14
Views
2
CrossRef citations to date
0
Altmetric
Review

In search of neuroprotective therapies based on the mechanisms of estrogens

, &
Pages 387-397 | Published online: 10 Jan 2014

References

  • Garcia-Segura LM, Azcoitia I, DonCarlos LL. Neuroprotection by estradiol. Prog. Neurobiol.63, 29–60 (2001).
  • D’Souza DN, Zhang Y, Damjanoska KJ et al. Estrogen reduces serotonin-1A receptor-mediated oxytocin release and Gα(i/o/z) proteins in the hypothalamus of ovariectomized rats. Neuroendocrinology80, 31–41 (2004).
  • Paradiso K, Zhang J, Steinbach JH. The C terminus of the human nicotinic α4β2 receptor forms a binding site required for potentiation by an estrogenic steroid. J. Neurosci.21, 6561–6568 (2001).
  • Nakazawa K, Ohno Y. Modulation by estrogens and xenoestrogens of recombinant human neuronal nicotinic receptors. Eur. J. Pharmacol.430, 175–183 (2001).
  • Wise PM. Estrogens: protective or risk factors in brain function? Prog. Neurobiol.69, 181–191 (2003).
  • Yaffe K, Barnes D, Lindquist K et al. Endogenous sex hormone levels and risk of cognitive decline in an older biracial cohort. Neurobiol. Aging28, 171–178 (2007).
  • Sherwin BB. Estrogen and cognitive aging in women. Neuroscience138, 1021–1026 (2006).
  • Lord C, Buss C, Lupien SJ, Pruessner JC. Hippocampal volumes are larger in postmenopausal women using estrogen therapy compared to past users, never users and men: a possible window of opportunity effect. Neurobiol. Aging DOI 10.1016/j.neurobiolaging.2006.09.001 (2007) (Epub ahead of print).
  • Shumaker SA, Legault C, Rapp SR et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA289, 2651–2662 (2003).
  • Ciriza I, Carrero P, Frye CA, Garcia-Segura LM. Reduced metabolites mediate neuroprotective effects of progesterone in the adult rat hippocampus. The synthetic progestin medroxyprogesterone acetate (Provera) is not neuroprotective. J. Neurobiol.66, 916–928 (2006).
  • Nilsen J, Morales A, Brinton RD. Medroxyprogesterone acetate exacerbates glutamate excitotoxicity. Gynecol. Endocrinol.22, 355–361 (2006).
  • Nilsen J, Brinton RD. Impact of progestins on estrogen-induced neuroprotection: synergy by progesterone and 19-norprogesterone and antagonism by medroxyprogesterone acetate. Endocrinology143, 205–212 (2002).
  • Espeland MA, Rapp SR, Shumaker SA et al. Conjugated equine estrogens and global cognitive function in postmenopausal women: women’s health initiative memory study. JAMA291, 2959–2968 (2004).
  • Shumaker SA, Legault C, Kuller LH et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study, JAMA291, 2947–2958 (2004).
  • Zhao L, Brinton RD. Select estrogens within the complex formulation of conjugated equine estrogens (Premarin) are protective against neurodegenerative insults: implications for a composition of estrogen therapy to promote neuronal function and prevent Alzheimer’s disease. BMC Neurosci.7, 24 (2006).
  • Picazo O, Azcoitia I, Garcia-Segura LM. Neuroprotective and neurotoxic effects of estrogens. Brain Res.990, 20–27 (2003).
  • Maki PM. Hormone therapy and cognitive function: is there a critical period for benefit? Neuroscience138, 1027–1030 (2006).
  • Sherwin BB. The critical period hypothesis: can it explain discrepancies in the oestrogen-cognition literature? J. Neuroendocrinol.19, 77–81 (2007).
  • LeBlanc ES, Janowsky J, Chan BK, Nelson HD. Hormone replacement therapy and cognition: systematic review and meta-analysis. JAMA285, 1489–1499 (2001).
  • Zandi PP, Carlson MC, Plassman BL et al. Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study. JAMA288, 2123–2129 (2002).
  • Zhao L, O’Neill K, Brinton RD. Selective estrogen receptor modulators (SERMs) for the brain: current status and remaining challenges for developing NeuroSERMs. Brain Res. Brain Res. Rev.49, 472–493 (2005).
  • Dhandapani KM, Brann DW. Protective effects of estrogen and selective estrogen receptor modulators in the brain. Biol. Reprod.67, 1379–1385 (2002).
  • Ciriza I, Carrero P, Azcoitia I, Lundeen SG, Garcia-Segura LM. Selective estrogen receptor modulators protect hippocampal neurons from kainic acid excitotoxicity: differences with the effect of estradiol. J. Neurobiol.61, 209–221 (2004).
  • Azcoitia I, Moreno A, Carrero P, Palacios S, Garcia-Segura LM. Neuroprotective effects of soy phytoestrogens in the rat brain. Gynecol. Endocrinol.22, 63–69 (2006).
  • Zhao L, O’Neill K, Brinton RD. Estrogenic agonist activity of ICI 182,780 (Faslodex) in hippocampal neurons: implications for basic science understanding of estrogen signaling and development of estrogen modulators with a dual therapeutic profile. J. Pharmacol. Exp. Ther.319, 1124–1132 (2006).
  • Rossberg MI, Murphy SJ, Traystman RJ, Hurn PD. LY353381.HCl, a selective estrogen receptor modulator, and experimental stroke. Stroke31, 3041–3046 (2000).
  • Callier S, Morissette M, Grandbois M, Pelaprat D, Di Paolo T. Neuroprotective properties of 17β-estradiol, progesterone, and raloxifene in MPTP C57Bl/6 mice. Synapse41, 131–138 (2001).
  • Mehta SH, Dhandapani KM, De Sevilla LM, Webb RC, Mahesh VB, Brann DW. Tamoxifen, a selective estrogen receptor modulator, reduces ischemic damage caused by middle cerebral artery occlusion in the ovariectomized female rat. Neuroendocrinology77, 44–50 (2003).
  • Kimelberg HK, Jin Y, Charniga C, Feustel PJ. Neuroprotective activity of tamoxifen in permanent focal ischemia. J. Neurosurg.99, 138–142 (2003).
  • Mickley KR, Dluzen DE. Dose-response effects of estrogen and tamoxifen upon methamphetamine-induced behavioral responses and neurotoxicity of the nigrostriatal dopaminergic system in female mice. Neuroendocrinology79, 305–316 (2004).
  • Kokiko ON, Murashov AK, Hoane MR. Administration of raloxifene reduces sensorimotor and working memory deficits following traumatic brain injury. Behav. Brain Res.170, 233–240 (2006).
  • Nilsson S, Makela S, Treuter E et al. Mechanisms of estrogen action. Physiol. Rev.81, 1535–1565 (2001).
  • D’Astous M, Mendez P, Morissette M, Garcia-Segura LM, Di Paolo T. Implication of the phosphatidylinositol-3 kinase/protein kinase B signaling pathway in the neuroprotective effect of estradiol in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice. Mol. Pharmacol.69, 1492–1498 (2006).
  • Behl C. Oestrogen as a neuroprotective hormone. Nat. Rev. Neurosci.3, 433–442 (2002).
  • Kelly MJ, Qiu J, Ronnekleiv OK. Estrogen signaling in the hypothalamus. Vitam. Horm.71, 123–145 (2005).
  • Woolley CS. Acute effects of estrogen on neuronal physiology. Annu. Rev. Pharmacol. Toxicol.47, 657–680 (2007).
  • Tanabe N, Kimoto T, Kawato S. Rapid Ca(2+) signaling induced by Bisphenol A in cultured rat hippocampal neurons. Neuro Endocrinol. Lett.27, 97–104 (2006).
  • Toran-Allerand CD. Minireview: a plethora of estrogen receptors in the brain: where will it end? Endocrinology145, 1069–1074 (2004).
  • Kelly MJ, Ronnekleiv OK, Ibrahim N, Lagrange AH, Wagner EJ. Estrogen modulation of K(+) channel activity in hypothalamic neurons involved in the control of the reproductive axis. Steroids67, 447–456 (2002).
  • Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science307, 1625–1630 (2005).
  • Hewitt SC, Deroo BJ, Korach KS. Signal transduction. A new mediator for an old hormone? Science307, 1572–1573 (2005).
  • Funakoshi T, Yanai A, Shinoda K, Kawano MM, Mizukami Y. G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane. Biochem. Biophys. Res. Commun.346, 904–910 (2006).
  • Pedram A, Razandi M, Levin ER. Nature of functional estrogen receptors at the plasma membrane. Mol. Endocrinol.20, 1996–2009 (2006).
  • Beyer C, Pawlak J, Karolczak M. Membrane receptors for oestrogen in the brain. J. Neurochem.87, 545–550 (2003).
  • Scharfman HE, Maclusky NJ. Similarities between actions of estrogen and BDNF in the hippocampus: coincidence or clue? Trends Neurosci.28, 79–85 (2005).
  • Scharfman HE, MacLusky NJ. Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS. Front. Neuroendocrinol.27, 415–413 (2006).
  • Berchtold NC, Kesslak JP, Pike CJ, Adlard PA, Cotman CW. Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus. Eur. J. Neurosci.14, 1992–2002 (2001).
  • Mendez P, Wandosell F, Garcia-Segura LM. Cross-talk between estrogen receptors and insulin-like growth factor-I receptor in the brain: cellular and molecular mechanisms. Front. Neuroendocrinol.27, 391–403 (2006).
  • Watters JJ, Campbell JS, Cunningham MJ, Krebs EG, Dorsa DM. Rapid membrane effects of steroids in neuroblastoma cells: effects of estrogen on mitogen activated protein kinase signalling cascade and c-fos immediate early gene transcription. Endocrinology138, 4030–4033 (1997).
  • Singh M, Setalo G Jr, Guan X, Warren M, Toran-Allerand CD. Estrogen-induced activation of mitogen-activated protein kinase in cerebral cortical explants: convergence of estrogen and neurotrophin signaling pathways. J. Neurosci.19, 1179–1188 (1999).
  • Singh M, Setalo G, Jr., Guan X, Frail DE, Toran-Allerand CD. Estrogen-induced activation of the mitogen-activated protein kinase cascade in the cerebral cortex of estrogen receptor-α knock-out mice. J. Neurosci.20, 1694–1700 (2000).
  • Bryant DN, Bosch MA, Ronnekleiv OK, Dorsa DM. 17-β estradiol rapidly enhances extracellular signal-regulated kinase 2 phosphorylation in the rat brain. Neuroscience133, 343–352 (2005).
  • Bi R, Foy MR, Vouimba RM, Thompson RF, Baudry M. Cyclic changes in estradiol regulate synaptic plasticity through the MAP kinase pathway. Proc. Natl Acad. Sci. USA98, 13391–13395 (2001).
  • Jover-Mengual T, Zukin RS, Etgen AM. MAPK signaling is critical to estradiol protection of CA1 neurons in global ischemia. Endocrinology148, 1131–1143 (2007).
  • Nilsen J, Brinton RD. Mechanism of estrogen-mediated neuroprotection: regulation of mitochondrial calcium and Bcl-2 expression. Proc. Natl Acad. Sci. USA.100, 2842–2847 (2003).
  • Wise PM, Dubal DB, Rau SW, Brown CM, Suzuki S. Are estrogens protective or risk factors in brain injury and neurodegeneration? Reevaluation after the Women’s health initiative. Endocr. Rev.26, 308–312 (2005).
  • Cardona-Gomez P, Perez M, Avila J, Garcia-Segura LM, Wandosell F. Estradiol inhibits GSK3 and regulates interaction of estrogen receptors, GSK3, and β-catenin in the hippocampus. Mol. Cell. Neurosci.25, 363–373 (2004).
  • Goodenough S, Schleusner D, Pietrzik C, Skutella T, Behl C. Glycogen synthase kinase 3β links neuroprotection by 17β-estradiol to key Alzheimer processes. Neuroscience132, 581–589 (2005).
  • Alvarez-de-la-Rosa M, Silva I, Nilsen J et al. Estradiol prevents neural tau hyperphosphorylation characteristic of Alzheimer’s disease. Ann. NY Acad. Sci.1052, 210–224 (2005).
  • Simpkins JW, Wang J, Wang X, Perez E, Prokai L, Dykens JA. Mitochondria play a central role in estrogen-induced neuroprotection. Curr. Drug Targets CNS Neurol. Disord.4, 69–83 (2005).
  • Yang SH, Liu R, Perez EJ et al. Mitochondrial localization of estrogen receptor β. Proc. Natl Acad. Sci. USA101, 4130–4135 (2004).
  • Schwend T, Gustafsson JA. False positives in MALDI-TOF detection of ERβ in mitochondria. Biochem. Biophys. Res. Commun.343, 707–711 (2006).
  • Yang SH, Prokai L, Simpkins JW. Correspondence regarding Schwend and Gustafsson, “False positives in MALDI-TOF detection of ERβ in mitochondria”. Biochem. Biophys. Res. Commun.345, 917–918 (2006).
  • Hsieh YC, Yu HP, Suzuki T et al. Upregulation of mitochondrial respiratory complex IV by estrogen receptor-β is critical for inhibiting mitochondrial apoptotic signaling and restoring cardiac functions following trauma-hemorrhage. J. Mol. Cell. Cardiol.41, 511–521 (2006).
  • Dykens JA, Simpkins JW, Wang J, Gordon K. Polycyclic phenols, estrogens and neuroprotection: a proposed mitochondrial mechanism. Exp. Gerontol.38, 101–107 (2003).
  • Simpkins JW, Yang SH, Liu R et al. Estrogen-like compounds for ischemic neuroprotection. Stroke35(11 Suppl. 1), 2648–2651 (2004).
  • Blurton-Jones M, Tuszynski MH. Reactive astrocytes express estrogen receptors in the injured primate brain. J. Comp. Neurol.433, 115–123 (2001).
  • Garcia-Ovejero D, Veiga S, Garcia-Segura LM, Doncarlos LL. Glial expression of estrogen and androgen receptors after rat brain injury. J. Comp. Neurol.450, 256–271 (2002).
  • Dubal DB, Shughrue PJ, Wilson ME, Merchenthaler I, Wise PM. Estradiol modulates bcl-2 in cerebral ischemia: a potential role for estrogen receptors. J. Neurosci.19, 6385–6393 (1999).
  • Sortino MA, Chisari M, Merlo S et al. Glia mediates the neuroprotective action of estradiol on β-amyloid-induced neuronal death. Endocrinology145, 5080–5086 (2004).
  • Dhandapani KM, Wade FM, Mahesh VB, Brann DW. Astrocyte-derived transforming growth factor-β mediates the neuroprotective effects of 17 β-estradiol: involvement of nonclassical genomic signaling pathways. Endocrinology146, 2749–2759 (2005).
  • Garcia-Ovejero D, Azcoitia I, DonCarlos LL, Melcangi RC, Garcia-Segura LM. Glia-neuron crosstalk in the neuroprotective mechanisms of sex steroid hormones. Brain Res. Brain Res. Rev.48, 273–286 (2005).
  • Dodel RC, Du Y, Bales KR, Gao F, Paul SM. Sodium salicylate and 17β-estradiol attenuate nuclear transcription factor NF-κB translocation in cultured rat astroglial cultures following exposure to amyloid A β(1–40) and lipopolysaccharides. J. Neurochem.73, 1453–1460 (1999).
  • Vegeto E, Belcredito S, Etteri S et al. Estrogen receptor-α mediates the brain antiinflammatory activity of estradiol. Proc. Natl Acad. Sci. USA.100, 9614–9619 (2003).
  • Vegeto E, Belcredito S, Ghisletti S, Meda C, Etteri S, Maggi A. The endogenous estrogen status regulates microglia reactivity in animal models of neuroinflammation. Endocrinology147, 2263–2272 (2006).
  • Drew PD, Chavis JA. Female sex steroids: effects upon microglial cell activation. J. Neuroimmunol.111, 77–85 (2000).
  • Vegeto E, Bonincontro C, Pollio G et al. Estrogen prevents the lipopolysaccharide-induced inflammatory response in microglia. J. Neurosci.21, 1809–1818 (2001).
  • Lavaque E, Sierra A, Azcoitia I, Garcia-Segura LM. Steroidogenic acute regulatory protein in the brain. Neuroscience138, 741–747 (2006).
  • Papadopoulos V, Baraldi M, Guilarte TR et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol. Sci.27, 402–409 (2006).
  • Schumacher M, Akwa Y, Guennoun R et al. Steroid synthesis and metabolism in the nervous system: trophic and protective effects. J. Neurocytol.29, 307–326 (2000).
  • Lavaque E, Mayen A, Azcoitia I, Tena-Sempere M, Garcia-Segura LM. Sex differences, developmental changes, response to injury and cAMP regulation of the mRNA levels of steroidogenic acute regulatory protein, cytochrome p450scc, and aromatase in the olivocerebellar system. J. Neurobiol.66, 308–318 (2006).
  • Veiga S, Azcoitia I, Garcia-Segura LM. Ro5–4864, a peripheral benzodiazepine receptor ligand, reduces reactive gliosis and protects hippocampal hilar neurons from kainic acid excitotoxicity. J. Neurosci. Res.80, 129–137 (2005).
  • Melcangi RC, Garcia-Segura LM. Therapeutic approaches to peripheral neuropathy based on neuroactive steroids. Expert Rev. Neurother.6, 1121–1125 (2006).
  • Leonelli E, Yague JG, Ballabio M et al. Ro5–4864, a synthetic ligand of peripheral benzodiazepine receptor, reduces aging-associated myelin degeneration in the sciatic nerve of male rats. Mech. Ageing Dev.126, 1159–1163 (2005).
  • Casellas P, Galiegue S, Basile AS. Peripheral benzodiazepine receptors and mitochondrial function. Neurochem. Int.40, 475–486 (2002).
  • Garcia-Segura LM, Veiga S, Sierra A, Melcangi RC, Azcoitia I. Aromatase: a neuroprotective enzyme. Prog. Neurobiol.71, 31–41 (2003).
  • Zhou L, Lehan N, Wehrenberg U et al. Neuroprotection by estradiol: a role of aromatase against spine synapse loss after blockade of GABA(A) receptors. Exp. Neurol.203, 72–81 (2007).
  • Yague JG, Munoz A, de Monasterio-Schrader P et al. Aromatase expression in the human temporal cortex. Neuroscience138, 389–401 (2006).
  • Lund TD, Hinds LR, Handa RJ. The androgen 5α-dihydrotestosterone and its metabolite 5α-androstan-3β, 17β-diol inhibit the hypothalamo-pituitary-adrenal response to stress by acting through estrogen receptor β-expressing neurons in the hypothalamus. J. Neurosci.26, 1448–1456 (2006).
  • Pak TR, Chung WC, Lund TD, Hinds LR, Clay CM, Handa RJ. The androgen metabolite, 5α-androstane-3β, 17β-diol, is a potent modulator of estrogen receptor-β1-mediated gene transcription in neuronal cells. Endocrinology146, 147–155 (2005).
  • Soma KK, Sinchak K, Lakhter A, Schlinger BA, Micevych PE. Neurosteroids and female reproduction: estrogen increases 3β-HSD mRNA and activity in rat hypothalamus. Endocrinology146, 4386–4390 (2005).
  • Toran-Allerand CD, Tinnikov AA, Singh RJ, Nethrapalli IS. 17α-estradiol: a brain-active estrogen? Endocrinology146, 3843–3850 (2005).
  • Simpkins JW, Wen Y, Perez E, Yang S, Wang X. Role of nonfeminizing estrogens in brain protection from cerebral ischemia: an animal model of Alzheimer’s disease neuropathology. Ann. NY Acad. Sci.1052, 233–242 (2005).
  • Perez E, Liu R, Yang SH, Cai ZY, Covey DF, Simpkins JW. Neuroprotective effects of an estratriene analog are estrogen receptor independent in vitro and in vivo. Brain Res.1038, 216–222 (2005).
  • Jung ME, Wilson AM, Simpkins JW. A nonfeminizing estrogen analog protects against ethanol withdrawal toxicity in immortalized hippocampal cells. J. Pharmacol. Exp. Ther.319, 543–550 (2006).
  • Wang X, Dykens JA, Perez E et al. Neuroprotective effects of 17β-estradiol and nonfeminizing estrogens against H2O2 toxicity in human neuroblastoma SK-N-SH cells. Mol. Pharmacol.70, 395–404 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.