie b-like enteroviruses and binds to the diabetes associated hla-dr3 molecule. Diabetologia41(1), 40–46 (1998).
  • Hirschhorn JN. Genetic epidemiology of Type 1 diabetes. Pediatr. Diabetes4(2), 87–100 (2003).
  • Barnett AH, Eff C, Leslie RD, Pyke DA. Diabetes in identical twins. A study of 200 pairs. Diabetologia20(2), 87–93 (1981).
  • Kim MS, Polychronakos C. Immunogenetics of Type 1 diabetes. Horm. Res.64(4), 180–188 (2005).
  • Kahn CR. Banting lecture. Insulin action, diabetogenes, and the cause of Type II diabetes. Diabetes43(8), 1066–1084 (1994).
  • Ohlson LO, Larsson B, Svardsudd K et al. The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes34(10), 1055–1058 (1985).
  • Baba S, Ebara S, Kawaguchi A, Yoshida Y, Yamaguchi Y. A fifteen-year follow-up on diabetes in a japanese rural district. Kobe fed Sci.22(3), 197–209 (1976).
  • Fujimoto WY, Leonetti DL, Kinyoun JL et al. Prevalence of complications among second-generation japanese-american men with diabetes, impaired glucose tolerance, or normal glucose tolerance. Diabetes36(6), 730–739 (1987).
  • Accili D. Lilly lecture 2003: The struggle for mastery in insulin action: from triumvirate to republic. Diabetes53(7), 1633–1642 (2004).
  • Haffner SM, Stern MP, Mitchell BD, Hazuda HP, Patterson JK. Incidence of Type II diabetes in Mexican Americans predicted by fasting insulin and glucose levels, obesity, and body-fat distribution. Diabetes39(3), 283–288 (1990).
  • Knowler WC, Pettitt DJ, Savage PJ, Bennett PH. Diabetes incidence in Pima Indians: contributions of obesity and parental diabetes. Am. J. Epidemiol.113(2), 144–156 (1981).
  • Rich SS. Mapping genes in diabetes. Genetic epidemiological perspective. Diabetes39(11), 1315–1319 (1990).
  • Polonsky KS, Sturis J, Bell GI. Seminars in medicine of the Beth Israel hospital, Boston. Non-insulin-dependent diabetes mellitus – a genetically programmed failure of the β cell to compensate for insulin resistance. N. Engl. J. Med.334(12), 777–783 (1996).
  • Butler AE, Janson J, Bonner-Weir S et al. β-cell deficit and increased β-cell apoptosis in humans with Type 2 diabetes. Diabetes52(1), 102–110 (2003).
  • Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes14(10), 619–633 (1965).
  • Kjems LL, Kirby BM, Welsh EM et al. Decrease in β-cell mass leads to impaired pulsatile insulin secretion, reduced postprandial hepatic insulin clearance, and relative hyperglucagonemia in the minipig. Diabetes50(9), 2001–2012 (2001).
  • Larsen MO, Rolin B, Wilken M, Carr RD, Gotfredsen CF. Measurements of insulin secretory capacity and glucose tolerance to predict pancreatic β-cell mass in vivo in the nicotinamide/streptozotocin gottingen minipig, a model of moderate insulin deficiency and diabetes. Diabetes52(1), 118–123 (2003).
  • Sreenan S, Pick AJ, Levisetti M et al. Increased β-cell proliferation and reduced mass before diabetes onset in the nonobese diabetic mouse. Diabetes48(5), 989–996 (1999).
  • Larsen MO, Gotfredsen CF, Wilken M et al. Loss of β-cell mass leads to a reduction of pulse mass with normal periodicity, regularity and entrainment of pulsatile insulin secretion in gottingen minipigs. Diabetologia46(2), 195–202 (2003).
  • Saito K, Yaginuma N, Takahashi T. Differential volumetry of a, b and d cells in the pancreatic islets of diabetic and nondiabetic subjects. Tohoku J. Exp. Med.129(3), 273–283 (1979).
  • Bonner-Weir S, Trent DF, Weir GC. Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J. Clin. Invest.71(6), 1544–1553 (1983).
  • Tominaga M, Maruyama H, Bolli G, Helderman JH, Unger RH. Simulation of the normal glucopenia-induced decline in insulin partially restores the glucagon response to glucopenia in isolated perfused pancreata of streptozotocin-diabetic rats. Endocrinology118(2), 886–887 (1986).
  • Sherry NA, Tsai EB, Herold KC. Natural history of {β}-cell function in Type 1 diabetes. Diabetes54(Suppl. 2), S32–S39 (2005).
  • ADA. Standards of medical care in diabetes – 2006. Diabetes Care29(Suppl. 1), S4–S42 (2006).
  • DCCTG. Effect of intensive therapy on residual β-cell function in patients with Type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial. The diabetes control and complications trial research group. Ann. Intern. Med.128(7), 517–523 (1998).
  • DCCTG. Sustained effect of intensive treatment of Type 1 diabetes mellitus on development and progression of diabetic nephropathy: the epidemiology of diabetes interventions and complications (edic) study. JAMA290(16), 2159–2167 (2003).
  • UKPDS. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with Type 2 diabetes (ukpds 33). Uk prospective diabetes study (ukpds) group. Lancet352(9131), 837–853 (1998).
  • Palmer JP, Fleming GA, Greenbaum CJ et al. C-peptide is the appropriate outcome measure for Type 1 diabetes clinical trials to preserve β-cell function: report of an ada workshop, 21–22 October 2001. Diabetes53(1), 250–264 (2004).
  • DeFronzo RA, Jacot E, Jequier E et al. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes30(12), 1000–1007 (1981).
  • Faber OK, Hagen C, Binder C et al. Kinetics of human connecting peptide in normal and diabetic subjects. J. Clin. Invest.62(1), 197–203 (1978).
  • Pihoker C, Gilliam LK, Hampe CS, Lernmark A. Autoantibodies in diabetes. Diabetes54(Suppl. 2), S52–S61 (2005).
  • Herold KC, Hagopian W, Auger JA et al. Anti-cd3 monoclonal antibody in new-onset Type 1 diabetes mellitus. N. Engl. J. Med.346(22), 1692–1698 (2002).
  • Calcinaro F, Dionisi S, Marinaro M et al. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia48(8), 1565–1575 (2005).
  • Fasciano S, Li L. Intervention of toll-like receptor-mediated human innate immunity and inflammation by synthetic compounds and naturally occurring products. Curr. Med. Chem.13(12), 1389–1395 (2006).
  • Every AL, Kramer DR, Mannering SI, Lew AM, Harrison LC. Intranasal vaccination with proinsulin DNA induces regulatory cd4+ t cells that prevent experimental autoimmune diabetes. J. Immunol.176(8), 4608–4615 (2006).
  • Agardh CD, Cilio CM, Lethagen A et al. Clinical evidence for the safety of gad65 immunomodulation in adult-onset autoimmune diabetes. J. Diabetes Complications19(4), 238–246 (2005).
  • Pileggi A, Ricordi C, Kenyon NS et al. Twenty years of clinical islet transplantation at the diabetes research institute--university of miami. Clin. Transpl.177–204 (2004).
  • Hoogwerf RJ. Exenatide and pramlintide: new glucose-lowering agents for treating diabetes mellitus. Cleve. Clin. J. Med.73(5), 477–484 (2006).
  • Holman RR. Long-term efficacy of sulfonylureas: A united kingdom prospective diabetes study perspective. Metabolism55(5 Suppl. 1), S2–S5 (2006).
  • Del Prato S. Unlocking the opportunity of tight glycaemic control. Far from goal. Diabetes Obes. Metab.7(Suppl. 1), S1–S4 (2005).
  • Paty BW, Bonner-Weir S, Laughlin MR, McEwan AJ, Shapiro AM. Toward development of imaging modalities for islets after transplantation: Insights from the national institutes of health workshop on β cell imaging. Transplantation77(8), 1133–1137 (2004).
  • Dodd SJ, Williams M, Suhan JP et al. Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys. J.76(1 Pt 1), 103–109 (1999).
  • Turvey SE, Swart E, Denis MC et al. Noninvasive imaging of pancreatic inflammation and its reversal in Type 1 diabetes. J. Clin. Invest.115(9), 2454–2461 (2005).
  • Denis MC, Mahmood U, Benoist C, Mathis D, Weissleder R. Imaging inflammation of the pancreatic islets in Type 1 diabetes. Proc. Natl Acad. Sci. USA101(34), 12634–12639 (2004).
  • Moore A, Grimm J, Han B, Santamaria P. Tracking the recruitment of diabetogenic cd8+ t-cells to the pancreas in real time. Diabetes53(6), 1459–1466 (2004).
  • Evgenov NV, Medarova Z, Dai G, Bonner-Weir S, Moore A. In vivo imaging of islet transplantation. Nat. Med.12(1), 144–148 (2006).
  • Jirak D, Kriz J, Herynek V et al. MRI of transplanted pancreatic islets. Magn. Reson. Med.52(6), 1228–1233 (2004).
  • Koblas T, Girman P, Berkova Z et al. Magnetic resonance imaging of intrahepatically transplanted islets using paramagnetic beads. Transplant. Proc.37(8), 3493–3495 (2005).
  • Kriz J, Jirak D, Girman P et al. Magnetic resonance imaging of pancreatic islets in tolerance and rejection. Transplantation80(11), 1596–1603 (2005).
  • Samli KN, McGuire MJ, Newgard CB, Johnston SA, Brown KC. Peptide-mediated targeting of the islets of langerhans. Diabetes54(7), 2103–2108 (2005).
  • Abderrahmani A, Niederhauser G, Plaisance V et al. Neuronal traits are required for glucose-induced insulin secretion. FEBS Lett.565(1–3), 133–138 (2004).
  • Bernal-Mizrachi E, Cras-Meneur C, Ohsugi M, Permutt MA. Gene expression profiling in islet biology and diabetes research. Diabetes Metab.. Res. Rev.19(1), 32–42 (2003).
  • Maffei A, Liu Z, Witkowski P et al. Identification of tissue-restricted transcripts in human islets. Endocrinology145(10), 4513–4521 (2004).
  • Clark PB, Gage HD, Brown-Proctor C et al. Neurofunctional imaging of the pancreas utilizing the cholinergic PET radioligand [(18)f]4-fluorobenzyltrozamicol. Eur. J. Nucl. Med. Mol. Imaging (2003).
  • de Lonlay P, Simon-Carre A, Ribeiro MJ et al. Congenital hyperinsulinism: Pancreatic [18f]fluoro-l-dopa positron emission tomography and immunohistochemistry study of dopa decarboxylase and insulin secretion. J. Clin. Endocrinol. Metab. (2006).
  • Otonkoski T, Nanto-Salonen K, Seppanen M et al. Noninvasive diagnosis of focal hyperinsulinism of infancy with [18f]-dopa positron emission tomography. Diabetes55(1), 13–18 (2006).
  • Ribeiro MJ, De Lonlay P, Delzescaux T et al. Characterization of hyperinsulinism in infancy assessed with pet and 18f-fluoro-l-dopa. J. Nucl. Med.46(4), 560–566 (2005).
  • Adeghate E, Parvez H. The effect of diabetes mellitus on the morphology and physiology of monoamine oxidase in the pancreas. Neurotoxicology25(1–2), 167–173 (2004).
  • Anlauf M, Eissele R, Schafer MK et al. Expression of the two isoforms of the vesicular monoamine transporter (vmat1 and vmat2) in the endocrine pancreas and pancreatic endocrine tumors. J. Histochem. Cytochem.51(8), 1027–1040 (2003).
  • Weihe E, Schafer MK, Erickson JD, Eiden LE. Localization of vesicular monoamine transporter isoforms (vmat1 and vmat2) to endocrine cells and neurons in rat. J. Mol. Neurosci.5(3), 149–164 (1994).
  • Souza F, Simpson N, Raffo A et al. Longitudinal noninvasive pet-based β cell mass estimates in a spontaneous diabetes rat model. J. Clin. Invest.116(6), 1506–1513 (2006).
  • Henry JP, Sagne C, Bedet C, Gasnier B. The vesicular monoamine transporter: from chromaffin granule to brain. Neurochem. Int.32(3), 227–246 (1998).
  • Gasnier B. The loading of neurotransmitters into synaptic vesicles. Biochimie82(4), 327–337 (2000).
  • Scherman D. Dihydrotetrabenazine binding and monoamine uptake in mouse brain regions. J. Neurochem.47(2), 331–339 (1986).
  • Weihe E, Eiden LE. Chemical neuroanatomy of the vesicular amine transporters. FASEB J.14(15), 2435–2449 (2000).
  • Kilbourn MR. In vivo radiotracers for vesicular neurotransmitter transporters. Nucl. Med. Biol.24(7), 615–619 (1997).
  • Zubieta JK, Huguelet P, Ohl LE et al. High vesicular monoamine transporter binding in asymptomatic bipolar i disorder: sex differences and cognitive correlates. Am. J. Psychiatry157(10), 1619–1628 (2000).
  • Simpson N, Souza F, Witkowski P et al. Visualizing pancreas β cell mass with [c-11]dtbz. Nuclear Med. Biol.33(7), 855–864 (2006).
  • Szkudelski T. The mechanism of alloxan and streptozotocin action in b cells of the rat pancreas. Physiol. Res.50(6), 537–546 (2001).
  • Polychronakos C. Animal models of spontaneous autoimmune diabetes: notes on their relevance to the human disease. Curr. Diab. Rep.4(2), 151–154 (2004).
  • Cegrell L. The occurrence of biogenic monoamines in the mammalian endocrine pancreas. Acta. Physiol. Scand. (Suppl.) 3141–3160 (1968).
  • Lundquist I, Ahren B, Hansson C, Hakanson R. Monoamines in pancreatic islets of guinea pig, hamster, rat, and mouse determined by high performance liquid chromatography. Pancreas4(6), 662–667 (1989).
  • Lundquist I, Ekholm R, Ericson LE. Monoamines in the pancreatic islets of the mouse. 5-hydroxytryptamine as an intracellular modifier of insulin secretion, and the hypoglycaemic action of monoamine oxidase inhibitors. Diabetologia7(6), 414–422 (1971).
  • Iturriza FC, Thibault J. Immunohistochemical investigation of tyrosine-hydroxylase in the islets of langerhans of adult mice, rats and guinea pigs. Neuroendocrinology57(3), 476–480 (1993).
  • Watanabe T, Nagatsu I. Immunohistochemical colocalization of insulin, aromatic l-amino acid decarboxylase and dopamine β-hydroxylase in islet b cells of chicken pancreas. Cell Tissue Res.263(1), 131–136 (1991).
  • Borelli MI, Villar MJ, Orezzoli A, Gagliardino JJ. Presence of dopa decarboxylase and its localisation in adult rat pancreatic islet cells. Diabetes Metab.23(2), 161–163 (1997).
  • Ericson LE, Hakanson R, Lundquist I. Accumulation of dopamine in mouse pancreatic b-cells following injection of l-dopa. Localization to secretory granules and inhibition of insulin secretion. Diabetologia13(2), 117–124 (1977).
  • Lundquist I, Panagiotidis G, Stenstrom A. Effect of l-dopa administration on islet monoamine oxidase activity and glucose-induced insulin release in the mouse. Pancreas6(5), 522–527 (1991).
  • Ste Marie L, Palmiter RD. Norepinephrine and epinephrine-deficient mice are hyperinsulinemic and have lower blood glucose. Endocrinology144(10), 4427–4432 (2003).
  • Wilson JP, Downs RW, Jr., Feldman JM, Lebovitz HE. B cell monoamines: further evidence for their role in modulating insulin secretion. Am. J. Physiol.227(2), 305–312 (1974).
  • Rubi B, Ljubicic S, Pournourmohammadi S et al. Dopamine d2-like receptors are expressed in pancreatic β cells and mediate inhibition of insulin secretion. J. Biol. Chem.280(44), 36824–36832 (2005).
  • Aleyassine H, Gardiner RJ. Dual action of antidepressant drugs (MAO inhibitors) on insulin release. Endocrinology96(3), 702–710 (1975).
  • Feldman JM, Chapman B. Monoamine oxidase inhibitors: nature of their interaction with rabbit pancreatic islets to alter insulin secretion. Diabetologia11(6), 487–494 (1975).
  • Feldman JM, Chapman B. Characterization of pancreatic islet monoamine oxidase. Metabolism24(5), 581–588 (1975).
  • Pick A, Clark J, Kubstrup C et al. Role of apoptosis in failure of β-cell mass compensation for insulin resistance and β-cell defects in the male zucker diabetic fatty rat. Diabetes47(3), 358–364 (1998).
  • Cordeiro ML, Gundersen CB, Umbach JA. Lithium ions modulate the expression of vmat2 in rat brain. Brain Res.953(1–2), 189–194 (2002).
  • Desnos C, Laran MP, Langley K, Aunis D, Henry JP. Long term stimulation changes the vesicular monoamine transporter content of chromaffin granules. J. Biol. Chem.270(27), 16030–16038 (1995).
  • Hocker M. Molecular mechanisms of gastrin-dependent gene regulation. Ann. NY Acad. Sci.101497–109 (2004).
  • Watson F, Kiernan RS, Deavall DG, Varro A, Dimaline R. Transcriptional activation of the rat vesicular monoamine transporter 2 promoter in gastric epithelial cells: regulation by gastrin. J. Biol. Chem.276(10), 7661–7671 (2001).
  • Suarez-Pinzon WL, Yan Y, Power R, Brand SJ, Rabinovitch A. Combination therapy with epidermal growth factor and gastrin increases β-cell mass and reverses hyperglycemia in diabetic NOD mice. Diabetes54(9), 2596–2601 (2005).
  • Rooman I, Lardon J, Bouwens L. Gastrin stimulates β-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes51(3), 686–690 (2002).
  • Brand SJ, Tagerud S, Lambert P et al. Pharmacological treatment of chronic diabetes by stimulating pancreatic β-cell regeneration with systemic co-administration of egf and gastrin. Pharmacol. Toxicol.91(6), 414–420 (2002).
  • Frey KA, Koeppe RA, Kilbourn MR et al. Presynaptic monoaminergic vesicles in parkinson’s disease and normal aging. Ann. Neurol.40(6), 873–884 (1996).
  • Albin RL, Koeppe RA, Bohnen NI et al. Increased ventral striatal monoaminergic innervation in tourette syndrome. Neurology61(3), 310–315 (2003).
  • Rehavi M, Goldin M, Roz N, Weizman A. Regulation of rat brain vesicular monoamine transporter by chronic treatment with ovarian hormones. Brain Res. Mol. Brain Res.57(1), 31–37 (1998).
  • Storto M, Capobianco L, Battaglia G et al. Insulin secretion is controlled by mglu5 metabotropic glutamate receptors. Mol. Pharmacol.69(4), 1234–1241 (2006).
  • Brice NL, Varadi A, Ashcroft SJ, Molnar E. Metabotropic glutamate and gaba(b) receptors contribute to the modulation of glucose-stimulated insulin secretion in pancreatic β cells. Diabetologia45(2), 242–252 (2002).
  • Weaver CD, Yao TL, Powers AC, Verdoorn TA. Differential expression of glutamate receptor subtypes in rat pancreatic islets. J. Biol. Chem.271(22), 12977–12984 (1996).
  • Ametamey SM, Kessler LJ, Honer M et al. Radiosynthesis and preclinical evaluation of 11c-abp688 as a probe for imaging the metabotropic glutamate receptor subtype 5. J. Nucl. Med.47(4), 698–705 (2006).
  • Goswami R, Ponde DE, Kung MP et al. Fluoroalkyl derivatives of dihydrotetrabenazine as positron emission tomography imaging agents targeting vesicular monoamine transporters. Nucl. Med. Biol.33(6), 685–694 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.