31
Views
1
CrossRef citations to date
0
Altmetric
Review

Kinase-dependent pathways and the development of insulin resistance in hepatocytes

Pages 195-203 | Published online: 10 Jan 2014

References

  • Kahn BB. Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance. Cell92, 593–596 (1998).
  • Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature414, 782–787 (2001).
  • Kahn BB, Flier JS. Obesity and insulin resistance. J. Clin. Invest.106, 473–481 (2000).
  • Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature414, 799–806 (2001).
  • Liu Z, Barrett EJ. Human protein metabolism: its measurement and regulation. Am. J. Physiol. Endocrinol. Metab.283, E1105–E1112 (2002).
  • Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature404, 661–671 (2000).
  • Obici S, Rossetti L. Minireview: nutrient sensing and the regulation of insulin action and energy balance. Endocrinology144, 5172–5178 (2003).
  • Kitamura T, Kahn CR, Accili D. Insulin receptor knockout mice. Annu. Rev. Physiol.65, 313–332 (2003).
  • Michael MD, Kulkarni RN, Postic C et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell.6, 87–97 (2000).
  • Kulkarni RN, Bruning JC, Winnay JN et al. Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in Type 2 diabetes. Cell96, 329–339 (1999).
  • Bruning JC, Gautam D, Burks DJ et al. Role of brain insulin receptor in control of body weight and reproduction. Science289, 2122–2155 (2000).
  • Paquot N, Scheen AJ, Dirlewanger M, Lefebvre PJ, Tappy L. Hepatic insulin resistance in obese non-diabetic subjects and in Type 2 diabetic patients. Obes. Res.10,129–134 (2002).
  • Carey DG, Jenkins AB, Campbell LV, Freund J, Chisholm DJ. Abdominal fat and insulin resistance in normal and overweight women: direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM. Diabetes45, 633–638 (1996).
  • DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care14, 173–194 (1991).
  • Evans DJ, Hoffmann RG, Kalkhoff RK, Kissebah AH. Relationship of body fat topography to insulin sensitivity and metabolic profiles in premenopausal women. Metabolism33, 68–75 (1984).
  • Golay A, Chen N, Chen YD, Hollenbeck C, Reaven GM. Effect of central obesity on regulation of carbohydrate metabolism in obese patients with varying degrees of glucose tolerance. J. Clin. Endocrinol. Metab.71, 1299–1304 (1990).
  • Hotamisligil GS. Mechanisms of TNF-α-induced insulin resistance. Exp. Clin. Endocrinol. Diabetes107, 119–125 (1999).
  • Steppan CM, Bailey ST, Bhat S et al. The hormone resistin links obesity to diabetes. Nature409, 307–312 (2001).
  • Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med.7, 947–953 (2001).
  • Bergman RN, Ader M. Free fatty acids and pathogenesis of Type 2 diabetes mellitus. Trends Endocrinol. Metab.11, 351–356 (2000).
  • Bjorntorp P. ‘Portal’ adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis10, 493–496 (1990).
  • Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes46, 3–10 (1997).
  • Byrne CD, Wareham NJ, Brown DC et al. Hypertriglyceridaemia in subjects with normal and abnormal glucose tolerance: relative contributions of insulin secretion, insulin resistance and suppression of plasma non-esterified fatty acids. Diabetologia37, 889–896 (1994).
  • Fraze E, Donner CC, Swislocki AL, Chiou YA, Chen YD, Reaven GM. Ambient plasma free fatty acid concentrations in noninsulin-dependent diabetes mellitus: evidence for insulin resistance. J. Clin. Endocrinol. Metab.61, 807–811 (1985).
  • Chu CA, Sherck SM, Igawa K et al. Effects of free fatty acids on hepatic glycogenolysis and gluconeogenesis in conscious dogs. Am. J. Physiol. Endocrinol. Metab.282, E402–E411 (2002).
  • Kruszynska YT, Worrall DS, Ofrecio J, Frias JP, Macaraeg G, Olefsky JM. Fatty acid-induced insulin resistance: decreased muscle PI3K activation but unchanged Akt phosphorylation. J. Clin. Endocrinol. Metab.87, 226–234 (2002).
  • Lam TK, van de WG, Giacca A. Free fatty acids increase basal hepatic glucose production and induce hepatic insulin resistance at different sites. Am. J. Physiol. Endocrinol. Metab.284, E281–E290 (2003).
  • Roden M, Stingl H, Chandramouli V et al. Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans. Diabetes49, 701–707 (2000).
  • Ye JM, Frangioudakis G, Iglesias MA et al. Prior thiazolidinedione treatment preserves insulin sensitivity in normal rats during acute fatty acid elevation: role of the liver. Endocrinology143, 4527–4535 (2002).
  • Stingl H, Krssak M, Krebs M et al. Lipid-dependent control of hepatic glycogen stores in healthy humans. Diabetologia44, 48–54 (2001).
  • Hegarty BD, Cooney GJ, Kraegen EW, Furler SM. Increased efficiency of fatty acid uptake contributes to lipid accumulation in skeletal muscle of high fat-fed insulin-resistant rats. Diabetes51, 1477–1484 (2002).
  • Mithieux G, Guignot L, Bordet JC, Wiernsperger N. Intrahepatic mechanisms underlying the effect of metformin in decreasing basal glucose production in rats fed a high-fat diet. Diabetes51, 139–143 (2002).
  • Oakes ND, Cooney GJ, Camilleri S, Chisholm DJ, Kraegen EW. Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding. Diabetes46, 1768–1774 (1997).
  • Ostman J, Arner P, Engfeldt P, Kager L. Regional differences in the control of lipolysis in human adipose tissue. Metabolism28, 1198–1205 (1979).
  • Williamson JR. Mechanism for the stimulation in vivo of hepatic gluconeogenesis by glucagon. Biochem. J.101, 11C–14C (1966).
  • Clarke SD. Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. Br. J. Nutr.83(Suppl. 1) S59–S66 (2000).
  • Xu J, Nakamura MT, Cho HP, Clarke SD. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats. J. Biol. Chem.274, 23577–23583 (1999).
  • Mittelman SD, Van Citters GW, Kim SP et al. Longitudinal compensation for fat-induced insulin resistance includes reduced insulin clearance and enhanced β-cell response. Diabetes49, 2116–2125 (2000).
  • Rebrin K, Steil G, Mittelman SD, Bergman RN. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J. Clin. Invest.98, 741–749 (1996).
  • Boden G, Chen X. Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. J. Clin. Invest.96, 1261–1268 (1995).
  • Shulman GI. Cellular mechanisms of insulin resistance. J. Clin. Invest.106, 171–176 (2000).
  • Anai M, Funaki M, Ogihara T et al. Altered expression levels and impaired steps in the pathway to phosphatidylinositol 3-kinase activation via insulin receptor substrates 1 and 2 in Zucker fatty rats. Diabetes47, 13–23 (1998).
  • Kim JK, Fillmore JJ, Chen Y et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc. Natl Acad. Sci. USA98, 7522–7527 (2001).
  • Samuel VT, Liu ZX, Qu X et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem.279, 32345–32353 (2004).
  • Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev.81, 807–869 (2001).
  • Callejo AI, Casanova E, Calvo P, Galetto R, Rodriguez-Rey JC, Chinchetru MA. Characterization of the promoter of the mouse c-Jun NH2-terminal/stress-activated protein kinase α gene. Biochim. Biophys. Acta1681, 47–52 (2004).
  • Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK) – from inflammation to development. Curr. Opin. Cell Biol.10, 205–219 (1998).
  • Hirosumi J, Tuncman G, Chang L et al. A central role for JNK in obesity and insulin resistance. Nature420, 333–336 (2002).
  • Aguirre V, Uchida T, Yenush L, Davis RJ, White MF. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307.J. Biol. Chem.275, 9047–9054 (2000).
  • Tuncman G, Hirosumi J, Solinas G, Chang L, Karin M, Hotamisgilil GS. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc. Natl. Acad. Sci. USA103, 10741–10746 (2006).
  • Liu H, Jones BE, Bradham C, Czaja MJ. Increased cytochrome P-450 2E1 expression sensitizes hepatocytes to c-Jun-mediated cell death from TNF-α. Am. J. Physiol. Gastrointest. Liver Physiol.282, G257–G266 (2002).
  • Liu H, Lo CR, Czaja MJ. NF-κB inhibition sensitizes hepatocytes to TNF-induced apoptosis through a sustained activation of JNK and c-Jun. Hepatology35, 772–778 (2002).
  • Schwabe RF, Uchinami H, Qian T, Bennett BL, Lemasters JJ, Brenner DA. Differential requirement for c-Jun NH2-terminal kinase in TNF- and Fas-mediated apoptosis in hepatocytes. FASEB J.18, 720–722 (2004).
  • Leclercq IA, Farrell GC, Field J, Bell DR, Gonzalez FJ, Robertson GR. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J. Clin. Invest.105, 1067–1075 (2000).
  • Ozcan U, Cao Q, Yilmaz E et al. Endoplasmic reticulum stress links obesity, insulin action, and Type 2 diabetes. Science306, 457–461 (2004).
  • Nakatani Y, Kaneto H, Kawamori D et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J. Biol. Chem.280, 847–851 (2005).
  • Schattenberg JM , Singh R, Wang Y et al. Jnk1 but not jnk2 promotes the development of steatohepatitis in mice. Hepatology43, 163–172 (2006).
  • Radziuk J, Bailey CJ, Wiernsperger NF, Yudkin JS. Metformin and its liver targets in the treatment of Type 2 diabetes. Curr. Drug Targets Immune Endocr. Metabol. Disord.3, 151–169 (2003).
  • Kumar N, Dey CS. Metformin enhances insulin signalling in insulin-dependent and -independent pathways in insulin resistant muscle cells. Br. J. Pharmacol.137, 329–336 (2002).
  • Cleasby ME, Dzamko N, Hegarty BD, Cooney GJ, Kraegen EW, Ye JM. Metformin prevents the development of acute lipid-induced insulin resistance in the rat through altered hepatic signaling mechanisms. Diabetes53, 3258–3266 (2004).
  • Lam TKT, Yoshii H, Haber A, Bogdanovic Lam L, Fantus G, Giacca A. Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-δ. Am J Physiol283: E682–E691 (2002).
  • Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J.9, 484–496 (1995).
  • Itani SI, Ruderman NB, Schmieder, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes51, 2005–2011 (2002).
  • Bell KS, Schmitz-Peiffer C, Lim-Fraser M, Biden TJ, Cooney GJ, Kraegen EW. Acute reversal of lipid-induced muscle insulin resistance is associated with rapid alteration in PKC-theta localization. Am. J. Physiol. Endocrinol. Metab.279, E1196–E1201 (2001).
  • Heydrick SJ, Ruderman NB, Kurowski TG, Adams HB, Chen KS. Enhanced stimulation of diacylglycerol and lipid synthesis by insulin in denervated muscle: altered protein kinase C activity and possible link to insulin resistance. Diabetes40, 1707–1711 (1991).
  • Nagy G, Matti U, Nehring RB et al. Protein kinase C-dependent phosphorylation of synaptosome-associated protein of 25 kDa at Ser187 potentiates vesicle recruitment. J. Neurosci.22, 9278–9286 (2002).
  • Barclay JW, Craig TJ, Fisher RJ et al. Phosphorylation of Munc18 by protein kinase C regulates the kinetics of exocytosis. J. Biol. Chem.278, 10538–10545 (2003).
  • Takayama S, White MF, Kahn CR. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity. J. Biol. Chem.263, 3440–3447 (1988).
  • Yu C, Chen Y, Cline GW et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1) -associated phosphatidylinositol 3-kinase activity in muscle. J. Biol. Chem.277, 50230–50236 (2002).
  • Osada S, Mizuno K, Saido TC, Suzuki K, Kuroki T, Ohno S. A new member of the protein kinase C family, nPKC θ, predominantly expressed in skeletal muscle. Mol. Cell Biol.12, 3930–3938 (1992).
  • Chang JD, Xu J, Raychowdhury MK, Ware JA. Molecular cloning and expression of a cDNA encoding a novel isoenzyme of protein kinase C (nPKC). A new member of the nPKC family expressed in skeletal muscle, megakaryoblastic cells, and platelets. J. Biol. Chem.268, 14208–14214 (1993).
  • Donnelly R, Reed MJ, Azhar S, Reaven GM. Expression of the major isoenzyme of protein kinase-C in skeletal muscle, nPKC theta, varies with muscle type and in response to fructose-induced insulin resistance. Endocrinology135, 2369–2374 (1994).
  • Qu X, Seale JP, Donnelly R. Tissue and isoform-selective activation of protein kinase C in insulin-resistant obese Zucker rats – effects of feeding. J. Endocrinol.162, 207–214 (1999).
  • Kim JK, Fillmore JJ, Sunshine MJ et al. PKC-theta knockout mice are protected from fat-induced insulin resistance. J. Clin. Invest.114, 823–827 (2004).
  • Haasch D, Berg C, Clampit JE et al. PKCθ is a key player in the development of insulin resistance. Biochem. Biophys. Res. Commun.343, 361–368 (2006).
  • Shoelson SE, Lee J, Yuan M. Inflammation and the IKK-β/I κ B/NF-κ B axis in obesity- and diet-induced insulin resistance. Int. J. Obes. Relat. Metab. Disord.27, S49–S52 (2003).
  • Boden G, She P, Mozzoli M et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-κB pathway in rat liver. Diabetes54, 3458–3465 (2005).
  • Cai D, Yuan M, Frantz DFet al.Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat. Med.11, 183–190 (2005).
  • Yuan M, Konstantopoulos N, Lee J et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikκ. Science293, 1673–1677 (2001).
  • Hundal RS, Petersen KF, Mayerson AB et al. Mechanism by which high-dose aspirin improves glucose metabolism in Type 2 diabetes. J. Clin. Invest.109, 1321–1326 (2002).
  • Arkan MC, Hevener AL, Greten FR et al. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med.11, 191–198 (2005).
  • Kim JK, Kim YJ, Fillmore JJ et al. Prevention of fat-induced insulin resistance by salicylate. J. Clin. Invest.108, 437–446 (2001).
  • Gao Z, Hwang D, Bataille F et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor κB kinase complex. J. Biol. Chem.277, 48115–48121 (2002).
  • Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science259, 87–91 (1993).
  • Barzilay JI, Freedland ES. Inflammation and its relationship to insulin resistance, Type 2 diabetes mellitus, and endothelial dysfunction. Metabolic Syndrome1, 55–67 (2003).
  • Festa A, D’Agostino R Jr, Tracy RP, Haffner SM. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of Type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes51, 1131–1137 (2002).
  • Hotamisligil GS. Inflammatory pathways and insulin action. Int. J. Obes. Relat. Metab. Disord.27, S53–S55 (2003).
  • Moller DE. Potential role of TNF-α in the pathogenesis of insulin resistance and Type 2 diabetes. Trends Endocrinol. Metab.11, 212–217 (2000).
  • Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab.280, E745–E751 (2001).
  • Tsigos C, Kyrou I, Chala E et al. Circulating tumor necrosis factor α concentrations are higher in abdominal versus peripheral obesity. Metabolism48, 1332–1335 (1999).
  • Klover PJ, Zimmers TA, Koniaris LG, Mooney RA. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes52, 2784–2789 (2003).
  • Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects. J. Biol. Chem.278, 45777–45784 (2003).
  • Lagathu C, Bastard JP, Auclair M, Maachi M, Capeau J, Caron M. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem. Biophys. Res. Commun.311, 372–379 (2003).
  • Kim HJ et al. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes53, 1060–1067 (2004).
  • Patel SD, Rajala MW, Rossetti L, Scherer PE, Shapiro L. Disulfide-dependent multimeric assembly of resistin family hormones. Science304, 1154–1158 (2004).
  • Rondinone CM. Adipocyte-derived hormones, cytokines, and mediators. Endocrine29, 81–90 (2006).
  • Kushiyama A, Shojima N, Ogihara T et al. Resistin-like molecule β activates MAPKs, suppresses insulin signaling in hepatocytes, and induces diabetes, hyperlipidemia, and fatty liver in transgenic mice on a high fat diet. J. Biol. Chem.280, 42016–42025 (2005).
  • Fujishiro M, Gotoh Y, Katagiri H et al. Three mitogen-activated protein kinases inhibit insulin signaling by different mechanisms in 3T3-L1 adipocytes Mol. Endocrinol.17, 487–497 (2003).
  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature372, 425–432 (1994).
  • Leibel RL. The role of leptin in the control of body weight. Nutr. Rev.60, S15–S19 (2002).
  • Ahima RS, Flier JS. Leptin. Annu. Rev. Physiol.62, 413–437 (2000).
  • Toyoshima Y, Gavrilova O, Yakar S et al. Leptin improves insulin resistance and hyperglycemia in a mouse model of Type 2 diabetes. Endocrinology146, 4024–4035 (2005).
  • Minokoshi Y, Kim YB, Peroni OD et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature415, 339–343 (2002).
  • Bjorbaek C, Kahn BB. Leptin signaling in the central nervous system and the periphery. Recent Prog. Horm. Res.59, 305–331 (2004).
  • Brabant G, Muller G, Horn R, Anderwald C, Roden M, Nave H. Hepatic leptin signaling in obesity. FASEB J.19, 1048–1050 (2005).
  • Nogalska A, Sucajtys-Szulc E, Swierczynski J. Leptin decreases lipogenic enzyme gene expression through modification of SREBP-1c gene expression in white adipose tissue of aging rats. Metabolism54, 1041–1047 (2005).
  • Biddinger SB, Miyazaki M, Boucher J, Ntambi JM, Kahn CR. Leptin suppresses stearoyl-CoA desaturase 1 by mechanisms independent of insulin and sterol regulatory element-binding protein-1c. Diabetes55, 2032–2041 (2006).
  • Fruebis J, Tsao TS, Javorschi S et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl Acad. Sci. USA.98, 2005–2010 (2001).
  • Yamauchi T, Kamon J, Waki H et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med.7, 941–946 (2001).
  • Nawrocki AR, Rajala MW, Tomas E. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. J. Biol. Chem.281, 2654–2660 (2006).
  • Kubota N, Terauchi Y, Yamauchi T et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem.277, 25863–25866 (2002).
  • Maeda N, Shimomura I, Kishida K et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med.8, 731–737 (2002).
  • Combs TP, Pajvani UB, Berg AH et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology145, 367–383 (2004).
  • Yamauchi T, Kamon J, Waki H et al. Globular adiponectin protected ob/ob mice from diabetes and apoE-deficient mice from atherosclerosis. J. Biol. Chem.278, 2461–2468 (2003).
  • Tomas E, Tsao TS, Saha AK et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl Acad. Sci. USA99, 16309–16313 (2002).
  • Yamauchi T, Kamon J, Minokoshi Y et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med.8, 1288–1295 (2002).
  • Andreelli F, Foretz M, Knauf C et al. Liver adenosine monophosphate-activated kinase-α2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology147, 2432–2441 (2006).
  • Bajaj M, Suraamornkul S, Piper P et al. Decreased plasma adiponectin concentrations are closely related to hepatic fat content and hepatic insulin resistance in pioglitazone-treated Type 2 diabetes patients. J. Clin. Endocrinol. Metab.89, 200–206 (2004).
  • Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ. Fructose, weight gain, and the insulin resistance syndrome. Am. J. Clin. Nutr.76, 911–922 (2002).
  • Hamman RF. Genetic and environmental determinants of non-insulin dependent diabetes mellitus (NIDDM). Diabetes Metab. Rev.8, 287–338 (1992).
  • Pagliassotti MJ, Prach PA, Koppenhafer TA, Pan DA. Changes in insulin action, triglycerides, and lipid composition during sucrose feeding in rats. Am. J. Physiol.271, R1319–R1326 (1996).
  • Wei Y, Pagliassotti MJ. Hepatospecific effects of fructose on c-jun NH2-terminal kinase: implications for hepatic insulin resistance. Am. J. Physiol.287, E926–E933 (2004).
  • Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J. Biol. Chem.277, 1531–1537 (2002).
  • Dirlewanger M, Schneiter P, Jequier E, Tappy L. Effects of fructose on hepatic glucose metabolism in humans. Am. J. Physiol.279, E907–E911 (2000).
  • Wei Y, Wang D, Pagliassotti MJ. Fructose selectively modulates c-jun N-terminal kinase activity and insulin signaling in rat Primary hepatocytes. J. Nutr.135, 1642–1646 (2005).
  • Wei Y, Pagliassotti MJ. Hepatospecific effects of fructose on c-jun NH2-terminal kinase: implications for hepatic insulin resistance. Am. J. Physiol.287, E926–E933 (2004).
  • Bezerra RMN, Ueno M, Silva MS, Tavares DQ, Carvalho CRO, Saad MF. A high fructose diet affects the early steps of insulin action in muscle and liver of rats. J. Nutr.130, 1531–1535 (2000).
  • Kelley GL, Allan G, Azhar S. High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation. Endocrinology145, 548–555 (2004).
  • Faeh D, Minehira K, Schwarz JM, Perasami R, Seongsu P, Tappy L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes54, 1907–13 (2005).
  • Um SH, D’Alessio D, Thomas G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab.3, 393–402 (2006).
  • Um SH, Frigerio F, Watanabe M et al. Absence of (S6K1) protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature431, 200–205 (2004).
  • Harrington LS, Findlay GM, Gray A et al. The TSC1–2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J. Cell. Biol.166, 213–223 (2004).
  • Khamzina L, Veilleux A, Bergeron S, Marette A. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology146, 1473–1481 (2005).
  • Tremblay F, Krebs M, Dombrowski L et al. Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes54, 2674–2684 (2005).
  • Cohen P. Protein kinases – the major drug targets of the twenty-first century? Nat. Rev. Drug Discov.1, 309–315 (2002).
  • Pawson T, Nash P. Protein–protein interactions define specificity in signal transduction. Genes Dev.14, 1027–1047 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.