80
Views
1
CrossRef citations to date
0
Altmetric
Review

Novel targeted therapies in epithelial ovarian cancer: from basic research to the clinic

, &
Pages 225-238 | Published online: 10 Jan 2014

References

  • McGuire WP, Hoskins WJ, Brady MF et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N. Engl. J. Med.334, 1–6 (1996).
  • Piccart MJ, Bertelsen K, James K et al. Randomized intergroup trial of cisplatin-paclitaxel versus cisplatin-cyclophosphamide in women with advanced epithelial ovarian cancer: three-year results. J. Natl Cancer Inst.92, 699–708 (2000).
  • Neijt JP, Engelholm SA, Tuxen MK et al. Exploratory Phase III study of paclitaxel and cisplatin versus paclitaxel and carboplatin in advanced ovarian cancer. J. Clin. Oncol.18, 3084–3092 (2000).
  • Muggia FM, Braly PS, Brady MF et al. Phase III randomized study of cisplatin versus paclitaxel versus cisplatin and paclitaxel in patients with suboptimal stage III or IV ovarian cancer: a Gynecologic Oncology Group study. J. Clin. Oncol.18, 106–115 (2000).
  • Ozols RF, Bundy BN, Greer BE et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J. Clin. Oncol.21, 3194–3200 (2003).
  • du Bois A, Luck HJ, Meier W et al. A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/ paclitaxel as first-line treatment of ovarian cancer. J. Natl Cancer Inst.95, 1309–1329 (2003).
  • Mano MS, Awada A, Minisini A et al. Remaining controversies in the upfront management of advanced ovarian cancer. Int. J. Gynecol. Cancer14, 707–720 (2004).
  • Gadducci A, Sartori E, Maggino T et al. Analysis of failures after negative second-look in patients with advanced ovarian cancer: an Italian multicenter study. Gynecol. Oncol.68, 150–155 (1998).
  • Thigpen JT. Current controversies in ovarian cancer: maintenance chemotherapy as standard care. In: American Society of Clinical Oncology, 2004 Educational Book, Perry MC (Ed.). 40th Annual Meeting, June 5–8 2004, New Orleans, LA, Alexandria (VA), 281–284 (2004).
  • Bell DA. Origins and molecular pathology of ovarian cancer. Mod. Pathol.18(Suppl.), S19–S32 (2005).
  • Loor F, Tiberghien F, Wenandy T, Didier A, Traber R. Cyclosporins: structure-activity relationships for the inhibition of the human MDR1 P-glycoprotein ABC transporter. J. Med. Chem.45, 4598–4612 (2002).
  • Loor F. Valspodar: current status and perspectives. Expert Opin. Investig. Drugs8, 807–835 (1999).
  • Tai HL. Technology evaluation: valspodar, novartis AG. Curr. Opin. Mol. Ther.2, 459–467 (2000).
  • Sonneveld P, Marie JP, Huisman C et al. Reversal of multidrug resistance by SDZ PSC 833, combined with VAD (vincristine, doxorubicin, dexamethasone) in refractory multiple myeloma. A Phase I study. Leukemia10, 1741–1750 (1996).
  • Tidefelt U, Liliemark J, Gruber A et al. P-glycoprotein inhibitor valspodar (PSC 833) increases the intracellular concentrations of daunorubicin in vivo in patients with P-glycoprotein-positive acute myeloid leukemia. J. Clin. Oncol.18, 1837–1844 (2000).
  • Baekelandt M, Lehne G, Trope CG et al. Phase I/II trial of the multidrug-resistance modulator valspodar combined with cisplatin and doxorubicin in refractory ovarian cancer. J. Clin. Oncol.19, 2983–2993 (2001).
  • Fracasso PM, Brady MF, Moore DH et al. Phase II study of paclitaxel and valspodar (PSC 833) in refractory ovarian carcinoma: a gynecologic oncology group study. J. Clin. Oncol.19, 2975–2982 (2001).
  • Duraj J, Sedlak J, Bies J, Chovancova J, Chorvath B. PSC 833 modulation of multidrug resistance to paclitaxel in cultured human ovarian carcinoma cells leads to apoptosis. Anticancer Res.22, 3425–3428 (2002).
  • Kavallaris M, Leary JA, Barrett JA, Friedlander ML. MDR1 and multidrug resistance-associated protein (MRP) gene expression in epithelial ovarian tumors. Cancer Lett.102, 7–16 (1996).
  • Safa AR. Multidrug resistance. In: Principles of antineoplastic drug development and pharmacology. Schilsky RL, Milano GA, Ratain MJ (Eds). Marcel Dekker, NY, USA, 457–486 (1996).
  • Rosenfeld ME, Feng M, Michael SI, Siegal GP, Alvarez RD, Curiel DT. Adenoviral-mediated delivery of the herpes simplex virus thymidine kinase gene selectively sensitizes human ovarian carcinoma cells to ganciclovir. Clin. Cancer Res.1, 1571–1580 (1995).
  • Plautz G, Nabel EG, Nabel GJ. Selective elimination of recombinant genes in vivo with a suicide retroviral vector. New Biol.3, 709–715 (1991).
  • Link CJ, Seregina T, Traynor A, Burt RK. Cellular suicide therapy of malignant disease. Oncologist5, 68–74 (2000).
  • Al-Hendy A, Magliocco AM, Al-Tweigeri T et al. Ovarian cancer gene therapy: repeated treatment with thymidine kinase in an adenovirus vector and ganciclovir improves survival in a novel immunocompetent murine model. Am. J. Obstet. Gynecol.182, 553–559 (2000).
  • Alvarez RD, Gomez-Navarro J, Wang M et al. Adenoviral-mediated suicide gene therapy for ovarian cancer. Mol. Ther.2, 524–30 (2000).
  • McNeish IA, Tenev T, Bell S, Marani M, Vassaux G, Lemoine N. Herpes simplex virus thymidine kinase/ganciclovir-induced cell death is enhanced by co-expression of caspase-3 in ovarian carcinoma cells. Cancer Gene Ther.8, 308–319 (2001).
  • Ziller C, Lincet H, Muller CD, Staedel C, Behr JP, Poulain L. The cyclin-dependent kinase inhibitor p21(cip1/waf1) enhances the cytotoxicity of ganciclovir in HSV-tk transfected ovarian carcinoma cells. Cancer Lett.212, 43–52 (2004).
  • Raymond E, Faivre S, Armand JP. Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs60(Suppl. 1), 15–23 (2000).
  • Baselga J, Rischin D, Ranson M et al. Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J. Clin. Oncol.20, 4292–4302 (2002).
  • Arteaga C. Targeting HER1/EGFR: a molecular approach to cancer therapy. Semin. Oncol.30(Suppl.), 3–14 (2003).
  • Mass RD. The HER receptor family: a rich target for therapeutic development. Int. J. Radiat. Oncol. Biol. Phys.58, 932–940 (2004).
  • Herbst RS. Erlotinib (Tarceva): an update on the clinical trial program. Semin. Oncol.30(Suppl.), 34–46 (2003).
  • Wiedmann MW, Caca K. Molecularly targeted therapy for gastrointestinal cancer. Curr. Cancer Drug Targets5, 171–193 (2005).
  • Toi M, Horiguchi K, Bando H, Saji S, Chow LW. Trastuzumab: updates and future issues. Cancer Chemother. Pharmacol.56(Suppl.), 94–99 (2005).
  • De Laurentiis M, Cancello G, Zinno L et al. Targeting HER2 as a therapeutic strategy for breast cancer: a paradigmatic shift of drug development in oncology. Ann. Oncol.16(Suppl.), 7–13 (2005).
  • Santoro A, Cavina R, Latteri F et al. Activity of a specific inhibitor, gefitinib (Iressa, ZD1839), of epidermal growth factor receptor in refractory non-small-cell lung cancer. Ann. Oncol.15, 33–37 (2004).
  • Brown ER, Shepherd FA. Erlotinib in the treatment of non-small cell lung cancer. Expert Rev. Anticancer Ther.5, 767–775 (2005).
  • Janne PA, Engelman JA, Johnson BE. Epidermal growth factor receptor mutations in non-small-cell lung cancer: implications for treatment and tumor biology. J. Clin. Oncol.23, 3227–3234 (2005).
  • Riely GJ, Pao W, Pham D et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin. Cancer Res.12, 839–844 (2006).
  • Bartlett JM, Langdon SP, Simpson BJ et al. The prognostic valued of epidermal growth factor receptor mRNA expression in primary ovarian cancer. Br. J. Cancer73, 301–306 (1996).
  • Slamon DJ, Godolphin W, Jones LA et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science244, 707–712 (1989).
  • Berchuck A, Kamel A, Whitaker R et al. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res.50, 4087–4091 (1990).
  • Bast RC Jr, Boyer CM, Jacobs I et al. Cell growth regulation in epithelial ovarian cancer. Cancer71(Suppl), 1597–601 (1993).
  • Ferrandina G, Ranelletti FO, Lauriola L et al. Cyclooxygenase-2 (COX-2), epidermal growth factor receptor (EGFR), and Her-2/neu expression in ovarian cancer. Gynecol. Oncol.85, 305–310 (2002).
  • Lee CH, Huntsman DG, Cheang MC et al. Assessment of Her-1, Her-2, and Her-3 expression and Her-2 amplification in advanced stage ovarian carcinoma. Int. J. Gynecol. Pathol.24, 147–152 (2005).
  • Rahaman J, Nagarsheth N, Nezhat F, Cohen C, Kalir T. The prognostic significance of epidermal growth factor receptor (EGFR) expression in ovarian cancer (OC) metastasis. Proc. Am. Soc. Clin. Oncol. (2005) (Abstract 5067).
  • Blank SV, Chang R, Muggia F. Epidermal growth factor receptor inhibitors for the treatment of epithelial ovarian cancer. Oncology19, 553–559 (2005).
  • Schilder RJ, Sill MW, Chen X et al. Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group study. Clin. Cancer Res.11, 5539–5548 (2005).
  • Blank SV, Curtin JP, Goldman NA et al. Tolerability of carboplatin, paclitaxel and erlotinib as first-line treatment of ovarian cancer. Proc. Am. Soc. Clin. Oncol. (2005) (Abstract 5052).
  • Fujimura M, Hidaka T, Saito S. Selective inhibition of the epidermal growth factor receptor by ZD1839 decreases the growth and invasion of ovarian clear cell adenocarcinoma cells. Clin. Cancer Res.8, 2448–2454 (2002).
  • Aghajanian C, Sabbatini P, Derosa F et al. A Phase II study of cetuximab/paclitaxel/carboplatin for the initial treatment of advanced stage ovarian, primary peritoneal, and fallopian tube cancer. Proc. Am. Soc. Clin. Oncol. (2005) (Abstract 5047).
  • Bookman MA, Darcy KM, Clarke-Pearson D, Boothby RA, Horowitz IR. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a Phase II trial of the Gynecologic Oncology Group. J. Clin. Oncol.21, 283–290 (2003).
  • Camilleri-Broët S, Guastalla JP, Couturier J et al. HER2 overexpression and amplification in advanced ovarian cancer (OC): preliminary results from a large GINECO study. Proc. Am. Soc. Clin. Oncol. (2005) (Abstract 5059).
  • Fujimura M, Katsumata N, Tsuda H et al. HER2 is frequently over-expressed in ovarian clear cell adenocarcinoma: possible novel treatment modality using recombinant monoclonal antibody against HER2, trastuzumab. Jpn. J. Cancer Res.93, 1250–1257 (2002).
  • Iwamoto H, Fukasawa H, Honda T, Hirata S, Hoshi K. HER-2/neu expression in ovarian clear cell carcinomas. Int. J. Gynecol. Cancer13, 28–31 (2003).
  • Agus DB, Gordon MS, Taylor C et al. Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J. Clin. Oncol.23, 2534–2543 (2005).
  • Gordon MS, Matei D, Aghajanian C et al. Clinical activity of pertuzumab (rhuMab 2C4) in advanced, refractory or recurrent ovarian cancer (OC), and the role of HER2 activation status. Proc. Am. Soc. Clin. Oncol. (2005) (Abstract 5051).
  • Campos S, Hamid O, Seiden MV et al. Multicenter, randomized Phase II trial of oral CI-1033 for previously treated advanced ovarian cancer. J. Clin. Oncol.23, 5597–5604 (2005).
  • Slichenmyer WJ, Elliott WL, Fry DW. CI-1033, a pan-erbB tyrosine kinase inhibitor. Semin. Oncol.29(Suppl.), 80–85 (2001).
  • Capdeville R, Silberman S, Dimitrijevic S. Imatinib: the first 3 years. Eur. J. Cancer38(Suppl.), S77–S82 (2002).
  • Schmandt RE, Broaddus R, Lu KH et al. Expression of c-ABL, c-KIT, and platelet-derived growth factor receptor-β in ovarian serous carcinoma and normal ovarian surface epithelium. Cancer98, 758–764 (2003).
  • Matei D, Emerson RE, Lai YCet al. Autocrine activation of PDGFRα promotes the progression of ovarian cancer. Oncogene25, 2060–2069 (2006)
  • Wilczynski SP, Chen YY, Chen W, Howell SB, Shively JE, Alberts DS. Expression and mutational analysis of tyrosine kinase receptors c-kit, PDGFRα, and PDGFRβ in ovarian cancers. Hum. Pathol.36, 242–249 (2005).
  • Matei D, Chang DD, Jeng MH. Imatinib mesylate (Gleevec) inhibits ovarian cancer cell growth through a mechanism dependent on platelet-derived growth factor receptor α and Akt inactivation. Clin. Cancer Res.10, 681–690 (2004).
  • Dushkin H, Schilder RJ. Imatinib mesylate and its potential implications for gynecologic cancers. Curr. Treat. Options Oncol.6, 115–120 (2005).
  • Pant DK, Ghosh A. A systems biology approach for the study of cumulative oncogenes with applications to the MAPK signal transduction pathway. Biophys. Chem.119, 49–60 (2006).
  • Peyssonnaux C, Eychene A. The Raf/MEK/ERK pathway: new concepts of activation. Biol. Cell93, 53–62 (2001).
  • Allen LF, Sebolt-Leopold J, Meyer MB. CI-1040 (PD184352), a targeted signal transduction inhibitor of MEK (MAPKK). Semin. Oncol.30(Suppl.), 105–116 (2003).
  • Cobb MH, Goldsmith EJ. How MAP kinases are regulated. J. Biol. Chem.720, 14843–14846 (1995).
  • Grammer TC, Blenis J. Evidence for MEK-independent pathways regulating the prolonged activation of the ERK-MAP kinases. Oncogene14, 1635–1642 (1997).
  • Camps M, Nichols A, Gillieron C et al. Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science280, 1262–1265 (1998).
  • Pouyssegur J, Volmat V, Lenormand P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Eur. J. Biochem.270, 3291–3299 (2003).
  • Cano E, Mahadevan LC. Parallel signal processing among mammalian MAPKs. Trends Biochem. Sci.20, 117–122 (1995).
  • Sivaraman VS, Wang H, Nuovo GJ, Malbon CC. Hyperexpression of mitogen-activated protein kinase in human breast cancer. J. Clin. Invest.99, 1478–1483 (1997).
  • Kim S, Hahn J, Min Y, Yoo N, Ko Y, Lee W. Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood93, 3893–3899 (1999).
  • Barry OP, Mullan B, Sheehan D et al. Constitutive ERK1/2 activation in esophagogastric rib bone marrow micrometastatic cells is MEK-independent. J. Biol. Chem.276, 15537–15546 (2001).
  • Ahmed N, Pansino F, Baker M, Rice G, Quinn M. Association between avB6 integrin expression, elevated p42/44 MAPK, and plasminogen-dependent matrix degradation in ovarian cancer. J. Cell. Biochem.84, 675–686 (2002).
  • Weber A, Hengge UR, Urbanik D et al. Absence of mutations of the BRAF gene and constitutive activation of extracellular-regulated kinase in malignant melanomas of the uvea. Lab. Invest.83, 1771–1776 (2003).
  • Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature417, 949–954 (2002).
  • Cohen Y, Xing M, Mambo E et al. BRAF mutations in papillary thyroid carcinoma. J. Natl Cancer Inst.16, 625–627 (2003).
  • Singer G, Oldt R 3rd, Cohen Y et al. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J. Natl Cancer Inst.95, 484–486 (2003).
  • Steinmetz R, Wagoner HA, Zeng P et al. Mechanisms regulating the constitutive activation of the extracellular signal-regulated kinase (ERK) signaling pathway in ovarian cancer and the effect of ribonucleic acid interference for ERK1/2 on cancer cell proliferation. Mol. Endocrinol.18, 2570–2582 (2004).
  • Bhalla US, Ram PT, Iyengar R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science297, 1018–1023 (2002).
  • Lin Y, Chuang S, Yang J. ERK1/2 achieves sustained activation by stimulating MAPK phosphatase-1 degradation via the ubiquitin-proteasome pathway. J. Biol. Chem.278, 21534–21541 (2003).
  • Basso AD, Mirza A, Liu G, Long BJ, Bishop WR, Kirschmeier P. The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity. J. Biol. Chem.280, 31101–31108 (2005).
  • Caponigro F, Basile M, de Rosa V, Normanno N. New drugs in cancer therapy, National Tumor Institute, Naples, 17–18 June 2004. Anticancer Drugs16, 211–221 (2005).
  • Macdonald JS, McCoy S, Whitehead RP et al. A Phase II study of farnesyl transferase inhibitor R115777 in pancreatic cancer: a Southwest oncology group (SWOG 9924) study. Invest. New Drugs23, 485–487 (2005).
  • Ahmad T, Eisen T. Kinase inhibition with BAY 43–9006 in renal cell carcinoma. Clin. Cancer Res.10, S6388–S6392 (2004).
  • Wilhelm SM, Carter C, Tang L et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res.64, 7099–7109 (2004).
  • Strumberg D, Richly H, Hilger RA et al. Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43–9006 in patients with advanced refractory solid tumors. J. Clin. Oncol.23, 965–972 (2005).
  • Clark JW, Eder JP, Ryan D, Lathia C, Lenz HJ. Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43–9006, in patients with advanced, refractory solid tumors. Clin. Cancer Res.11, 5472–5480 (2005).
  • Morabito A, De Maio E, Di Maio M, Normanno N, Perrone F. Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: current status and future directions. Oncologist.11, 753–764 (2006).
  • Eto M, Naito S. Molecular targeting therapy for renal cell carcinoma. Int. J. Clin. Oncol.11, 209–213 (2006).
  • de Castro G Jr, Puglisi F, de Azambuja E, El Saghir NS, Awada A. Angiogenesis and cancer: a cross-talk between basic science and clinical trials (the ‘do ut des’ paradigm). Crit. Rev. Oncol. Hematol.59, 40–50 (2006).
  • Singer G, Stohr R, Cope L et al. Patterns of p53 mutations separate ovarian serous borderline tumors and low- and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis: a mutational analysis with immunohistochemical correlation. Am. J. Surg. Pathol.29, 218–224 (2005).
  • Pohl G, Ho CL, Kurman RJ, Bristow R, Wang TL, Shih IeM. Inactivation of the mitogen-activated protein kinase pathway as a potential target-based therapy in ovarian serous tumors with KRAS or BRAF mutations. Cancer Res.65, 1994–2000 (2005).
  • Goldberg AL, Stein R, Adams J. New insights into proteasome function: from archaebacteria to drug development. Chem. Biol.2, 503–508 (1995).
  • Orlowski RZ. The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ.6, 303–313 (1999).
  • Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem. Biol.8, 739–758 (2001).
  • Orlowski RZ, Small GW, Shi YY. Evidence that inhibition of p44/42 mitogen-activated protein kinase signaling is a factor in proteasome inhibitor-mediated apoptosis. J. Biol. Chem.277, 27864–27871 (2002).
  • Magnani M, Crinelli R, Bianchi M, Antonelli A. The ubiquitin-dependent proteolytic system and other potential targets for the modulation of nuclear factor-κB (NF-κB). Curr. Drug Targets1, 387–399 (2000).
  • Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. The ubiquitin-proteasome pathway is required for processing the NF-κ B1 precursor protein and the activation of NF-κ B. Cell78, 773–785 (1994).
  • Vlahakis SR, Badley AD. Influence of proteasome inhibitors on apoptosis. Curr. Opin. Clin. Nutr. Metab. Care9, 42–47 (2006).
  • Adams J, Palombella VJ, Sausville EA et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res.59, 2615–2622 (1999).
  • Ling YH, Liebes L, Jiang JD et al. Mechanisms of proteasome inhibitor PS-341-induced G(2)-M-phase arrest and apoptosis in human non-small cell lung cancer cell lines. Clin. Cancer Res.9, 1145–1154 (2003).
  • San Miguel J, Blade J, Boccadoro M et al. A practical update on the use of bortezomib in the management of multiple myeloma. Oncologist11, 51–61 (2006).
  • Cusack JC. Rationale for the treatment of solid tumors with the proteasome inhibitor bortezomib. Cancer Treat. Rev.29, 21–31 (2003).
  • Aghajanian C. Clinical update: novel targets in gynecologic malignancies. Semin. Oncol.31, 22–26 (2004).
  • Aghajanian C, Dizon DS, Sabbatini P, Raizer JJ, Dupont J, Spriggs DR. Phase I trial of bortezomib and carboplatin in recurrent ovarian or primary peritoneal cancer. J. Clin. Oncol.23, 5943–5949 (2005).
  • Brader S, Eccles SA. Phosphoinositide 3-kinase signalling pathways in tumor progression, invasion and angiogenesis. Tumori90, 2–8 (2004).
  • Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat. Med.10, 789–799 (2004).
  • Dudkin L, Dilling MB, Cheshire PJ et al. Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin. Cancer Res.7, 1758–1764 (2001).
  • Huang S, Houghton PJ. Targeting mTOR signaling for cancer therapy. Curr. Opin. Pharmacol.3, 371–377 (2003).
  • Dutcher JP. Mammalian target of rapamycin inhibition. Clin. Cancer Res.10, S6382–S6387 (2004).
  • Gadducci A, Cosio S, Genazzani AR. Old and new perspectives in the pharmacological treatment of advanced or recurrent endometrial cancer: hormonal therapy, chemotherapy and molecularly-targeted therapies. Crit. Rev. Oncol. Hematol.58, 242–256 (2006).
  • Hashemolhosseini S, Nagamine Y, Morley SJ, Desrivieres S, Mercep L, Ferrari S. Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J. Biol. Chem.273, 14424–14429 (1998).
  • De Benedetti A, Graff JR. eIF-4E expression and its role in malignancies and metastases. Oncogene23, 3189–3199 (2004).
  • Peralba JM, DeGraffenried L, Friedrichs W et al. Pharmacodynamic evaluation of CCI-779, an inhibitor of mTOR, in cancer patients. Clin. Cancer Res.9, 2887–2892 (2003).
  • Mita MM, Mita A, Rowinski EK. Mammalian target of rapamycin: a new molecular target for breast cancer. Clin. Breast Cancer4, 126–137 (2003).
  • Vignot S, Faivre S, Aguirre D, Raymond E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann. Oncol.16, 525–537 (2005).
  • Dancey JE. Inhibitors of the mammalian target of rapamycin. Expert Opin. Investig. Drugs14, 313–328 (2005).
  • Atkins MB, Hidalgo M, Stadler WM et al. Randomized Phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol.22, 909–918 (2004).
  • Panwalkar A, Verstovsek S, Giles FJ. Mammalian target of rapamycin inhibition as therapy for hematologic malignancies. Cancer100, 657–666 (2004).
  • Boulay A, Zumstein-Mecker S, Stephan C et al. Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res.64, 252–261 (2004).
  • Boni JP, Leister C, Bender G et al. Population pharmacokinetics of CCI-779: correlations to safety and pharmacogenomic responses in patients with advanced renal cancer. Clin. Pharmacol. Ther.77, 76–89 (2005).
  • Feldman E, Giles F, Roboz G et al. A Phase 2 clinical trial of AP23573, an mTOR inhibitor, in patients with relapsed or refractory hematologic malignancies. Proc. Am. Soc. Clin. Oncol. (2005) (Abstract 6631).
  • Chawla SP, Sankala KK, Chua V et al. A Phase II study of AP23573 (an mTOR inhibitor) in patients (pts) with advanced sarcomas. Proc. Am. Soc. Clin. Oncol. (2005) (Abstract 9068).
  • Xing D, Orsulic S. A genetically defined mouse ovarian carcinoma model for the molecular characterization of pathway-targeted therapy and tumor resistance. Proc. Natl Acad. Sci. USA102, 6936–6941 (2005).
  • Zimmermann KC, Bonzon C, Green DR. The machinery of programmed cell death. Pharmacol. Ther.92, 57–70 (2001).
  • Lotan R. New strategies and agents for targeting apoptotic pathways for cancer prevention and therapy. Presented at: Twelfth International Congress on Anti-Cancer Treatment. Paris, France 4–7 (2002).
  • Antonsson B. Bax and other pro-apoptotic Bcl-2 family ‘killer-proteins’ and their victim in the mitochondrion. Cell Tissue Res.306, 347–361 (2001).
  • Lane DP. p53, guardian of the genome. Nature538, 15–16 (1992).
  • Gadducci A, Cosio S, Muraca S, Genazzani AR. Molecular mechanisms of apoptosis and chemosensitivity to platinum and paclitaxel in ovarian cancer: biological data and clinical implications. Eur. J. Gynaecol. Oncol.23, 390–396 (2002).
  • Schmitz I, Kirchhoff S, Krammer PH. Regulation of death receptor-mediated apoptosis pathways. Int. J. Biochem. Cell Biol.32, 1123–1136 (2000).
  • Schuler M, Green DR. Mechanisms of p53-dependent apoptosis. Biochem. Soc. Trans.29, 684–688 (2001).
  • Gao CF, Ren S, Zhang L et al. Caspase-dependent cytosolic release of cytochrome c and membrane translocation of Bax in p53-induced apoptosis. Exp. Cell Res.265, 145–151 (2001).
  • Verhagen AM, Coulson EJ, Vaux DL. Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol.2, 3009 (2001).
  • Suzuki Y, Nakabayashi Y, Nakata K, Reed JC, Takahashi R. X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes. J. Biol. Chem.276, 27058–27063 (2001).
  • Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MRT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell85, 803–815 (1996).
  • Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science281, 1305–1308 (1998).
  • Seol DW, Li J, Seol MH, Park SY, Talanian RV, Billiar TR. Signaling events triggered by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL): caspase-8 is required for TRAIL-induced apoptosis. Cancer Res.61, 1138–1143 (2001).
  • Perego P, Giarola M, Righetti SC et al. Association between cisplatin resistance and mutation of p53 gene and reduced bax expression in ovarian carcinoma cell systems. Cancer Res.56, 556–562 (1996).
  • Fajac A, Da Silva J, Ahomadegbe JC et al. Cisplatin-induced apoptosis and p53 gene status in a cisplatin-resistant human ovarian carcinoma cell line. Int. J. Cancer68, 67–74 (1996).
  • Song K, Li Z, Seth P, Cowan KH, Sinha BK. Sensitization of cis-platinum by a recombinant adenovirus vector expressing wild-type p53 gene in human ovarian carcinomas. Oncol. Res.9, 603–609 (1997).
  • Righetti SC, Della Torre G, Pilotti S et al. A comparative study of p53 gene mutations, protein accumulation, and response to cisplatin-based chemotherapy in advanced ovarian carcinoma. Cancer Res.56, 689–693 (1996).
  • Buttitta F, Marchetti A, Gadducci A et al. p53 alterations are predictive of chemoresistance and aggressiveness in ovarian carcinomas: a molecular and immunohistochemical study. Br. J. Cancer75, 230–235 (1997).
  • Calvert AH, Ghokul S, Al-Azraqi A et al. Carboplatin and paclitaxel, alone and in combination: dose escalation, measurement of renal function, and role of the p53 tumor suppressor gene. Semin. Oncol.26(Suppl.), 90–94 (1999).
  • Reles A, Wen WH, Schmider A et al. Correlation of p53 mutations with resistance to platinum-based chemotherapy and shortened survival in ovarian cancer. Clin. Cancer Res.7, 2984–2989 (2001).
  • Kigawa J, Sato S, Shimada M et al. p53 gene status and chemosensitivity in ovarian cancer. Hum. Cell14, 165–171 (2001).
  • Gadducci A, Di Cristofano C, Zavaglia M et al. p53 gene status in patients with advanced serous epithelial ovarian cancer in relation to response to paclitaxel-plus platinum-based chemotherapy and long-term clinical outcome. Anticancer Res.26, 687–694 (2006).
  • Wolf JK, Bodurka DC, Gano JB et al. A Phase I study of Adp53 (INGN 201; ADVEXIN) for patients with platinum- and paclitaxel-resistant epithelial ovarian cancer. Gynecol. Oncol.94, 442–448 (2004).
  • Zeimet AG, Marth C. Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol.4, 415–422 (2003).
  • McNeish IA, Lopes R, Bell SJ et al. Survivin interacts with Smac/DIABLO in ovarian carcinoma cells but is redundant in Smac-mediated apoptosis. Exp. Cell. Res.302, 69–82 (2005).
  • Ma X, Wang S, Zhou J et al. Induction of apoptosis in human ovarian epithelial cancer cells by antisurvivin oligonucleotides. Oncol. Rep.14, 275–279 (2005).
  • Shao R, Lee DF, Wen Y et al. E1A sensitizes cancer cells to TRAIL-induced apoptosis through enhancement of caspase activation. Mol. Cancer Res.3, 219–226 (2005).
  • Abdollahi T. Potential for TRAIL as a therapeutic agent in ovarian cancer. Vitam. Horm.67, 347–364 (2004).
  • Ashkenazi A. Targeting death and decoy receptors of the tumor-necrosis factor superfamily. Nat. Rev. Cancer2, 420–430 (2002).
  • Abe K, Kurakin A, Mohseni-Maybodi M, Kay B, Khosravi-Far R. The complexity of TNF-related apoptosis-inducing ligand. Ann. NY Acad. Sci.926, 52–63 (2000).
  • Zhang X, Li P, Bao J et al. Suppression of death receptor-mediated apoptosis by 1,25-dihydroxyvitamin D3 revealed by microarray analysis. J. Biol. Chem.280, 35458–35468 (2005).
  • Arts HJ, de Jong S, Hollema H, ten Hoor K, van der Zee AG, de Vries EG. Chemotherapy induces death receptor 5 in epithelial ovarian carcinoma. Gynecol. Oncol.92, 794–800 (2004).
  • Hazelton DA, Hamilton TC. Vascular endothelial growth factor in ovarian cancer. Curr. Oncol. Rep.1, 59–63 (1999).
  • Fox SB, Gasparini G, Harris AL. Angiogenesis: pathological, prognostic, and growth-factor pathways and their link to trial design and anticancer drugs. Lancet Oncol.2, 278–289 (2001).
  • Bamberger ES, Perrett CW. Angiogenesis in epithelian ovarian cancer. Mol. Pathol.55, 348–359 (2002).
  • Marshall J. The role of bevacizumab as first-line therapy for colon cancer. Semin. Oncol.32(Suppl.), S43–S47 (2005).
  • Hurwitz H, Kabbinavar F. Bevacizumab combined with standard fluoropyrimidine-based chemotherapy regimens to treat colorectal cancer. Oncology69(Suppl.), 17–24 (2005).
  • de Gramont A, Van Cutsem E. Investigating the potential of bevacizumab in other indications: metastatic renal cell, non-small cell lung, pancreatic and breast cancer. Oncology69(Suppl), 46–56 (2005).
  • Monk BJ, Choi DC, Pugmire G, Burger RA. Activity of bevacizumab (rhuMAB VEGF) in advanced refractory epithelial ovarian cancer. Gynecol. Oncol.96, 902–905 (2005).
  • Burger RA, Sill M, Monk BJ, Greer B, Sorosky J. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer (EOC) or primary peritoneal cancer (PPC): a Gynecologic Oncology Group (GOG) study. Proc. Am. Soc. Clin. Oncol. (2005) (Abstract 5009).
  • Hata K, Osaki M, Dhar DK et al. Evaluation of the antiangiogenic effect of Taxol in a human epithelial ovarian carcinoma cell line. Cancer Chemother. Pharmacol.53, 68–74 (2004).
  • Kudoh K, Kikuchi Y, Kita T et al. The effect of single weekly paclitaxel in heavily pretreated ovarian cancer patients and its antiangiogenic effects. Proc. Am. Soc. Clin. Oncol. (2005) (Abstract 5115).
  • Garcia AA, Oza AM, Hirte H et al. Interim report of a Phase II clinical trial of bevacizumab (Bev) and low dose metronomic oral cyclophosphamide (mCTX) in recurrent ovarian (OC) and primary peritoneal carcinoma: a California Cancer Consortium Trial. Proc. Am. Soc. Clin. Oncol. (2005) (Abstract 5000).
  • Dupont J, Rothenberg MK, Spriggs DR et al. Safety and pharmacokinetics of intravenous VEGF Trap in a Phase I clinical trial of patients with advanced solid tumors. Proc. Am. Soc. Clin. Oncol. (2005) (Abstract 3029).
  • Schroder W, Witteveen E, Abadie S et al. A Phase IB, open label, safety and pharmacokinetic (PK) study of escalating doses of PTK787/ZK 222584 in combination with paclitaxel and carboplatin in patients (PTs) with stage IIC to IV epithelial ovarian cancer. Proc. Am. Soc. Clin. Oncol. (2005) (Abstract 5042).
  • Kikuchi Y, Kita T, Takano M, Kudoh K, Yamamoto K. Treatment options in the management of ovarian cancer. Expert. Opin. Pharmacother.6, 743–754 (2005).
  • Kelland LR. Emerging drugs for ovarian cancer. Expert Opin. Emerg. Drugs10, 413–424 (2005).
  • Bhoola SM, Alvarez RD. Novel therapies for recurrent ovarian cancer management. Expert Rev. Anticancer Ther.4, 437–448 (2004).
  • Sharma S, Odunsi K. Targeted therapy for epithelial ovarian cancer. Expert Opin. Ther. Targets9, 501–513 (2005).
  • Ozols RF. Future directions in the treatment of ovarian cancer. Semin. Oncol.29(Suppl.), 32–42 (2002).
  • Posadas EM, Davidson B, Kohn EC. Proteomics and ovarian cancer: implications for diagnosis and treatment: a critical review of the recent literature. Curr. Opin. Oncol.16, 478–484 (2004).
  • Espina V, Geho D, Mehta AI, Petricoin EF 3rd, Liotta LA, Rosenblatt KP. Pathology of the future: molecular profiling for targeted therapy. Cancer Invest.23, 36–46 (2005).
  • Workman P. The opportunities and challenges of personalized genome-based molecular therapies for cancer: targets, technologies, and molecular chaperones. Cancer Chemother. Pharmacol.52(Suppl.), S45–S56 (2003).
  • Cheng KW, Lahad JP, Mills GB. Analysis of molecular aberrations in ovarian cancer allows novel target identification. J. Obstet. Gynaecol. Can.26, 461–474 (2004).
  • Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA. Clinical proteomics: translating benchside promise into bedside reality. Nat. Rev. Drug Discov.1, 683–695 (2002).
  • Kohn EC, Mills GB, Liotta L. Promising directions for the diagnosis and management of gynecological cancers. Int. J. Gynaecol. Obstet.83(Suppl.), 203–209 (2003).
  • Sheehan KM, Calvert VS, Kay EW et al. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol. Cell. Proteomics4, 346–355 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.