16
Views
0
CrossRef citations to date
0
Altmetric
Review

Strategies to treat autoimmune diabetes

&
Pages 185-194 | Published online: 10 Jan 2014

References

  • Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N. Engl. J. Med.314(21), 1360–1368 (1986).
  • Verge CF, Gianani R, Kawasaki E et al. Prediction of Type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes45(7), 926–933 (1996).
  • Yu L, Robles DT, Abiru N et al. Early expression of anti-insulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc. Natl Acad. Sci. USA97(4), 1701–1706 (2000).
  • Trudeau JD, Kelly-Smith C, Verchere CB et al. Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. J. Clin. Invest.111(2), 217–223 (2003).
  • Yang ZD, Chen M, Wu R, McDuffie M, Nadler JL. The anti-inflammatory compound lisofylline prevents Type I diabetes in non-obese diabetic mice. Diabetologia45(9), 1307–1314 (2002).
  • Yang Z, Chen M, Fialkow LB, Ellett JD, Wu R, Nadler JL. The novel anti-inflammatory compound, lisofylline, prevents diabetes in multiple low-dose streptozotocin-treated mice. Pancreas26(4), E99–E104 (2003).
  • Yang Z, Chen M, Ellett JD, Fialkow LB, Carter JD, Nadler JL. The novel anti-inflammatory agent lisofylline prevents autoimmune diabetic recurrence after islet transplantation. Transplantation77(1), 55–60 (2004).
  • Yang Z, Chen M, Carter JD et al. Combined treatment with lisofylline and exendin-4 reverses autoimmune diabetes. Biochem. Biophys. Res. Commun.344(3), 1017–1022 (2006).
  • Like AA, Rossini AA, Guberski DL, Appel MC, Williams RM. Spontaneous diabetes mellitus: reversal and prevention in the BB/W rat with antiserum to rat lymphocytes. Science206(4425), 1421–1423 (1979).
  • Ogawa N, Minamimura K, Kodaka T, Maki T. Short administration of polyclonal anti-T cell antibody (ALS) in NOD mice with extensive insulitis prevents subsequent development of autoimmune diabetes. J. Autoimmun.26(4), 225–231 (2006).
  • Maki T, Ichikawa T, Blanco R, Porter J. Long-term abrogation of autoimmune diabetes in nonobese diabetic mice by immunotherapy with anti-lymphocyte serum. Proc. Natl Acad. Sci. USA89(8), 3434–3438 (1992).
  • Ogawa N, List JF, Habener JF, Maki T. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes53(7), 1700–1705 (2004).
  • Stegall MD, Kim DY, Prieto M et al. Thymoglobulin induction decreases rejection in solitary pancreas transplantation. Transplantation72(10), 1671–1675 (2001).
  • Chatenoud L, Thervet E, Primo J, Bach JF. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc. Natl Acad. Sci. USA91(1), 123–127 (1994).
  • Ferran C, Sheehan K, Dy M et al. Cytokine-related syndrome following injection of anti-CD3 monoclonal antibody: further evidence for transient in vivo T cell activation. Eur. J. Immunol.20(3), 509–515 (1990).
  • Alegre M, Vandenabeele P, Flamand V et al. Hypothermia and hypoglycemia induced by anti-CD3 monoclonal antibody in mice: role of tumor necrosis factor. Eur. J. Immunol.20(3), 707–710 (1990).
  • Abramowicz D, Schandene L, Goldman M et al. Release of tumor necrosis factor, interleukin-2, and γ-interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation47(4), 606–608 (1989).
  • Keymeulen B, Vandemeulebroucke E, Ziegler AG et al. Insulin needs after CD3-antibody therapy in new-onset Type 1 diabetes. N. Engl. J. Med.352(25), 2598–2608 (2005).
  • Belghith M, Bluestone JA, Barriot S, Megret J, Bach JF, Chatenoud L. TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat. Med.9(9), 1202–1208 (2003).
  • Herold KC, Gitelman SE, Masharani U et al. A single course of anti-CD3 monoclonal antibody hOKT3γ1(Ala–Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of Type 1 diabetes. Diabetes54(6), 1763–1769 (2005).
  • Herold KC, Burton JB, Francois F, Poumian-Ruiz E, Glandt M, Bluestone JA. Activation of human T cells by FcR nonbinding anti-CD3 mAb, hOKT3γ1(Ala–Ala). J. Clin. Invest.111(3), 409–418 (2003).
  • Bisikirska B, Colgan J, Luban J, Bluestone JA, Herold KC. TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J. Clin. Invest.115(10), 2904–2913 (2005).
  • van de Linde P, Tysma OM, Medema JP et al. Mechanisms of antibody immunotherapy on clonal islet reactive T cells. Hum. Immunol.67(4–5), 264–273 (2006).
  • Greeley SA, Katsumata M, Yu L et al. Elimination of maternally transmitted autoantibodies prevents diabetes in nonobese diabetic mice. Nat. Med.8(4), 399–402 (2002).
  • Koczwara K, Bonifacio E, Ziegler AG. Transmission of maternal islet antibodies and risk of autoimmune diabetes in offspring of mothers with Type 1 diabetes. Diabetes53(1), 1–4 (2004).
  • Silveira PA, Grey ST. B cells in the spotlight: innocent bystanders or major players in the pathogenesis of Type 1 diabetes. Trends Endocrinol. Metab.17(4), 128–135 (2006).
  • Noorchashm H, Noorchashm N, Kern J, Rostami SY, Barker CF, Naji A. β-cells are required for the initiation of insulitis and sialitis in nonobese diabetic mice. Diabetes46(6), 941–946 (1997).
  • Noorchashm H, Lieu YK, Noorchashm N et al. I-Ag7-mediated antigen presentation by B lymphocytes is critical in overcoming a checkpoint in T cell tolerance to islet β cells of nonobese diabetic mice. J. Immunol.163(2), 743–750 (1999).
  • Hulbert C, Riseili B, Rojas M, Thomas JW. β cell specificity contributes to the outcome of diabetes in nonobese diabetic mice. J. Immunol.167(10), 5535–5538 (2001).
  • Martin S, Wolf-Eichbaum D, Duinkerken G et al. Development of Type 1 diabetes despite severe hereditary B-lymphocyte deficiency. N. Engl. J. Med.345(14), 1036–1040 (2001).
  • Redondo MJ, Eisenbarth GS. Genetic control of autoimmunity in Type I diabetes and associated disorders. Diabetologia45(5), 605–622 (2002).
  • Radosevic K, Casteels KM, Mathieu C, Van Ewijk W, Drexhage HA, Leenen PJ. Splenic dendritic cells from the non-obese diabetic mouse induce a prolonged proliferation of syngeneic T cells. A role for an impaired apoptosis of NOD T cells? J. Autoimmun.13(4), 373–382 (1999).
  • Feili-Hariri M, Morel PA. Phenotypic and functional characteristics of BM-derived DC from NOD and non-diabetes-prone strains. Clin. Immunol.98(1), 133–142 (2001).
  • Takahashi K, Honeyman MC, Harrison LC. Impaired yield, phenotype, and function of monocyte-derived dendritic cells in humans at risk for insulin-dependent diabetes. J. Immunol.161(5), 2629–2635 (1998).
  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu. Rev. Immunol.21, 685–711 (2003).
  • Clare-Salzler MJ, Brooks J, Chai A, Van Herle K, Anderson C. Prevention of diabetes in nonobese diabetic mice by dendritic cell transfer. J. Clin. Invest.90(3), 741–748 (1992).
  • Feili-Hariri M, Dong X, Alber SM, Watkins SC, Salter RD, Morel PA. Immunotherapy of NOD mice with bone marrow-derived dendritic cells. Diabetes48(12), 2300–2308 (1999).
  • Feili-Hariri M, Falkner DH, Morel PA. Regulatory Th2 response induced following adoptive transfer of dendritic cells in prediabetic NOD mice. Eur. J. Immunol.32(7), 2021–2030 (2002).
  • Haase C, Ejrnaes M, Juedes AE, Wolfe T, Markholst H, von Herrath MG. Immunomodulatory dendritic cells require autologous serum to circumvent nonspecific immunosuppressive activity in vivo. Blood106(13), 4225–4233 (2005).
  • Morin J, Faideau B, Gagnerault MC, Lepault F, Boitard C, Boudaly S. Passive transfer of flt-3L-derived dendritic cells delays diabetes development in NOD mice and associates with early production of interleukin (IL)-4 and IL-10 in the spleen of recipient mice. Clin. Exp. Immunol.134(3), 388–395 (2003).
  • Menges M, Rossner S, Voigtlander C et al. Repetitive injections of dendritic cells matured with tumor necrosis factor α induce antigen-specific protection of mice from autoimmunity. J. Exp. Med.195(1), 15–21 (2002).
  • Verginis P, Li HS, Carayanniotis G. Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin-specific CD4+CD25+ T cells. J. Immunol.174(11), 7433–7439 (2005).
  • Tang Q, Henriksen KJ, Bi M et al.In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med.199(11), 1455–1465 (2004).
  • Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med.199(11), 1467–1477 (2004).
  • Yamazaki S, Iyoda T, Tarbell K et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med.198(2), 235–247 (2003).
  • Fisson S, Djelti F, Trenado A et al. Therapeutic potential of self-antigen-specific CD4+CD25+ regulatory T cells selected in vitro from a polyclonal repertoire. Eur. J. Immunol.36(4), 817–827 (2006).
  • Ebner S, Hofer S, Nguyen VA et al. A novel role for IL-3: human monocytes cultured in the presence of IL-3 and IL-4 differentiate into dendritic cells that produce less IL-12 and shift Th cell responses toward a Th2 cytokine pattern. J. Immunol.168(12), 6199–6207 (2002).
  • Macatonia SE, Doherty TM, Knight SC, O’Garra A. Differential effect of IL-10 on dendritic cell-induced T cell proliferation and IFN-γ production. J. Immunol.150(9), 3755–3765 (1993).
  • Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J. Exp. Med.161(1), 72–87 (1985).
  • Danke NA, Koelle DM, Yee C, Beheray S, Kwok WW. Autoreactive T cells in healthy individuals. J. Immunol.172(10), 5967–5972 (2004).
  • Pop SM, Wong CP, Culton DA, Clarke SH, Tisch R. Single cell analysis shows decreasing FoxP3 and TGFβ1 coexpressing CD4+CD25+ regulatory T cells during autoimmune diabetes. J. Exp. Med.201(8), 1333–1346 (2005).
  • Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI. Defective suppressor function in CD4+CD25+ T-cells from patients with Type 1 diabetes. Diabetes54(1), 92–99 (2005).
  • Kukreja A, Cost G, Marker J et al. Multiple immuno-regulatory defects in Type-1 diabetes. J. Clin. Invest.109(1), 131–140 (2002).
  • Daniel D, Wegmann DR. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9–23). Proc. Natl Acad. Sci. USA93(2), 956–960 (1996).
  • Bergerot I, Arreaza GA, Cameron MJ et al. Insulin B-chain reactive CD4+ regulatory T-cells induced by oral insulin treatment protect from Type 1 diabetes by blocking the cytokine secretion and pancreatic infiltration of diabetogenic effector T-cells. Diabetes48(9), 1720–1729 (1999).
  • Ploix C, Bergerot I, Fabien N, Perche S, Moulin V, Thivolet C. Protection against autoimmune diabetes with oral insulin is associated with the presence of IL-4 Type 2 T-cells in the pancreas and pancreatic lymph nodes. Diabetes47(1), 39–44 (1998).
  • Polanski M, Melican NS, Zhang J, Weiner HL. Oral administration of the immunodominant B-chain of insulin reduces diabetes in a co-transfer model of diabetes in the NOD mouse and is associated with a switch from Th1 to Th2 cytokines. J. Autoimmun.10(4), 339–346 (1997).
  • Homann D, Dyrberg T, Petersen J, Oldstone MB, von Herrath MG. Insulin in oral immune ‘tolerance’ a one-amino acid change in the B chain makes the difference. J. Immunol.163(4), 1833–1838 (1999).
  • Diabetes Prevention Trial – Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with Type 1 diabetes mellitus. N. Engl. J. Med.346(22), 1685–1691 (2002).
  • Harrison LC, Dempsey-Collier M, Kramer DR, Takahashi K. Aerosol insulin induces regulatory CD8 γ δ T cells that prevent murine insulin-dependent diabetes. J. Exp. Med.184(6), 2167–2174 (1996).
  • Harrison LC, Honeyman MC, Steele CE et al. Pancreatic β-cell function and immune responses to insulin after administration of intranasal insulin to humans at risk for Type 1 diabetes. Diabetes Care27(10), 2348–2355 (2004).
  • Pozzilli P, Pitocco D, Visalli N et al. No effect of oral insulin on residual β-cell function in recent-onset Type I diabetes (the IMDIAB VII). IMDIAB Group. Diabetologia43(8), 1000–1004 (2000).
  • Ploix C, Bergerot I, Durand A, Czerkinsky C, Holmgren J, Thivolet C. Oral administration of cholera toxin β-insulin conjugates protects NOD mice from autoimmune diabetes by inducing CD4+ regulatory T-cells. Diabetes48(11), 2150–2156 (1999).
  • Petersen JS, Bregenholt S, Apostolopolous V et al. Coupling of oral human or porcine insulin to the B subunit of cholera toxin (CTB) overcomes critical antigenic differences for prevention of Type I diabetes. Clin. Exp. Immunol.134(1), 38–45 (2003).
  • Alleva DG, Gaur A, Jin L et al. Immunological characterization and therapeutic activity of an altered-peptide ligand, NBI-6024, based on the immunodominant Type 1 diabetes autoantigen insulin B-chain (9–23) peptide. Diabetes51(7), 2126–2134 (2002).
  • Alleva DG, Maki RA, Putnam AL et al. Immunomodulation in Type 1 diabetes by NBI-6024, an altered peptide ligand of the insulin B epitope. Scand J. Immunol.63(1), 59–69 (2006).
  • Coon B, An LL, Whitton JL, von Herrath MG. DNA immunization to prevent autoimmune diabetes. J. Clin. Invest.104(2), 189–194 (1999).
  • Bot A, Smith D, Bot S et al. Plasmid vaccination with insulin B chain prevents autoimmune diabetes in nonobese diabetic mice. J. Immunol.167(5), 2950–2955 (2001).
  • Raz I, Elias D, Avron A, Tamir M, Metzger M, Cohen IR. β-cell function in new-onset Type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, Phase II trial. Lancet358(9295), 1749–1753 (2001).
  • Zanin-Zhorov A, Nussbaum G, Franitza S, Cohen IR, Lider O. T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors. FASEB J.17(11), 1567–1569 (2003).
  • Bowman M, Atkinson MA. Heat shock protein therapy fails to prevent diabetes in NOD mice. Diabetologia45(9), 1350–1351 (2002).
  • Elias D, Cohen IR. Treatment of autoimmune diabetes and insulitis in NOD mice with heat shock protein 60 peptide p277. Diabetes44(9), 1132–1138 (1995).
  • Lazar L, Ofan R, Weintrob N et al. Heat-shock protein peptide DiaPep277 treatment in children with newly diagnosed Type 1 diabetes: a randomised, double-blind Phase II study. Diabetes Metab. Res. Rev. (2006) (Epub ahead of print).
  • Huurman VA, Decochez K, Mathieu C, Cohen IR, Roep BO. Therapy with the hsp60 peptide DiaPep277™ in C-peptide positive Type 1 diabetes patients. Diabetes Metab. Res. Rev. (2006) (Epub ahead of print).
  • Kaufman DL, Clare-Salzler M, Tian J et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature366(6450), 69–72 (1993).
  • Tisch R, Yang XD, Singer SM, Liblau RS, Fugger L, McDevitt HO. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature366(6450), 72–75 (1993).
  • Jaeckel E, Klein L, Martin-Orozco N, von Boehmer H. Normal incidence of diabetes in NOD mice tolerant to glutamic acid decarboxylase. J. Exp. Med.197(12), 1635–1644 (2003).
  • Nakayama M, Abiru N, Moriyama H et al. Prime role for an insulin epitope in the development of Type 1 diabetes in NOD mice. Nature435(7039), 220–223 (2005).
  • Petersen JS, Karlsen AE, Markholst H, Worsaae A, Dyrberg T, Michelsen B. Neonatal tolerization with glutamic acid decarboxylase but not with bovine serum albumin delays the onset of diabetes in NOD mice. Diabetes43(12), 1478–1484 (1994).
  • Pleau JM, Fernandez-Saravia F, Esling A, Homo-Delarche F, Dardenne M. Prevention of autoimmune diabetes in nonobese diabetic female mice by treatment with recombinant glutamic acid decarboxylase (GAD 65). Clin. Immunol. Immunopathol.76(1 Pt 1), 90–95 (1995).
  • Tian J, Atkinson MA, Clare-Salzler M et al. Nasal administration of glutamate decarboxylase (GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes. J. Exp. Med.183(4), 1561–1567 (1996).
  • Agardh CD, Cilio CM, Lethagen A et al. Clinical evidence for the safety of GAD65 immunomodulation in adult-onset autoimmune diabetes. J. Diabetes Complications19(4), 238–246 (2005).
  • Herold KC, Hagopian W, Auger JA et al. Anti-CD3 monoclonal antibody in new-onset Type 1 diabetes mellitus. N. Engl. J. Med.346(22), 1692–1698 (2002).
  • Gutniak M, Orskov C, Holst JJ, Ahren B, Efendic S. Antidiabetogenic effect of glucagon-like peptide-1 (7–36)amide in normal subjects and patients with diabetes mellitus. N. Engl. J. Med.326(20), 1316–1322 (1992).
  • Bresson D, Togher L, Rodrigo E et al. Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. J. Clin. Invest.116(5), 1371–1381 (2006).

Websites

  • Juvenile Diabetes Foundation www.jdrf.org
  • Immune Tolerance Network www.immunetolerance.org
  • TrialNet www.diabetestrialnet.org
  • Barbara Davis Center for Childhood Diabetes www.barbaradaviscenter.org
  • National Institute of Diabetes and Digestive and Kidney Diseases www.niddk.nih.gov
  • Federation of Clinical Immunology Societies www.focisnet.org

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.