86
Views
2
CrossRef citations to date
0
Altmetric
Review

Influence of hormones on osteogenic differentiation processes of mesenchymal stem cells

, , , , , , & show all
Pages 59-78 | Published online: 10 Jan 2014

References

  • Bernstein BE, Mikkelsen TS, Xie X et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2), 315–326 (2006).
  • Boyer LA, Plath K, Zeitlinger J et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441(7091), 349–353 (2006).
  • Lee TI, Jenner RG, Boyer LA et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125(2), 301–313 (2006).
  • D’Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC. Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone 39(3), 513–522 (2006).
  • Schipani E. Hypoxia and HIF-1α in chondrogenesis. Ann. NY Acad. Sci. 1068, 66–73 (2006).
  • Hirao M, Tamai N, Tsumaki N, Yoshikawa H, Myoui A. Oxygen tension regulates chondrocyte differentiation and function during endochondral ossification. J. Biol. Chem. 281(41), 31079–31092 (2006).
  • Forriol F, Shapiro F. Bone development: interaction of molecular components and biophysical forces. Clin. Orthop. Relat. Res. (432), 14–33 (2005).
  • Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng. 11(7–8), 1198–1211 (2005).
  • Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3), 180–192 (2001).
  • Ohlstein B, Kai T, Decotto E, Spradling A. The stem cell niche: theme and variations. Curr. Opin. Cell Biol. 16(6), 693–699 (2004).
  • Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell 116(6), 769–778 (2004).
  • Calvi LM, Adams GB, Weibrecht KW et al. Osteoblastic cells regulate the hematopoietic stem cell niche. Nature 425(6960), 841–846 (2003).
  • Kuznetsov SA, Riminucci M, Ziran N et al. The interplay of osteogenesis and hematopoiesis: expression of a constitutively active PTH/PTHrP receptor in osteogenic cells perturbs the establishment of hematopoiesis in bone and of skeletal stem cells in the bone marrow. J. Cell Biol. 167(6), 1113–1122 (2004).
  • Calvi LM. Osteoblastic activation in the hematopoietic stem cell niche. Ann. NY Acad. Sci. 1068, 477–88 (2006).
  • Yin T, Li L. The stem cell niches in bone. J. Clin. Invest. 116(5), 1195–1201 (2006).
  • Abuljadayel IS. Induction of stem cell-like plasticity in mononuclear cells derived from unmobilised adult human peripheral blood. Curr. Med. Res. Opin. 19(5), 355–375 (2003).
  • Brockes JP, Kumar A. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat. Rev. Mol. Cell Biol. 3(8), 566–574 (2002).
  • Grafi G. How cells dedifferentiate: a lesson from plants. Dev. Biol. 268(1), 1–6 (2004).
  • Grafi G, Avivi Y. Stem cells: a lesson from dedifferentiation. Trends Biotechnol. 22(8), 388–389 (2004).
  • Orkin SH, Zon LI. Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat. Immunol. 3(4), 323–328 (2002).
  • Tosh D, Slack JM. How cells change their phenotype. Nat. Rev. Mol. Cell Biol. 3(3), 187–194 (2002).
  • Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411), 143–147 (1999).
  • Liechty KW, MacKenzie TC, Shaaban AF et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat. Med. 6(11), 1282–1286 (2000).
  • Tuan RS. Biology of developmental and regenerative skeletogenesis. Clin. Orthop. Relat. Res. (Suppl. 427), S105–S117 (2004).
  • daSilvaMeirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119(Pt 11), 2204–2213 (2006).
  • Song L, Young NJ, Webb NE, Tuan RS. Origin and characterization of multipotential mesenchymal stem cells derived from adult human trabecular bone. Stem Cells Dev. 14(6), 712–721 (2005).
  • Djouad F, Bony C, Haupl T et al. Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res. Ther. 7(6), R1304–R1315 (2005).
  • Dicker A, Le Blanc K, Astrom G L et al. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp. Cell Res. 308(2), 283–290 (2005).
  • Timper K, Seboek D, Eberhardt M et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem. Biophys. Res. Commun. 341(4), 1135–1140 (2006).
  • Sacchetti B, Funari A, Di Cesare S et al. Direct identification, prospective isolation, and phenotype of in vivo self-renewing, multipotent skeletal stem cells. Calcif. Tissue Int. 78(S1), OC006 (2006).
  • Udani VM. The continuum of stem cell transdifferentiation: possibility of hematopoietic stem cell plasticity with concurrent CD45 expression. Stem Cells Dev. 15(1), 1–3 (2006).
  • Cool SM, Grunert M, Jackson R, Li H, Nurcombe V, Waters MJ. Role of growth hormone receptor signaling in osteogenesis from murine bone marrow progenitor cells. Biochem. Biophys. Res. Commun. 338(2), 1048–1058 (2005).
  • Hong L, Colpan A, Peptan IA. Modulations of 17-β estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells. Tissue Eng. (2006) (Epub ahead of print).
  • Wang Q, Yu JH, Zhai HH et al. Temporal expression of estrogen receptor α in rat bone marrow mesenchymal stem cells. Biochem. Biophys. Res. Commun. 347(1), 117–123 (2006).
  • Song LH, Pan W, Yu YH, Quarles LD, Zhou HH, Xiao ZS. Resveratrol prevents CsA inhibition of proliferation and osteoblastic differentiation of mouse bone marrow-derived mesenchymal stem cells through an ER/NO/cGMP pathway. Toxicol. In vitro 20(6), 915–922 (2006).
  • Silvestrini G, Ballanti P, Patacchioli FR et al. Evaluation of apoptosis and the glucocorticoid receptor in the cartilage growth plate and metaphyseal bone cells of rats after high-dose treatment with corticosterone. Bone 26(1), 33–42 (2000).
  • Derfoul A, Perkins GL, Hall DJ, Tuan RS. Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes. Stem Cells 24(6), 1487–1495 (2006).
  • Ochi K, Derfoul A, Tuan RS. A predominantly articular cartilage-associated gene, SCRG1, is induced by glucocorticoid and stimulates chondrogenesis in vitro. Osteoarthritis Cartilage 14(1), 30–38 (2006).
  • Wilson EM, Rotwein P. Control of MyoD function during initiation of muscle differentiation by an autocrine signaling pathway activated by insulin-like growth factor-II. J. Biol. Chem. 281(40), 29962–29971 (2006).
  • Hess R, Pino AM, Rios S, Fernandez M, Rodriguez JP. High affinity leptin receptors are present in human mesenchymal stem cells (MSCs) derived from control and osteoporotic donors. J. Cell. Biochem. 94(1), 50–57 (2005).
  • Siddiqi A, Parsons MP, Lewis JL, Monson JP, Williams GR, Burrin JM. TR expression and function in human bone marrow stromal and osteoblast-like cells. J. Clin. Endocrinol. Metab. 87(2), 906–914 (2002).
  • Gruber R, Czerwenka K, Wolf F, Ho GM, Willheim M, Peterlik M. Expression of the vitamin D receptor, of estrogen and thyroid hormone receptor α- and β-isoforms, and of the androgen receptor in cultures of native mouse bone marrow and of stromal/osteoblastic cells. Bone 24(5), 465–473 (1999).
  • Chang CY, Hsuuw YD, Huang FJ et al. Androgenic and antiandrogenic effects and expression of androgen receptor in mouse embryonic stem cells. Fertil. Steril. 85(Suppl. 1), S1195–1203 (2006).
  • Tada S, Era T, Furusawa C et al. Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132(19), 4363–4374 (2005).
  • Beattie GM, Lopez AD, Bucay N et al. Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23(4), 489–495 (2005).
  • Timmer J, Chesnutt C, Niswander L. The activin signaling pathway promotes differentiation of dI3 interneurons in the spinal neural tube. Dev. Biol. 285(1), 1–10 (2005).
  • Han HJ, Lee YJ. Insulin stimulates Ca2+ uptake via PKC, cAMP, and p38 MAPK in mouse embryonic stem cells. Life Sci. 76(25), 2903–2919 (2005).
  • Koussoulakos S. Vertebrate limb development: from Harrison’s limb disk transplantations to targeted disruption of Hox genes. Anat. Embryol. (Berl.) 209(2), 93–105 (2004).
  • Dobnig H, Turner RT. Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology 136(8), 3632–3638 (1995).
  • Neer RM, Arnaud CD, Zanchetta JR et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344(19), 1434–1441 (2001).
  • Kneissel M, Boyde A, Gasser JA. Bone tissue and its mineralization in aged estrogen-depleted rats after long-term intermittent treatment with parathyroid hormone (PTH) analog SDZ PTS 893 or human PTH(1–34). Bone 28(3), 237–250 (2001).
  • Girotra M, Rubin MR, Bilezikian JP. The use of parathyroid hormone in the treatment of osteoporosis. Rev. Endocr. Metab. Disord. (2006) (Epub ahead of print).
  • Han M, Yang X, Taylor G, Burdsal CA, Anderson RA, Muneoka K. Limb regeneration in higher vertebrates: developing a roadmap. Anat. Rec. B New Anat. 287(1), 14–24 (2005).
  • Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 16(12), 1446–1465 (2002).
  • Nilsson O, Marino R, De Luca F, Phillip M, Baron J. Endocrine regulation of the growth plate. Horm. Res. 64(4), 157–165 (2005).
  • Gafni RI, Weise M, Robrecht DT et al. Catch-up growth is associated with delayed senescence of the growth plate in rabbits. Pediatr. Res. 50(5), 618–623 (2001).
  • Weise M, De-Levi S, Barnes KM, Gafni RI, Abad V, Baron J. Effects of estrogen on growth plate senescence and epiphyseal fusion. Proc. Natl Acad. Sci. USA 98(12), 6871–6876 (2001).
  • Kronenberg HM. Developmental regulation of the growth plate. Nature 423(6937), 332–336 (2003).
  • Provot S, Schipani E. Molecular mechanisms of endochondral bone development. Biochem. Biophys. Res. Commun. 328(3), 658–665 (2005).
  • Dardenne O, Prud’homme J, Arabian A, Glorieux FH, St-Arnaud R. targeted inactivation of the 25-hydroxyvitamin D3–1α-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology 142(7), 3135–3141 (2001).
  • Amling M, Priemel M, Holzmann T et al. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 140(11), 4982–4987 (1999).
  • Schwartz Z, Ehland H, Sylvia VL et al. 1α,25-dihydroxyvitamin D(3) and 24R,25-dihydroxyvitamin D(3) modulate growth plate chondrocyte physiology via protein kinase C-dependent phosphorylation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase. Endocrinology 143(7), 2775–2786 (2002).
  • Schwartz Z, Pedrozo HA, Sylvia VL, Gomez R, Dean DD, Boyan BD. 1α,25-(OH)2D3 regulates 25-hydroxyvitamin D3 24R-hydroxylase activity in growth zone costochondral growth plate chondrocytes via protein kinase C. Calcif. Tissue Int. 69(6), 365–372 (2001).
  • Daughaday WH, Hall K, Raben MS, Salmon WD Jr, van den Brande JL, van Wyk JJ. Somatomedin: proposed designation for sulphation factor. Nature 235(5333), 107 (1972).
  • Yakar S, Sun H, Zhao H et al. Metabolic effects of IGF-I deficiency: lessons from mouse models. Pediatr. Endocrinol. Rev. 3(1), 11–9 (2005).
  • Schlechter NL, Russell SM, Spencer EM, Nicoll CS. Evidence suggesting that the direct growth-promoting effect of growth hormone on cartilage in vivo is mediated by local production of somatomedin. Proc. Natl Acad. Sci. USA 83(20), 7932–7934 (1986).
  • Ohlsson C, Nilsson A, Isaksson O, Lindahl A. Growth hormone induces multiplication of the slowly cycling germinal cells of the rat tibial growth plate. Proc. Natl Acad. Sci. USA 89(20), 9826–9830 (1992).
  • Isaksson OG, Lindahl A, Nilsson A, Isgaard J. Mechanism of the stimulatory effect of growth hormone on longitudinal bone growth. Endocr. Rev. 8(4), 426–438 (1987).
  • Schoenau E. Bone mass increase in puberty: what makes it happen? Horm. Res. 65(Suppl. 2), S2–10 (2006).
  • Blanchard O, Tsagris L, Rappaport R, Duval-Beaupere G, Corvol M. Age-dependent responsiveness of rabbit and human cartilage cells to sex steroids in vitro. J. Steroid Biochem. Mol. Biol. 40(4–6), 711–716 (1991).
  • Gunther DF, Calikoglu AS, Underwood LE. The effects of the estrogen receptor blocker, Faslodex (ICI 182,780), on estrogen-accelerated bone maturation in mice. Pediatr. Res. 46(3), 269–273 (1999).
  • Nilsson O, Chrysis D, Pajulo O et al. Localization of estrogen receptors-α and -β and androgen receptor in the human growth plate at different pubertal stages. J. Endocrinol. 177(2), 319–326 (2003).
  • Walenkamp MJ, Wit JM. Genetic disorders in the growth hormone – insulin-like growth factor-I axis. Horm. Res. 66(5), 221–230 (2006).
  • Venken K, Schuit F, Van Lommel L et al. Growth without growth hormone receptor: estradiol is a major growth hormone-independent regulator of hepatic IGF-I synthesis. J. Bone Miner. Res. 20(12), 2138–2149 (2005).
  • Oz OK, Millsaps R, Welch R, Birch J, Zerwekh JE. Expression of aromatase in the human growth plate. J. Mol. Endocrinol. 27(2), 249–253 (2001).
  • Keenan BS, Richards GE, Ponder SW, Dallas JS, Nagamani M, Smith ER. Androgen-stimulated pubertal growth: the effects of testosterone and dihydrotestosterone on growth hormone and insulin-like growth factor-I in the treatment of short stature and delayed puberty. J. Clin. Endocrinol. Metab. 76(4), 996–1001 (1993).
  • Chrysis D, Ritzen EM, Savendahl L. Growth retardation induced by dexamethasone is associated with increased apoptosis of the growth plate chondrocytes. J. Endocrinol. 176(3), 331–337 (2003).
  • Smink JJ, Koster JG, Gresnigt MG, Rooman R, Koedam JA, Van Buul-Offers SC. IGF and IGF-binding protein expression in the growth plate of normal, dexamethasone-treated and human IGF-II transgenic mice. J. Endocrinol. 175(1), 143–153 (2002).
  • Heinrichs C, Yanovski JA, Roth AH et al. Dexamethasone increases growth hormone receptor messenger ribonucleic acid levels in liver and growth plate. Endocrinology 135(3), 1113–1118 (1994).
  • Bassett JH, Williams GR. The molecular actions of thyroid hormone in bone. Trends Endocrinol. Metab. 14(8), 356–364 (2003).
  • Ballock R, Mita BC, Zhou X, Chen DH, Mink LM. Expression of thyroid hormone receptor isoforms in rat growth plate cartilage in vivo. J. Bone Miner. Res. 14(9), 1550–1556 (1999).
  • Takeda K, Sakurai A, DeGroot LJ, Refetoff S. Recessive inheritance of thyroid hormone resistance caused by complete deletion of the protein-coding region of the thyroid hormone receptor-β gene. J. Clin. Endocrinol. Metab. 74(1), 49–55 (1992).
  • Steppan CM, Crawford DT, Chidsey-Frink KL, Ke H, Swick AG. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul. Pept. 92(1–3), 73–78 (2000).
  • Maor G, Rochwerger M, Segev Y, Phillip M. Leptin acts as a growth factor on the chondrocytes of skeletal growth centers. J. Bone Miner. Res. 17(6), 1034–1043 (2002).
  • Sanyal A, Riggs BL, Spelsberg TC, Khosla S. Bone marrow stromal cells express two distinct splice variants of ER-α that are regulated by estrogen. J. Cell. Biochem. 94(1), 88–97 (2005).
  • Zhou S, Zilberman Y, Wassermann K, Bain SD, Sadovsky Y, Gazit D. Estrogen modulates estrogen receptor α and β expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. J. Cell Biochem. Suppl. Suppl. 36, 144–155 (2001).
  • Zhou S, Turgeman G, Harris SE et al. Estrogens activate bone morphogenetic protein-2 gene transcription in mouse mesenchymal stem cells. Mol. Endocrinol. 17(1), 56–66 (2003).
  • Okazaki R, Inoue D, Shibata M et al. Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) α or β. Endocrinology 143(6), 2349–2356 (2002).
  • Pan W, Quarles LD, Song LH et al. Genistein stimulates the osteoblastic differentiation via NO/cGMP in bone marrow culture. J. Cell. Biochem. 94(2), 307–316 (2005).
  • Dang ZC, Audinot V, Papapoulos SE, Boutin JA, Lowik CW. Peroxisome proliferator-activated receptor γ (PPARγ ) as a molecular target for the soy phytoestrogen genistein. J. Biol. Chem. 278(2), 962–967 (2003).
  • Rickard DJ, Hofbauer LC, Bonde SK, Gori F, Spelsberg TC, Riggs BL. Bone morphogenetic protein-6 production in human osteoblastic cell lines. Selective regulation by estrogen. J. Clin. Invest. 101(2), 413–422 (1998).
  • Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Spelsberg TC, Riggs BL. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 140(9), 4367–4370 (1999).
  • Spelsberg TC, Subramaniam M, Riggs BL, Khosla S. The actions and interactions of sex steroids and growth factors/cytokines on the skeleton. Mol. Endocrinol. 13(6), 819–828 (1999).
  • Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J. Clin. Invest. 115(12), 3318–3325 (2005).
  • Vunjak-Novakovic G, Meinel L, Altman G, Kaplan D. Bioreactor cultivation of osteochondral grafts. Orthod. Craniofac. Res. 8(3), 209–218 (2005).
  • Huang CY, Hagar KL, Frost LE, Sun Y, Cheung HS. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22(3), 313–323 (2004).
  • Riddle RC, Taylor AF, Genetos DC, Donahue HJ. MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. Am. J. Physiol. Cell Physiol. 290(3), C776–C784 (2006).
  • Bakker AD, Klein-Nulend J, Tanck E, Albers GH, Lips P, Burger EH. Additive effects of estrogen and mechanical stress on nitric oxide and prostaglandin E2 production by bone cells from osteoporotic donors. Osteoporos Int. 16(8), 983–989 (2005).
  • Lima F, Vico L, Lafage-Proust MH, van der Saag P, Alexandre C, Thomas T. Interactions between estrogen and mechanical strain effects on U2OS human osteosarcoma cells are not influenced by estrogen receptor type. Bone 35(5), 1127–1135 (2004).
  • Jessop HL, Sjoberg M, Cheng MZ, Zaman G, Wheeler-Jones CP, Lanyon LE. Mechanical strain and estrogen activate estrogen receptor α in bone cells. J. Bone Miner. Res. 16(6), 1045–1055 (2001).
  • Jessop HL, Suswillo RF, Rawlinson SC et al. Osteoblast-like cells from estrogen receptor α knockout mice have deficient responses to mechanical strain. J. Bone Miner. Res. 19(6), 938–946 (2004).
  • Damien E, Price JS, Lanyon LE. Mechanical strain stimulates osteoblast proliferation through the estrogen receptor in males as well as females. J. Bone Miner. Res. 15(11), 2169–2177 (2000).
  • Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L. Endocrinology: bone adaptation requires oestrogen receptor-α. Nature 424(6947), 389 (2003).
  • Fromigue O, Marie PJ, Lomri A. Differential effects of transforming growth factor β2, dexamethasone and 1,25-dihydroxyvitamin D on human bone marrow stromal cells. Cytokine 9(8), 613–623 (1997).
  • Rickard DJ, Kazhdan I, Leboy PS. Importance of 1,25-dihydroxyvitamin D3 and the nonadherent cells of marrow for osteoblast differentiation from rat marrow stromal cells. Bone 16(6), 671–678 (1995).
  • D’Ippolito G, Schiller PC, Perez-stable C, Balkan W, Roos BA, Howard GA. Cooperative actions of hepatocyte growth factor and 1,25-dihydroxyvitamin D3 in osteoblastic differentiation of human vertebral bone marrow stromal cells. Bone 31(2), 269–275 (2002).
  • Beresford JN. Osteogenic stem cells and the stromal system of bone and marrow. Clin. Orthop. Relat. Res. (240), 270–280 (1989).
  • Erben RG, Soegiarto DW, Weber K et al. Deletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D. Mol. Endocrinol. 16(7), 1524–1537 (2002).
  • St-Arnaud R, Dardenne O, Prud’homme J, Hacking SA, Glorieux FH. Conventional and tissue-specific inactivation of the 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1). J. Cell. Biochem. 88(2), 245–251 (2003).
  • Panda DK, Miao D, Bolivar I et al. Inactivation of the 25-hydroxyvitamin D 1α-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J. Biol. Chem. 279(16), 16754–16766 (2004).
  • Ebert R, Schutze N, Adamski J, Jakob F. Vitamin D signaling is modulated on multiple levels in health and disease. Mol. Cell. Endocrinol. 248(1–2), 149–159 (2006).
  • Riminucci M, Collins MT, Fedarko NS et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J. Clin. Invest. 112(5), 683–692 (2003).
  • Shimada T, Kakitani M, Yamazaki Y et al. Targeted ablation of FGF23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest. 113(4), 561–568 (2004).
  • Razzaque MS, Sitara D, Taguchi T, St-Arnaud R, Lanske B. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J. 20(6), 720–722 (2006).
  • Yu X, White KE. FGF23 and disorders of phosphate homeostasis. Cytokine Growth Factor Rev. 16(2), 221–232 (2005).
  • Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16(2), 139–149 (2005).
  • Carter PH, Schipani E. The roles of parathyroid hormone and calcitonin in bone remodeling: prospects for novel therapeutics. Endocr. Metab. Immune Disord. Drug Targets 6(1), 59–76 (2006).
  • van der Horst G, Farih-Sips H, Lowik CW, Karperien M. Multiple mechanisms are involved in inhibition of osteoblast differentiation by PTHrP and PTH in KS483 Cells. J. Bone Miner. Res. 20(12), 2233–2244 (2005).
  • Zerega B, Cermelli S, Bianco P, Cancedda R, Cancedda FD. Parathyroid hormone [PTH(1–34)] and parathyroid hormone-related protein [PTHrP(1–34)] promote reversion of hypertrophic chondrocytes to a prehypertrophic proliferating phenotype and prevent terminal differentiation of osteoblast-like cells. J. Bone Miner. Res. 14(8), 1281–1289 (1999).
  • Martinez ME, Garcia-Ocana A, Sanchez M et al. C-terminal parathyroid hormone-related protein inhibits proliferation and differentiation of human osteoblast-like cells. J. Bone Miner. Res. 12(5), 778–785 (1997).
  • Ishizuya T, Yokose S, Hori M et al. Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J. Clin. Invest. 99(12), 2961–2970 (1997).
  • Isogai Y, Akatsu T, Ishizuya T et al. Parathyroid hormone regulates osteoblast differentiation positively or negatively depending on the differentiation stages. J. Bone Miner. Res. 11(10), 1384–1393 (1996).
  • Ryder KD, Duncan RL. Parathyroid hormone modulates the response of osteoblast-like cells to mechanical stimulation. Calcif. Tissue Int. 67(3), 241–246 (2000).
  • Miyauchi A, Notoya K, Mikuni-Takagaki Y et al. Parathyroid hormone-activated volume-sensitive calcium influx pathways in mechanically loaded osteocytes. J. Biol. Chem. 275(5), 3335–3342 (2000).
  • Chow JW, Fox S, Jagger CJ, Chambers TJ. Role for parathyroid hormone in mechanical responsiveness of rat bone. Am. J. Physiol. 274(1 Pt 1), E146–E154 (1998).
  • Sekiya H, Mikuni-Takagaki Y, Kondoh T, Seto K. Synergistic effect of PTH on the mechanical responses of human alveolar osteocytes. Biochem. Biophys. Res. Commun. 264(3), 719–723 (1999).
  • Ma Y, Jee WS, Yuan Z, Wei W, Chen H, Pun S et al. Parathyroid hormone and mechanical usage have a synergistic effect in rat tibial diaphyseal cortical bone. J. Bone Miner. Res. 14(3), 439–448 (1999).
  • Li J, Duncan RL, Burr DB, Gattone VH, Turner CH. Parathyroid hormone enhances mechanically induced bone formation, possibly involving L-type voltage-sensitive calcium channels. Endocrinology 144(4), 1226–1233 (2003).
  • Chen W, Liu J, Diao W, Tang J, Ji J. Bone loss induced by ovariectomy in rats is prevented by gene transfer of parathyroid hormone or an Arg–Gly–Asp-containing peptide. Biotechnol. Lett. 27(1), 41–48 (2005).
  • Murphy E, Williams GR. The thyroid and the skeleton. Clin. Endocrinol. (Oxf.) 61(3), 285–298 (2004).
  • Harvey CB, O’Shea PJ, Scott AJ et al. Molecular mechanisms of thyroid hormone effects on bone growth and function. Mol. Genet. Metab. 75(1), 17–30 (2002).
  • O’Shea PJ, Harvey CB, Suzuki H et al. A thyrotoxic skeletal phenotype of advanced bone formation in mice with resistance to thyroid hormone. Mol. Endocrinol. 17(7), 1410–1424 (2003).
  • Abe E, Marians RC, Yu W et al. TSH is a negative regulator of skeletal remodeling. Cell 115(2), 151–162 (2003).
  • Ueland T. GH/IGF-I and bone resorption in vivo and in vitro. Eur. J. Endocrinol. 152(3), 327–332 (2005).
  • Koch H, Jadlowiec JA, Campbell PG. Insulin-like growth factor-I induces early osteoblast gene expression in human mesenchymal stem cells. Stem Cells Dev. 14(6), 621–631 (2005).
  • Celil AB, Campbell PG. BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J. Biol. Chem. 280(36), 31353–31359 (2005).
  • Lange M, Qvortrup K, Svendsen OL et al. Abnormal bone collagen morphology and decreased bone strength in growth hormone-deficient rats. Bone 35(1), 178–185 (2004).
  • Christoforidis A, Maniadaki I, Stanhope R. Growth hormone/insulin-like growth factor-1 axis during puberty. Pediatr. Endocrinol. Rev. 3(1), 5–10 (2005).
  • Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 395(6704), 763–770 (1998).
  • Karsenty G. Leptin controls bone formation through a hypothalamic relay. Recent Prog. Horm. Res. 56, 401–415 (2001).
  • Cohen MM Jr. Role of leptin in regulating appetite, neuroendocrine function, and bone remodeling. Am. J. Med. Genet. A. 140(5), 515–524 (2006).
  • Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140(4), 1630–1638 (1999).
  • Lamghari M, Tavares L, Camboa N, Barbosa MA. Leptin effect on RANKL and OPG expression in MC3T3-E1 osteoblasts. J. Cell. Biochem. 98(5), 1123–1129 (2006).
  • Thomas T, Burguera B. Is leptin the link between fat and bone mass? J. Bone Miner. Res. 17(9), 1563–1569 (2002).
  • Gordeladze JO, Reseland JE. A unified model for the action of leptin on bone turnover. J. Cell. Biochem. 88(4), 706–712 (2003).
  • Smink JJ, Buchholz IM, Hamers N et al. Short-term glucocorticoid treatment of piglets causes changes in growth plate morphology and angiogenesis. Osteoarthritis Cartilage 11(12), 864–871 (2003).
  • Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury 36(12), 1392–1404 (2005).
  • Einhorn TA. The science of fracture healing. J. Orthop. Trauma 19(Suppl. 10), S4–S6 (2005).
  • Iu MF, Kaji H, Naito J, Sowa H, Sugimoto T, Chihara K. Low-dose parathyroid hormone and estrogen reverse alkaline phosphatase activity suppressed by dexamethasone in mouse osteoblastic cells. J. Bone Miner. Metab. 23(6), 450–455 (2005).
  • vonStechow D, Zurakowski D, Pettit AR et al. Differential transcriptional effects of PTH and estrogen during anabolic bone formation. J. Cell. Biochem. 93(3), 476–490 (2004).
  • Rattanakul C, Lenbury Y, Krishnamara N, Wollkind DJ. Modeling of bone formation and resorption mediated by parathyroid hormone: response to estrogen/PTH therapy. Biosystems 70(1), 55–72 (2003).
  • Ohnaka K, Tanabe M, Kawate H, Nawata H, Takayanagi R. Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochem. Biophys. Res. Commun. 329(1), 177–181 (2005).
  • Ohnaka K, Taniguchi H, Kawate H, Nawata H, Takayanagi R. Glucocorticoid enhances the expression of dickkopf-1 in human osteoblasts: novel mechanism of glucocorticoid-induced osteoporosis. Biochem. Biophys. Res. Commun. 318(1), 259–264 (2004).
  • Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2(3), 165–171 (2001).
  • Cohen-Solal ME, Shih MS, Lundy MW, Parfitt AM. A new method for measuring cancellous bone erosion depth: application to the cellular mechanisms of bone loss in postmenopausal osteoporosis. J. Bone Miner. Res. 6(12), 1331–1338 (1991).
  • Carano RA, Filvaroff EH. Angiogenesis and bone repair. Drug Discov. Today 8(21), 980–989 (2003).
  • Lienau J, Schell H, Epari DR et al. CYR61 (CCN1) protein expression during fracture healing in an ovine tibial model and its relation to the mechanical fixation stability. J. Orthop. Res. 24(2), 254–262 (2006).
  • Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J. Cell. Biochem. 88(5), 873–884 (2003).
  • Enomoto H, Furuichi T, Zanma A et al. Runx2 deficiency in chondrocytes causes adipogenic changes in vitro. J. Cell Sci. 117(Pt 3), 417–425 (2004).
  • Khan E, Abu-Amer Y. Activation of peroxisome proliferator-activated receptor-γ inhibits differentiation of preosteoblasts. J. Lab. Clin. Med. 142(1), 29–34 (2003).
  • Dang ZC, van Bezooijen RL, Karperien M, Papapoulos SE, Lowik CW. Exposure of KS483 cells to estrogen enhances osteogenesis and inhibits adipogenesis. J. Bone Miner. Res. 17(3), 394–405 (2002).
  • Plant A, Samuels A, Perry MJ, Colley S, Gibson R, Tobias JH. Estrogen-induced osteogenesis in mice is associated with the appearance of Cbfa1-expressing bone marrow cells. J. Cell. Biochem. 84(2), 285–294 (2002).
  • Sottile V, Seuwen K, Kneissel M. Enhanced marrow adipogenesis and bone resorption in estrogen-deprived rats treated with the PPARγ agonist BRL49653 (rosiglitazone). Calcif. Tissue Int. 75(4), 329–337 (2004).
  • Schilling T, Nöth U, Klein-Hitpass L, Jakob F, Schütze N. Plasticity in adipogenesis and osteogenesis of human mesenchymal stem cells. Mol. Cell. Endocrinology (2006) (In Press).
  • Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J. 18(9), 980–982 (2004).
  • Verfaillie CM. Adult stem cells: assessing the case for pluripotency. Trends Cell Biol. 12(11), 502–508 (2002).
  • Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin. Orthop. Relat. Res. 80, 147–154 (1971).
  • Burkhardt R, Kettner G, Bohm W et al. Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone 8(3), 157–164 (1987).
  • Nuttall ME, Gimble JM. Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis? Bone 27(2), 177–184 (2000).
  • Pei L, Tontonoz P. Fat’s loss is bone’s gain. J. Clin. Invest. 113(6), 805–806 (2004).
  • Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J. Cell Sci. 102 (Pt 2), 341–351 (1992).
  • Ahdjoudj S, Fromigue O, Marie PJ. Plasticity and regulation of human bone marrow stromal osteoprogenitor cells: potential implication in the treatment of age-related bone loss. Histol. Histopathol. 19(1), 151–157 (2004).
  • D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J. Bone Miner. Res. 14(7), 1115–1122 (1999).
  • Kajkenova O, Lecka-Czernik B, Gubrij I et al. Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J. Bone Miner. Res. 12(11), 1772–1779 (1997).
  • Justesen J, Stenderup K, Eriksen EF, Kassem M. Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures. Calcif. Tissue Int. 71(1), 36–44 (2002).
  • Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 16, 145–71 (2000).
  • Tontonoz P, Graves RA, Budavari AI et al. Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR γ and RXR α. Nucleic Acids Res. 22(25), 5628–5634 (1994).
  • MacDougald OA, Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem. 64, 345–373 (1995).
  • Tanaka T, Yoshida N, Kishimoto T, Akira S. Defective adipocyte differentiation in mice lacking the C/EBPβ and/or C/EBPδ gene. EMBO J. 16(24), 7432–7443 (1997).
  • Wu Z, Bucher NL, Farmer SR. Induction of peroxisome proliferator-activated receptor γ during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPβ, C/EBPδ, and glucocorticoids. Mol. Cell. Biol. 16(8), 4128–4136 (1996).
  • Darlington GJ, Ross SE, MacDougald OA. The role of C/EBP genes in adipocyte differentiation. J. Biol. Chem. 273(46), 30057–30060 (1998).
  • Rosen ED, Hsu CH, Wang X et al. C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes Dev. 16(1), 22–26 (2002).
  • Wu Z, Rosen ED, Brun R et al. Cross-regulation of C/EBP α and PPAR γ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell. 3(2), 151–158 (1999).
  • Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 10(9), 1096–1107 (1996).
  • Kim JB, Wright HM, Wright M, Spiegelman BM. ADD1/SREBP1 activates PPARγ through the production of endogenous ligand. Proc. Natl Acad. Sci. USA 95(8), 4333–4337 (1998).
  • Spiegelman BM, Choy L, Hotamisligil GS, Graves RA, Tontonoz P. Regulation of adipocyte gene expression in differentiation and syndromes of obesity/diabetes. J. Biol. Chem. 268(10), 6823–6826 (1993).
  • Argmann CA, Cock TA, Auwerx J. Peroxisome proliferator-activated receptor γ: the more the merrier? Eur. J. Clin. Invest. 35(2), 82–92; discussion 80 (2005).
  • Akune T, Ohba S, Kamekura S et al. PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J. Clin. Invest. 113(6), 846–855 (2004).
  • Madsen L, Petersen RK, Kristiansen K. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim. Biophys. Acta 1740(2), 266–286 (2005).
  • Krey G, Braissant O, L’Horset F et al. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol. Endocrinol. 11(6), 779–791 (1997).
  • Kliewer SA, Sundseth SS, Jones SA et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc. Natl Acad. Sci. USA 94(9), 4318–4323 (1997).
  • Klein RF, Allard J, Avnur Z et al. Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 303(5655), 229–232 (2004).
  • Nawrocki AR, Scherer PE. Keynote review: the adipocyte as a drug discovery target. Drug Discov. Today 10(18), 1219–1230 (2005).
  • Phillips JE, Gersbach CA, Wojtowicz AM, Garcia AJ. Glucocorticoid-induced osteogenesis is negatively regulated by Runx2/Cbfa1 serine phosphorylation. J. Cell Sci. 119(Pt 3), 581–591 (2006).
  • Eijken M, Koedam M, van Driel M, Buurman CJ, Pols HA, van Leeuwen JP. The essential role of glucocorticoids for proper human osteoblast differentiation and matrix mineralization. Mol. Cell. Endocrinol. 248(1–2), 87–93 (2006).
  • Wang FS, Lin CL, Chen YJ et al. Secreted frizzled-related protein 1 modulates glucocorticoid attenuation of osteogenic activities and bone mass. Endocrinology 146(5), 2415–2423 (2005).
  • Gu G, Hentunen TA, Nars M, Harkonen PL, Vaananen HK. Estrogen protects primary osteocytes against glucocorticoid-induced apoptosis. Apoptosis 10(3), 583–595 (2005).
  • O’Brien CA, Jia D, Plotkin LI et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145(4), 1835–1841 (2004).
  • Seckl JR, Morton NM, Chapman KE, Walker BR. Glucocorticoids and 11β-hydroxysteroid dehydrogenase in adipose tissue. Recent Prog. Horm. Res. 59, 359–393 (2004).
  • Masuzaki H, Paterson J, Shinyama H et al. A transgenic model of visceral obesity and the metabolic syndrome. Science 294(5549), 2166–2170 (2001).
  • Morton NM, Paterson JM, Masuzaki H et al. Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11 β-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes 53(4), 931–938 (2004).
  • Price TM, O’Brien SN. Determination of estrogen receptor messenger ribonucleic acid (mRNA) and cytochrome P450 aromatase mRNA levels in adipocytes and adipose stromal cells by competitive polymerase chain reaction amplification. J. Clin. Endocrinol. Metab. 77(4), 1041–1045 (1993).
  • Cooke PS, Naaz A. Role of estrogens in adipocyte development and function. Exp. Biol. Med. (Maywood) 229(11), 1127–1135 (2004).
  • Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS. Increased adipose tissue in male and female estrogen receptor-α knockout mice. Proc. Natl Acad. Sci. USA 97(23), 12729–12734 (2000).
  • Jones ME, Thorburn AW, Britt KL et al. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc. Natl Acad. Sci. USA 97(23), 12735–12740 (2000).
  • Danilovich N, Babu PS, Xing W, Gerdes M, Krishnamurthy H, Sairam MR. Estrogen deficiency, obesity, and skeletal abnormalities in follicle-stimulating hormone receptor knockout (FORKO) female mice. Endocrinology 141(11), 4295–4308 (2000).
  • Girard J, Perdereau D, Foufelle F, Prip-Buus C, Ferre P. Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB J. 8(1), 36–42 (1994).
  • Kiess W, Gallaher B. Hormonal control of programmed cell death/apoptosis. Eur. J. Endocrinol. 138(5), 482–491 (1998).
  • Tseng YH, Butte AJ, Kokkotou E et al. Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin. Nat. Cell Biol. 7(6), 601–611 (2005).
  • Leri A, Kajstura J, Anversa P. Identity deception: not a crime for a stem cell. Physiology (Bethesda) 20, 162–168 (2005).
  • Terada N, Hamazaki T, Oka M et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416(6880), 542–545 (2002).
  • Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature 416(6880), 545–548 (2002).
  • Nuttall ME, Patton AJ, Olivera DL, Nadeau DP, Gowen M. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J. Bone Miner. Res. 13(3), 371–382 (1998).
  • Bluher S, Kratzsch J, Kiess W. Insulin-like growth factor I, growth hormone and insulin in white adipose tissue. Best Pract. Res. Clin. Endocrinol. Metab. 19(4), 577–587 (2005).
  • Simonsen JL, Rosada C, Serakinci N et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat. Biotechnol. 20(6), 592–596 (2002).
  • Abdallah BM, Haack-Sorensen M, Burns JS et al. Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite [corrected] extensive proliferation. Biochem. Biophys. Res. Commun. 326(3), 527–538 (2005).
  • Kipling D, Davis T, Ostler EL, Faragher RG. What can progeroid syndromes tell us about human aging? Science 305(5689), 1426–1431 (2004).
  • Sethe S, Scutt A, Stolzing A. Aging of mesenchymal stem cells. Aging Res. Rev. 5(1), 91–116 (2006).
  • Ebert R, Ulmer M, Zeck S et al. Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 24(5), 1226–1235 (2006).
  • Schutze N, Fritsche J, Ebert-Dumig R et al. The selenoprotein thioredoxin reductase is expressed in peripheral blood monocytes and THP1 human myeloid leukemia cells – regulation by 1,25-dihydroxyvitamin D3 and selenite. Biofactors 10(4), 329–338 (1999).
  • Damdimopoulos AE, Miranda-Vizuete A, Treuter E, Gustafsson JA, Spyrou G. An alternative splicing variant of the selenoprotein thioredoxin reductase is a modulator of estrogen signaling. J. Biol. Chem. 279(37), 38721–38729 (2004).
  • Maruyama T, Sachi Y, Furuke K et al. Induction of thioredoxin, a redox-active protein, by ovarian steroid hormones during growth and differentiation of endometrial stromal cells in vitro. Endocrinology 140(1), 365–372 (1999).
  • Stenderup K, Justesen J, Eriksen EF, Rattan SI, Kassem M. Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. J. Bone Miner. Res. 16(6), 1120–1129 (2001).
  • Roura S, Farre J, Soler-Botija C et al. Effect of aging on the pluripotential capacity of human CD105+ mesenchymal stem cells. Eur. J. Heart Fail. 8(6), 555–563 (2006).
  • Dressler MR, Butler DL, Boivin GP. Effects of age on the repair ability of mesenchymal stem cells in rabbit tendon. J. Orthop. Res. 23(2), 287–293 (2005).
  • Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33(6), 919–926 (2003).
  • Park JS, Kim HY, Kim HW et al. Increased caveolin-1, a cause for the declined adipogenic potential of senescent human mesenchymal stem cells. Mech. Aging Dev. 126(5), 551–559 (2005).
  • Abdallah BM, Haack-Sorensen M, Fink T, Kassem M. Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone (2006).
  • Dazzi F, Ramasamy R, Glennie S, Jones SP, Roberts I. The role of mesenchymal stem cells in haemopoiesis. Blood Rev. 20(3), 161–171 (2006).
  • Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441(7097), 1068–1074 (2006).
  • Bogazzi F, Cosci C, Sardella C, Martino E, Gasperi M. Acromegaly: effects on bone metabolism and mass. J. Endocrinol. Invest. 28(Suppl. 10), 33–35 (2005).
  • Lombardi G, Tauchmanova L, Di Somma C et al. Somatopause: dismetabolic and bone effects. J. Endocrinol. Invest. 28(Suppl. 10), 36–42 (2005).
  • Liang H, Masoro EJ, Nelson JF, Strong R, McMahan CA, Richardson A. Genetic mouse models of extended lifespan. Exp. Gerontol. 38(11–12), 1353–1364 (2003).
  • Bonjour JP. Dietary protein: an essential nutrient for bone health. J. Am. Coll. Nutr. 24(Suppl. 6), S526–S536 (2005).
  • Legroux-Gerot I, Vignau J, Collier F, Cortet B. Bone loss associated with anorexia nervosa. Joint Bone Spine 72(6), 489–495 (2005).
  • Chanoine JP. Ghrelin in growth and development. Horm. Res. 63(3), 129–138 (2005).
  • Oreffo RO, Lashbrooke B, Roach HI, Clarke NM, Cooper C. Maternal protein deficiency affects mesenchymal stem cell activity in the developing offspring. Bone 33(1), 100–107 (2003).
  • Smith EP, Boyd J, Frank GR et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331(16), 1056–1061 (1994).
  • Morishima A, Grumbach MM, Simpson ER, Fisher C, Qin K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J. Clin. Endocrinol. Metab. 80(12), 3689–3698 (1995).
  • Augat P, Simon U, Liedert A, Claes L. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos Int. 16(Suppl. 2), S36–S43 (2005).
  • Namkung-Matthai H, Appleyard R, Jansen J et al. Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone 28(1), 80–86 (2001).

Website

  • Nature Signaling Gateway FGF23 molecule page Jakob F, Ebert R, Seufert J. Fgf23. AfCS-Nature Molecule Pages. (2006). (doi:10.1038/mp.a003934.01) www.signaling-gateway.org/molecule/query?afcsid=A003934

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.