25
Views
2
CrossRef citations to date
0
Altmetric
Review

Thyroid hormone receptor mutations and disease: insights from knock-in mouse models

Pages 47-57 | Published online: 10 Jan 2014

References

  • Oppenheimer JH. Thyroid hormone action at the nuclear level. Ann. Intern. Med.102(3), 374–384 (1985).
  • Samuels HH, Forman BM, Horowitz ZD, Ye ZS. Regulation of gene expression by thyroid hormone. J. Clin. Invest.81(4), 957–967 (1988).
  • Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM. The c-erb A gene encodes a thyroid hormone receptor. Nature324(6098), 641–646 (1986).
  • Sap J, Munoz A, Damm K et al. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature324(6098), 635–640 (1986).
  • Bassett JH, Harvey CB, Williams GR. Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Mol. Cell. Endocrinol.213(1), 1–11 (2003).
  • Cheng SY. Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev. Endocr. Metab. Disord1(1–2), 9–18 (2000).
  • Cheng SY. Thyroid hormone receptor mutations and disease: beyond thyroid hormone resistance. Trends Endocrinol. Metab.16(4), 176–182 (2005).
  • O’Shea PJ, Harvey CB, Suzuki H et al. A thyrotoxic skeletal phenotype of advanced bone formation in mice with resistance to thyroid hormone. Mol. Endocrinol.17, 1410–1424 (2003).
  • Wondisford FE. Thyroid hormone action: insight from transgenic mouse models. J. Investig. Med.51, 215–220 (2003).
  • Zhang XY, Kaneshige M, Kamiya Y, Kaneshige K, McPhie P, Cheng SY. Differential expression of thyroid hormone receptor isoforms dictates the dominant negative activity of mutant β receptor. Mol. Endocrinol.16(9), 2077–2092 (2002).
  • Williams GR. Cloning and characterization of two novel thyroid hormone receptor β isoforms. Mol. Cell. Biol.20(22), 8329–8342 (2000).
  • Forrest D, Hallbook F, Persson H, Vennstrom B. Distinct functions for thyroid hormone receptors α and β in brain development indicated by differential expression of receptor genes. EMBO J.10(2), 269–275 (1991).
  • Bradley DJ, Towle HC, Young WS III. Spatial and temporal expression of α- and β-thyroid hormone receptor mRNAs, including the β 2-subtype, in the developing mammalian nervous system. J. Neurosci.12(6), 2288–2302 (1992).
  • Iskaros J, Pickar M, Evans I, Sinha A, Hardiman P, Ekins R. Thyroid hormone receptor gene expression in first trimester human fetal brain. J. Clin. Endocrinol. Metab.85(7), 2620–2623 (2000).
  • Horlein AJ, Naar AM, Heinzel T et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature377(6548), 397–404 (1995).
  • Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature377(6548), 454–457 (1995).
  • Tsai CC, Fondell JD. Nuclear receptor recruitment of histone-modifying enzymes to target gene promoters. Vitam. Horm.68, 93–122 (2004).
  • Moore JM, Guy RK. Coregulator interactions with the thyroid hormone receptor. Mol. Cell. Proteomics4(4), 475–482 (2005).
  • Yen PM, Ando S, Feng X, Liu Y, Maruvada P, Xia X. Thyroid hormone action at the cellular, genomic and target gene levels. Mol. Cell. Endocrinol.246(1–2), 121–127 (2006).
  • Weiss R, Refetoff S. Resistance to thyroid hormone. Rev. Endocr. Metab. Disord.1(1–2), 97–108 (2000).
  • Yen PM. Molecular basis of resistance to thyroid hormone. Trends Endocrinol. Metab.14(7), 327–333 (2003).
  • Kaneshige M, Kaneshige K, Zhu X et al. Mice with a targeted mutation in the thyroid hormone β receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc. Natl Acad. Sci. USA97(24), 13209–13214 (2000).
  • Refetoff S, DeWind LT, DeGroot LJ. Familial syndrome combining deaf-mutism, stuppled epiphyses, goiter and abnormally high PBI: possible target organ refractoriness to thyroid hormone. J. Clin. Endocrinol. Metab.27(2), 279–294 (1967).
  • Usala SJ, Bale AE, Gesundheit N et al. Tight linkage between the syndrome of generalized thyroid hormone resistance and the human c-erbA β gene. Mol. Endocrinol.2(12), 1217–1220 (1988).
  • Sakurai A, Takeda K, Ain K et al. Generalized resistance to thyroid hormone associated with a mutation in the ligand-binding domain of the human thyroid hormone receptor β. Proc. Natl Acad. Sci. USA86(22), 8977–8981 (1989).
  • Refetoff S. Resistance to thyroid hormone. In: Werner and Ingbar’s The Thyroid: A Fundamental and Clinical Text (9th Edition.). Braverman LE, Utiger RE (Eds). Lippincott, Williams and Wilkins, PA, USA 1109–1129 (2005).
  • Ono S, Schwartz ID, Mueller OT, Root AW, Usala SJ, Bercu BB. Homozygosity for a dominant negative thyroid hormone receptor gene responsible for generalized resistance to thyroid hormone. J. Clin. Endocrinol. Metab.73(5), 990–994 (1991).
  • Hashimoto K, Curty FH, Borges PP et al. An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc. Natl Acad. Sci. USA98(7), 3998–4003 (2001).
  • Siesser WB, Cheng SY, McDonald MP. Hyperactivity, impaired learning on a vigilance task, and a differential response to methylphenidate in the TRβPV knock-in mouse. Psychopharmacology (Berl.)181(4), 653–663 (2005).
  • Kamiya Y, Zhang XY, Ying H et al. Modulation by steroid receptor coactivator-1 of target-tissue responsiveness in resistance to thyroid hormone. Endocrinology144(9), 4144–4153 (2003).
  • Griffith AJ, Szymko YM, Kaneshige M et al. Knock-in mouse model for resistance to thyroid hormone (RTH): an RTH mutation in the thyroid hormone receptor β gene disrupts cochlear morphogenesis. J. Assoc. Res. Otolaryngol.3(3), 279–288 (2002).
  • Ying H, Furuya F, Willingham MC, Xu J, O’Malley BW, Cheng SY. Dual functions of the steroid hormone receptor coactivator 3 in modulating resistance to thyroid hormone. Mol. Cell. Biol.25(17), 7687–7695 (2005).
  • Miller LD, McPhie P, Suzuki H, Kato Y, Liu ET, Cheng SY. Multi-tissue gene-expression analysis in a mouse model of thyroid hormone resistance. Genome Biol.5(5), R31 (2004).
  • Puzianowska-Kuznicka M, Nauman A, Madej A, Tanski Z, Cheng S, Nauman J. Expression of thyroid hormone receptors is disturbed in human renal clear cell carcinoma. Cancer Lett.155(2), 145–152 (2000).
  • Silva JM, Dominguez G, Gonzalez-Sancho JM et al. Expression of thyroid hormone receptor/erbA genes is altered in human breast cancer. Oncogene21(27), 4307–4316 (2002).
  • Conde I, Paniagua R, Zamora J et al. Influence of thyroid hormone receptors on breast cancer cell proliferation. Ann. Oncol.17(1), 60–64 (2006).
  • Lin KH, Shieh HY, Chen SL, Hsu HC. Expression of mutant thyroid hormone nuclear receptors in human hepatocellular carcinoma cells. Mol. Carcinog.26(1), 53–61 (1999).
  • Horkko TT, Tuppurainen K, George SM, Jernvall P, Karttunen TJ, Makinen MJ. Thyroid hormone receptor β1 in normal colon and colorectal cancer-association with differentiation, polypoid growth type and K-ras mutations. Int. J. Cancer118(7), 1653–1659 (2006).
  • Wallin G, Bronnegard M, Grimelius L, McGuire J, Torring O. Expression of the thyroid hormone receptor, the oncogenes c-myc and H-ras, and the 90 kD heat shock protein in normal, hyperplastic, and neoplastic human thyroid tissue. Thyroid2(4), 307–313 (1992).
  • Bronnegard M, Torring O, Boos J, Sylven C, Marcus C, Wallin G. Expression of thyrotropin receptor and thyroid hormone receptor messenger ribonucleic acid in normal, hyperplastic, and neoplastic human thyroid tissue. J. Clin. Endocrinol. Metab.79(2), 384–389 (1994).
  • Kamiya Y, Puzianowska-Kuznick M, McPhie P, Nauman J, Nauman J, Cheng SY. Expression of mutant thyroid hormone nuclear receptor is associated with human renal clear cell carcinoma. Carcinogenesis23(1), 25–33 (2002).
  • Puzianowska-Kuznick M, Krystyniak A, Madej A, Cheng SY, Nauman J. Contribution of functionally impaired thyroid hormone receptor mutants to the tumorigenesis of thyroid papillary cancer. J. Clin. Endocrinol. Metab.87(3), 1120–1128 (2002).
  • Lin KH, Zhu XG, Shieh HY et al. Identification of naturally occurring dominant negative mutants of thyroid hormone α 1 and β 1 receptors in a human hepatocellular carcinoma cell line. Endocrinology137(10), 4073–4081 (1996).
  • Lin KH, Zhu XG, Hsu HC et al. Dominant negative activity of mutant thyroid hormone α1 receptors from patients with hepatocellular carcinoma. Endocrinology138(12), 5308–5315 (1997).
  • Suzuki H, Willingham MC, Cheng SY. Mice with a mutation in the thyroid hormone receptor β gene spontaneously develop thyroid carcinoma: a mouse model of thyroid carcinogenesis. Thyroid12(11), 963–969 (2002).
  • Ying H, Suzuki H, Furumoto H et al. Alterations in genomic profiles during tumor progression in a mouse model of follicular thyroid carcinoma. Carcinogenesis24(9), 1467–1479 (2003).
  • Ying H, Suzuki H, Zhao L, Willingham MC, Meltzer P, Cheng SY. Mutant thyroid hormone receptor β represses the expression and transcriptional activity of peroxisome proliferator-activated receptor γ during thyroid carcinogenesis. Cancer Res.63(17), 5274–5280 (2003).
  • Sarraf P, Mueller E, Jones D et al. Differentiation and reversal of malignant changes in colon cancer through PPAR γ. Nat. Med.4(9), 1046–1052, (1998).
  • Kubota T, Koshizuka K, Williamson EA et al. Ligand for peroxisome proliferator-activated receptor γ (troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo. Cancer Res.58(15), 3344–3352 (1998).
  • Martelli ML, Iuliano R, Le Pera I et al. Inhibitory effects of peroxisome proliferator-activated receptor on thyroid carcinoma cell growth. J. Clin. Endocrinol. Metab.87(10), 4728–4735 (2002).
  • Ohta K, Endo T, Haraguchi K, Hershman JM, Onaya T. Ligands for peroxisome proliferator-activated receptor inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells. J. Clin. Endocrinol. Metab.86(5), 2170–2177 (2001).
  • Kroll TG, Sarraf P, Pecciarini L et al. PAX8-PPAR γ 1 fusion oncogene in human thyroid carcinoma. Science289(5483), 1357–1360 (2000).
  • Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE. PAX8-PPARγrearrangement in thyroid tumors: Rt-PCR and immunohistochemical analyses. Am. J. Surg. Pathol.26(8), 1016–1023 (2002).
  • Cheung L, Messina M, Gill A et al. Detection of the PAX8-PPAR γ fusion oncogene in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab.88(1), 354–357 (2003).
  • Gustafson KS, LiVolsi VA, Furth EE, Pasha TL, Putt ME, Baloch ZW. Peroxisome proliferator-activated receptor γ expression in follicular-patterned thyroid lesions. Caveats for the use of immunohistochemical studies. Am. J. Clin. Pathol.120(2), 175–181 (2003).
  • Kato Y, Ying H, Zhao L et al. Peroxisome proliferator activated receptor-γ insufficiency promotes carcinogenesis via activation of the nuclear factor-κB signaling pathway. Oncogene25(19), 2736–2747 (2006).
  • Araki O, Ying H, Furuya F, Zhu X, Cheng SY. Thyroid hormone receptor β mutants: dominant negative regulators of peroxisome proliferator-activated receptor γ action. Proc. Natl Acad. Sci. USA102(45), 16251–16256 (2005).
  • Swanson EA, Gloss B, Belke DD, Kaneshige M, Cheng SY, Dillman WH. Cardiac expression and function of thyroid hormone receptor β and its PV mutant. Endocrinology144(11), 4820–4825 (2003).
  • Itoh Y, Esaki T, Kaneshige M et al. Brain glucose utilization in mice with a targeted mutation in the thyroid hormone α or β receptor gene. Proc. Natl Acad. Sci. USA17(1), 9913–9918 (2001).
  • Esaki T, Suzuki H, Cook M et al. Functional activation of cerebral metabolism in mice with mutated thyroid hormone nuclear receptors. Endocrinology144(9), 4117–4122 (2003).
  • Furumoto H, Ying H, Chandramouli GV et al. An unliganded thyroid hormone β receptor activates the cyclin D1/cyclin-dependent retinoblastoma/E2F pathway and induces pituitary tumorigenesis. Mol. Cell. Biol.25(1), 124–135 (2005).
  • Wymann MP, Marone R. Phosphoinositude 3-kinase in disease: timing, location, and scaffolding. Curr. Opin. Cell Biol.17(2), 141–149 (2005).
  • Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol.22(14), 2954–2963 (2004).
  • Eng C. PTEN: one gene, many syndromes. Hum. Mutat.22(3), 183–198 (2003).
  • Dahia PL, Marsh DJ, Zheng Z et al. Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res.57, 4710–4713 (1997).
  • Liaw D, Marsh DJ, Li J et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet.16(1), 64–67 (1997).
  • Ringel MD, Hayre N, Saito J et al. Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res.61(16), 6105–6111 (2001).
  • Miyakawa M, Tsushima T, Murakami H, Wakai K, Isozaki O, Takano K. Increased expression of phosphorylated p70S6 kinase and Akt in papillary thyroid cancer tissues. Endocr. J.50(1), 77–83 (2003).
  • Vasko V, Saji M, Hardy E et al. Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J. Med. Genet.41(3), 161–170 (2004).
  • Kim CS, Vasko VV, Kato Y et al. AKT activation promotes metastasis in a mouse model of follicular thyroid carcinoma. Endocrinology146(10), 4456–4463 (2005).
  • Furuya F, Hanover J, Cheng S-y. Activation of the PI3K signaling by a mutant thyroid hormone β receptor. Proc. Natl Acad. Sci. USA103(6), 1780–1785 (2006).
  • Zhu XG, Hanover JA, Hager GL, Cheng SY. Hormone-induced translocation of thyroid hormone receptors in living cells visualized using a receptor-green fluorescent protein chimera. J. Biol. Chem.273(42), 27058–27063 (1998).
  • Baumann CT, Maruvada P, Hager GL, Yen PM. Nuclear cytoplasmic shuttling by thyroid hormone receptors. Multiple protein interactions are required for nuclear retention. J. Biol. Chem.276(14), 11237–11245 (2001).
  • Asnaghi L, Bruno P, Priulla M, Nicolin A. mTOR: a protein kinase switching between life and death. Pharmacol. Res.50(6), 545–549 (2004).
  • Edwards LA, Shabbits JA, Bally M, Dedhar S. Integrin-linked kinase (ILK) in combination molecular targeting. Cancer Treat. Res.119, 59–75 (2004).
  • Brinckerhoff CE, Matrisian LM. Matrix metalloproteinases: a tail of a frog that became a prince. Nat. Rev. Mol. Cell Biol.3(3), 207–214 (2004).
  • Turpeenniemi-Hujanen, T. Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie87(3–4), 287–297 (2005).
  • Persad S, Dedhar S. The role of integrin-linked (ILK) in cancer progression. Cancer Metastasis Rev.22(4), 375–384 (2003).
  • Sadow P, Reutratkul S, Weiss RE, Refetoff S. Resistance to thyroid hormone in the absence of mutations in the thyroid hormone receptor genes. Curr. Opin. Endocrinol. Diabetes7(5), 253–259 (2000).
  • Refetoff S, Sadow PM, Reutrakul S et al. Resistance to thyroid hormone in the absence of mutations in the thyroid hormone receptor genes. In: Syndromes of Hormone Resistance on the Hypothalamic-Pituitary-Thyroid Axis. Beck-Peccoz P (Ed.). Kluwer Academic Publishers, MA, USA 89–107 (2004).
  • Weiss RE, Xu J, Ning G et al. Mice deficient in the steroid receptor co-activator-1 (SRC-1) are resistant to thyroid hormone. EMBO J.18(7), 1900–1904 (1999).
  • Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am. J. Hum. Genet.74(1), 168–175 (2004). Erratum: 74(3), 598 (2004).
  • Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J. Biol. Chem.278(41), 40128–40135 (2003).
  • Jansen J, Friesema EC, Milici C, Visser TJ. Thyroid hormone transporters in health and disease. Thyroid15(8), 757–768 (2005).
  • Maranduba CM, Friesema EC, Kok F et al. Decreased cellular uptake and metabolism in Allan-Herndon-Dudley syndrome (AHDS) due to a novel mutation in the MCT8 thyroid hormone transporter. J. Med. Genet.43(5), 457–460 (2006).
  • Kaneshige M, Suzuki H, Kaneshige K et al. A targeted dominant negative mutation of the thyroid hormone α1 receptor causes increased mortality, infertility and dwarfism in mice. Proc. Natl Acad. Sci. USA98(26), 15095–15100 (2001).
  • Esaki T, Suzuki H, Cook M et al. Cardiac glucose utilization in mice with mutated α- and β-thyroid hormone receptors. Am. J. Physiol. Endocrinol. Metab.287(6), E1149–E1153 (2004).
  • Schaller RT Jr, Stevenson JK. Development of carcinoma of the thyroid in iodine-deficient mice. Cancer19(8), 1063–1080 (1966).
  • Parma J, Duprez L, Van Sande J et al. Diversity and prevalence of somatic mutations in the thyrotropin receptor and Gs genes as a cause of toxic thyroid adenomas. J. Clin. Endocrinol. Metab.82(8), 2695–2701 (1997).
  • Paschke R, Tonacchera M, Van Sande J, Parma J, Vassart G. Identification and functional characterization of two new somatic mutations causing constitutive activation of the thyrotropin receptor in hyperfunctioning autonomous adenomas of the thyroid. J. Clin. Endocrinol. Metab.79(6), 1785–1789 (1994).
  • Russo D, Arturi F, Wicker R et al. Genetic alterations in thyroid hyperfunctioning adenomas. J. Clin. Endocrinol. Metab.80(4), 1347–1351 (1995).
  • Suarez HG, du Villard JA, Caillou B, Schlumberger M, Parmentier C, Monier R. Gsp mutations in human thyroid tumours. Oncogene6(4), 677–679 (1991).
  • Matsuo K, Friedman E, Gejman PV, Fagin JA. The thyrotropin receptor (TSH-R) is not an oncogene for thyroid tumors: structural studies of the TSH-R and the subunit of Gs in human thyroid neoplasms. J. Clin. Endocrinol. Metab.76(6), 1446–1451 (1993).
  • Spambalg D, Sharifi N, Elisei R, Gross JL, Medeiros-Neto G, Fagin JA. Structural studies of the thyrotropin receptor and Gs in human thyroid cancers: low prevalence of mutations predicts infrequent involvement in malignant transformation. J. Clin. Endocrinol. Metab.81(11), 3898–3901 (1996).
  • Ledent C, Dumont JE, Vassart G, Parmentier M. Thyroid expression of an A2 adenosine receptor transgene induces thyroid hyperplasia and hyperthyroidism. EMBO J.11(2), 537–542 (1992).
  • Michiels FM, Caillou B, Talbot M et al. Oncogenic potential of guanine nucleotide stimulatory factor α subunit in thyroid glands of transgenic mice. Proc. Natl Acad. Sci. USA91(22), 10488–10492 (1994).
  • Zeiger MA, Saji M, Gusev Y et al. Thyroid-specific expression of cholera toxin A1 subunit causes thyroid hyperplasia and hyperthyroidism in transgenic mice. Endocrinology138(8), 3133–3140 (1997).
  • Fagin JA. Branded from the start – distinct oncogenic initiating events may determine tumor fate in the thyroid. Mol. Endocrinol.16(5), 903–911 (2002).
  • Kato Y. Ying, H. Willingham MC et al. A tumor suppressor role for thyroid hormone β receptor in a mouse model of thyroid carcinogenesis. Endocrinology145(10), 4430–4438 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.