42
Views
1
CrossRef citations to date
0
Altmetric
Review

Molecular pathogenesis of renal pseudohypoaldosteronism type 1

Pages 407-419 | Published online: 10 Jan 2014

References

  • Fuller PJ, Young MJ. Mechanisms of mineralocorticoid action. Hypertension46, 1227–1235 (2005).
  • Pearce D, Bhargava A, Cole TJ. Aldosterone: its receptor, target genes, and actions. Vitam. Horm.66, 29–76 (2003).
  • Ratajczak T, Ward BK, Minchin RF. Immunophilin chaperones in steroid receptor signaling. Curr. Top. Med. Chem.3, 1348–1357 (2003).
  • Hellal-Levy C, Fagart J, Souque A, Rafestin-Oblin ME. Mechanistic aspects of mineralocorticoid receptor activation. Kidney Int.57, 1250–1255 (2000).
  • Couette B, Jalaguier S, Hellal-Levy C et al. Folding requirements of the ligand-binding domain of the human mineralocorticoid receptor. Mol. Endocrinol.12, 855–863 (1998).
  • Lombes M, Binart N, Delahaye F, Baulieu EE, Rafestin-Oblin ME. Differential intracellular localization of human mineralocorticosteroid receptor on binding of agonists and antagonists. Biochem. J.302(Pt 1), 191–197 (1994).
  • Fejes-Toth G, Pearce D, Naray-Fejes-Toth A. Subcellular localization of mineralocorticoid receptors in living cells: effects of receptor agonists and antagonists. Proc. Natl Acad. Sci. USA95, 2973–2978 (1998).
  • Lombes M, Binart N, Oblin ME, Joulin V, Baulieu EE. Characterization of the interaction of the human mineralocorticosteroid receptor with hormone response elements. Biochem. J.292(Pt 2), 577–583 (1993).
  • Liu W, Wang J, Sauter NK, Pearce D. Steroid receptor heterodimerization demonstrated in vitro and in vivo. Proc. Natl Acad. Sci. USA92, 12480–12484 (1995).
  • Robert-Nicoud M, Flahaut M, Elalouf JM et al. Transcriptome of a mouse kidney cortical collecting duct cell line: effects of aldosterone and vasopressin. Proc. Natl Acad. Sci. USA98, 2712–2716 (2001).
  • Spindler B, Mastroberardino L, Custer M, Verrey F. Characterization of early aldosterone-induced RNAs identified in A6 kidney epithelia. Pflugers Arch.434, 323–331 (1997).
  • Verrey F, Pearce D, Pfeiffer R et al. Pleiotropic action of aldosterone in epithelia mediated by transcription and post-transcription mechanisms. Kidney Int.57, 1277–1282 (2000).
  • Pearce D. SGK1 regulation of epithelial sodium transport. Cell. Physiol. Biochem.13, 13–20 (2003).
  • Chen SY, Bhargava A, Mastroberardino L et al. Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc. Natl Acad. Sci. USA96, 2514–2519 (1999).
  • Naray-Fejes-Toth A, Canessa C, Cleaveland ES, Aldrich G, Fejes-Toth G. Sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on epithelial Na+ channels. J. Biol. Chem.274, 16973–16978 (1999).
  • Webster MK, Goya L, Ge Y, Maiyar AC, Firestone GL. Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum. Mol. Cell Biol.13, 2031–2040 (1993).
  • Spindler B, Verrey F. Aldosterone action: induction of p21(ras) and fra-2 and transcription-independent decrease in myc, jun, and fos. Am. J. Physiol.276, C1154–C1161 (1999).
  • Mastroberardino L, Spindler B, Forster I et al. Ras pathway activates epithelial Na+ channel and decreases its surface expression in Xenopus oocytes. Mol. Biol. Cell9, 3417–3427 (1998).
  • Bhalla V, Daidie D, Li H et al. Serum- and glucocorticoid-regulated kinase 1 regulates ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4–2 by inducing interaction with 14–3-3. Mol. Endocrinol.19, 3073–3084 (2005).
  • Snyder PM, Steines JC, Olson DR. Relative contribution of Nedd4 and Nedd4–2 to ENaC regulation in epithelia determined by RNA interference. J. Biol. Chem.279, 5042–5046 (2004).
  • Zecevic M, Heitzmann D, Camargo SM, Verrey F. SGK1 increases Na,K-ATP cell-surface expression and function in Xenopus laevis oocytes. Pflugers Arch.448, 29–35 (2004).
  • Rodriguez-Viciana P, Warne PH, Dhand R et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature370, 527–532 (1994).
  • Park J, Leong ML, Buse P, Maiyar AC, Firestone GL, Hemmings BA. Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway. EMBO J.18, 3024–3033 (1999).
  • May A, Puoti A, Gaeggeler HP, Horisberger JD, Rossier BC. Early effect of aldosterone on the rate of synthesis of the epithelial sodium channel α subunit in A6 renal cells. J. Am. Soc. Nephrol.8, 1813–1822 (1997).
  • Mick VE, Itani OA, Loftus RW, Husted RF, Schmidt TJ, Thomas CP. The α-subunit of the epithelial sodium channel is an aldosterone-induced transcript in mammalian collecting ducts, and this transcriptional response is mediated via distinct cis-elements in the 5´-flanking region of the gene. Mol. Endocrinol.15, 575–588 (2001).
  • Weisz OA, Wang JM, Edinger RS, Johnson JP. Non-coordinate regulation of endogenous epithelial sodium channel (ENaC) subunit expression at the apical membrane of A6 cells in response to various transporting conditions. J. Biol. Chem.275, 39886–39893 (2000).
  • Blot-Chabaud M, Djelidi S, Courtois-Coutry N et al. Coordinate control of Na,K-ATPase mRNA expression by aldosterone, vasopressin and cell sodium delivery in the cortical collecting duct. Cell. Mol. Biol. (Noisy-le-grand)47, 247–253 (2001).
  • Kolla V, Litwack G. Transcriptional regulation of the human Na/K ATPase via the human mineralocorticoid receptor. Mol. Cell. Biochem.204, 35–40 (2000).
  • Lindzen M, Aizman R, Lifshitz Y, Lubarski I, Karlish SJ, Garty H. Structure–function relations of interactions between Na,K-ATPase, the γ subunit, and corticosteroid hormone-induced factor. J. Biol. Chem.278, 18738–18743 (2003).
  • Yoo D, Kim BY, Campo C et al. Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A. J. Biol. Chem.278, 23066–23075 (2003).
  • Arriza JL, Weinberger C, Cerelli G et al. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science237, 268–275 (1987).
  • Zennaro MC, Keightley MC, Kotelevtsev Y, Conway GS, Soubrier F, Fuller PJ. Human mineralocorticoid receptor genomic structure and identification of expressed isoforms. J. Biol. Chem.270, 21016–21020 (1995).
  • Zennaro MC, Farman N, Bonvalet JP, Lombes M. Tissue-specific expression of α and β messenger ribonucleic acid isoforms of the human mineralocorticoid receptor in normal and pathological states. J. Clin. Endocrinol. Metab.82, 1345–1352 (1997).
  • Bloem LJ, Guo C, Pratt JH. Identification of a splice variant of the rat and human mineralocorticoid receptor genes. J. Steroid Biochem. Mol. Biol.55, 159–162 (1995).
  • Zennaro MC, Souque A, Viengchareun S, Poisson E, Lombes M. A new human MR splice variant is a ligand-independent transactivator modulating corticosteroid action. Mol. Endocrinol.15, 1586–1598 (2001).
  • Zennaro MC, Le Menuet D, Lombes M. Characterization of the human mineralocorticoid receptor gene 5´-regulatory region: evidence for differential hormonal regulation of two alternative promoters via nonclassical mechanisms. Mol. Endocrinol.10, 1549–1560 (1996).
  • Alnemri ES, Maksymowych AB, Robertson NM, Litwack G. Overexpression and characterization of the human mineralocorticoid receptor. J. Biol. Chem.266, 18072–18081 (1991).
  • Pascual-Le Tallec L, Lombes M. The mineralocorticoid receptor: a journey exploring its diversity and specificity of action. Mol. Endocrinol.19, 2211–2221 (2005).
  • Seeler JS, Dejean A. Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell Biol.4, 690–699 (2003).
  • Rogerson FM, Fuller PJ. Interdomain interactions in the mineralocorticoid receptor. Mol. Cell. Endocrinol.200, 45–55 (2003).
  • Fagart J, Huyet J, Pinon GM, Rochel M, Mayer C, Rafestin-Oblin ME. Crystal structure of a mutant mineralocorticoid receptor responsible for hypertension. Nat. Struct. Mol. Biol.12, 554–555 (2005).
  • Bledsoe RK, Madauss KP, Holt JA et al. A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor. J. Biol. Chem.280, 31283–31293 (2005).
  • Li Y, Suino K, Daugherty J, Xu HE. Structural and biochemical mechanisms for the specificity of hormone binding and coactivator assembly by mineralocorticoid receptor. Mol. Cell19, 367–380 (2005).
  • Kuhnle U. Pseudohypoaldosteronism: mutation found, problem solved? Mol. Cell. Endocrinol.133, 77–80 (1997).
  • Cheek D, Perry J. A salt wasting syndrome in infancy. Arch. Dis. Child.33, 252–256 (1958).
  • Zennaro MC, Lombes M. Mineralocorticoid resistance. Trends Endocrinol. Metab.15, 264–270 (2004).
  • Geller DS. Mineralocorticoid resistance. Clin. Endocrinol. (Oxf.)62, 513–520 (2005).
  • Kerem E, Bistritzer T, Hanukoglu A et al. Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism. N. Engl. J. Med.341, 156–162 (1999).
  • Hanukoglu A, Bistritzer T, Rakover Y, Mandelberg A. Pseudohypoaldosteronism with increased sweat and saliva electrolyte values and frequent lower respiratory tract infections mimicking cystic fibrosis. J. Pediatr.125, 752–755 (1994).
  • Marthinsen L, Kornfalt R, Aili M, Andersson D, Westgren U, Schaedel C. Recurrent Pseudomonas bronchopneumonia and other symptoms as in cystic fibrosis in a child with type I pseudohypoaldosteronism. Acta Paediatr.87, 472–474 (1998).
  • Schaedel C, Marthinsen L, Kristoffersson AC et al. Lung symptoms in pseudohypoaldosteronism type 1 are associated with deficiency of the α-subunit of the epithelial sodium channel. J. Pediatr.135, 739–745 (1999).
  • Hanaki K, Ohzeki T, Iitsuka T et al. An infant with pseudohypoaldosteronism accompanied by cholelithiasis. Biol. Neonate65, 85–88 (1994).
  • Akkurt I, Kuhnle U, Ringenberg C. Pseudohypo-aldosteronism and cholelithiasis: coincidence or pathogenetic correlation? Eur. J. Pediatr.156, 363–366 (1997).
  • Garty BZ. Chronic Pseudomonas colonization of the skin, ear and eyes in a child with type I pseudohypoaldosteronism. Acta Paediatr.88, 472–473 (1999).
  • Aberer E, Gebhart W, Mainitz M, Pollak A, Reichel G, Scheibenreiter S. [Sweat glands in pseudohypoaldosteronism]. Hautarzt38, 484–487 (1987).
  • Akcakus M, Koklu E, Poyrazoglu H, Kurtoglu S. Newborn with pseudohypoaldosteronism and miliaria rubra. Int. J. Dermatol.45, 1432–1434 (2006).
  • Urbatsch A, Paller AS. Pustular miliaria rubra: a specific cutaneous finding of type I pseudohypoaldosteronism. Pediatr. Dermatol.19, 317–319 (2002).
  • Martin JM, Calduch L, Monteagudo C, Alonso V, Garcia L, Jorda E. Clinico-pathological analysis of the cutaneous lesions of a patient with type I pseudohypoaldosteronism. J. Eur. Acad. Dermatol. Venereol.19, 377–379 (2005).
  • Wong GP, Levine D. Congenital pseudohypoaldosteronism presenting in utero with acute polyhydramnios. J. Matern. Fetal Med.7, 76–78 (1998).
  • Greenberg D, Abramson O, Phillip M. Fetal pseudohypoaldosteronism: another cause of hydramnios. Acta Paediatr.84, 582–584 (1995).
  • Abramson O, Zmora E, Mazor M, Shinwell ES. Pseudohypoaldosteronism in a preterm infant: intrauterine presentation as hydramnios. J. Pediatr.120, 129–132 (1992).
  • Chang SS, Grunder S, Hanukoglu A et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat. Genet.12, 248–253. (1996).
  • Oh YS, Warnock DG. Disorders of the epithelial Na+ channel in Liddle’s syndrome and autosomal recessive pseudohypoaldosteronism type 1. Exp. Nephrol.8, 320–325 (2000).
  • Edelheit O, Hanukoglu I, Gizewska M et al. Novel mutations in epithelial sodium channel (ENaC) subunit genes and phenotypic expression of multisystem pseudohypoaldosteronism. Clin. Endocrinol. (Oxf.)62, 547–553 (2005).
  • Geller DS, Rodriguez-Soriano J, Vallo Boado A et al. Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat. Genet.19, 279–281. (1998).
  • Kuhnle U, Nielsen MD, Tietze HU et al. Pseudohypoaldosteronism in eight families: different forms of inheritance are evidence for various genetic defects. J. Clin. Endocrinol. Metab.70, 638–641. (1990).
  • Viemann M, Peter M, Lopez-Siguero JP, Simic-Schleicher G, Sippell WG. Evidence for genetic heterogeneity of pseudohypoaldosteronism type 1: identification of a novel mutation in the human mineralocorticoid receptor in one sporadic case and no mutations in two autosomal dominant kindreds. J. Clin. Endocrinol. Metab.86, 2056–2059. (2001).
  • Riepe FG, Finkeldei J, de Sanctis L et al. Elucidating the underlying molecular pathogenesis of NR3C2 mutants causing autosomal dominant pseudohypoaldosteronism type 1. J. Clin. Endocrinol. Metab.91(11), 4552–4561 (2006).
  • Geller DS, Zhang J, Zennaro MC et al. Autosomal dominant pseudohypoaldosteronism type 1: mechanisms, evidence for neonatal lethality, and phenotypic expression in adults. J. Am. Soc. Nephrol.17, 1429–1436 (2006).
  • Sartorato P, Khaldi Y, Lapeyraque AL et al. Inactivating mutations of the mineralocorticoid receptor in Type I pseudohypoaldosteronism. Mol. Cell. Endocrinol.217, 119–125 (2004).
  • Fernandes-Rosa FL, de Castro M, Latronico AC, Sippell W, Riepe FG, Antonini SR. Recurrence of the R947X mutation in unrelated families with autosomal dominant pseudohypoaldosteronism type 1: evidence for a mutational hot spot in the mineralocorticoid receptor gene. J. Clin. Endocrinol. Metab.91(9), 3671–3675 (2006).
  • Riepe FG, Krone N, Morlot M, Peter M, Sippell WG, Partsch CJ. Autosomal-dominant pseudohypoaldosteronism type 1 in a Turkish family is associated with a novel nonsense mutation in the human mineralocorticoid receptor gene. J. Clin. Endocrinol. Metab.89, 2150–2152 (2004).
  • Gordon RD. Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension8, 93–102 (1986).
  • Achard JM, Disse-Nicodeme S, Fiquet-Kempf B, Jeunemaitre X. Phenotypic and genetic heterogeneity of familial hyperkalaemic hypertension (Gordon syndrome). Clin. Exp. Pharmacol. Physiol.28, 1048–1052 (2001).
  • Disse-Nicodeme S, Achard JM, Desitter I et al. A new locus on chromosome 12p13.3 for pseudohypoaldosteronism type II, an autosomal dominant form of hypertension. Am. J. Hum. Genet.67, 302–310 (2000).
  • Mansfield TA, Simon DB, Farfel Z et al. Multilocus linkage of familial hyperkalaemia and hypertension, pseudohypoaldosteronism type II, to chromosomes 1q31–42 and 17p11–q21. Nat. Genet.16, 202–205 (1997).
  • Wilson FH, Disse-Nicodeme S, Choate KA et al. Human hypertension caused by mutations in WNK kinases. Science293, 1107–1112. (2001).
  • Kahle KT, Wilson FH, Lalioti M, Toka H, Qin H, Lifton RP. WNK kinases: molecular regulators of integrated epithelial ion transport. Curr. Opin. Nephrol. Hypertens.13, 557–562 (2004).
  • Kahle KT, Wilson FH, Lifton RP. Regulation of diverse ion transport pathways by WNK4 kinase: a novel molecular switch. Trends Endocrinol. Metab.16, 98–103 (2005).
  • Xie J, Craig L, Cobb MH, Huang CL. Role of with-no-lysine [K] kinases in the pathogenesis of Gordon’s syndrome. Pediatr. Nephrol.21, 1231–1236 (2006).
  • Subramanya AR, Yang CL, McCormick JA, Ellison DH. WNK kinases regulate sodium chloride and potassium transport by the aldosterone-sensitive distal nephron. Kidney Int.70, 630–634 (2006).
  • Bulchmann G, Schuster T, Heger A, Kuhnle U, Joppich I, Schmidt H. Transient pseudohypoaldosteronism secondary to posterior urethral valves – a case report and review of the literature. Eur. J. Pediatr. Surg.11, 277–279 (2001).
  • Maruyama K, Watanabe H, Onigata K. Reversible secondary pseudohypoaldosteronism due to pyelonephritis. Pediatr. Nephrol.17, 1069–1070 (2002).
  • Dolezel Z, Starha J, Novotna D, Dostalkova D. Secondary pseudohypoaldosteronism in an infant with pyelonephritis. Bratisl. Lek. Listy.105, 435–437 (2004).
  • Perez-Brayfield MR, Gatti J, Smith E, Kirsch AJ. Pseudohypoaldosteronism associated with ureterocele and upper pole moiety obstruction. Urology57, 1178 (2001).
  • Ladefoged K, Olgaard K. Sodium homeostasis after small-bowel resection. Scand. J. Gastroenterol.20, 361–369 (1985).
  • Vantyghem MC, Hober C, Evrard A et al. Transient pseudo-hypoaldosteronism following resection of the ileum: normal level of lymphocytic aldosterone receptors outside the acute phase. J. Endocrinol. Invest.22, 122–127 (1999).
  • Anand SK, Froberg L, Northway JD, Weinberger M, Wright JC. Pseudohypoaldosteronism due to sweat gland dysfunction. Pediatr. Res.10, 677–682 (1976).
  • Berger S, Bleich M, Schmid W et al. Mineralocorticoid receptor knockout mice: pathophysiology of Na+ metabolism. Proc. Natl Acad. Sci. USA95, 9424–9429 (1998).
  • Arai K, Nakagomi Y, Iketani M et al. Functional polymorphisms in the mineralocorticoid receptor and amirolide-sensitive sodium channel genes in a patient with sporadic pseudohypoaldosteronism. Hum. Genet.112, 91–97 (2003).
  • Balsamo A, Cicognani A, Gennari M et al. Functional characterization of naturally occurring NR3C2 gene mutations in Italian patients suffering from pseudohypoaldosteronism type 1. Eur. J. Endocrinol.156(2), 249–256. (2007).
  • Arai K, Zachman K, Shibasaki T, Chrousos GP. Polymorphisms of amiloride-sensitive sodium channel subunits in five sporadic cases of pseudohypoaldosteronism: do they have pathologic potential? J. Clin. Endocrinol. Metab.84, 2434–2437. (1999).
  • Sartorato P, Lapeyraque AL, Armanini D et al. Different inactivating mutations of the mineralocorticoid receptor in fourteen families affected by type I pseudohypoaldosteronism. J. Clin. Endocrinol. Metab.88, 2508–2517 (2003).
  • Pujo L, Fagart J, Gary F et al. Mineralocorticoid receptor mutations are the principal cause of renal type 1 pseudohypoaldosteronism. Hum. Mutat.28, 33–40 (2007).
  • Tajima T, Kitagawa H, Yokoya S et al. A novel missense mutation of mineralocorticoid receptor gene in one Japanese family with a renal form of pseudohypoaldosteronism type 1. J. Clin. Endocrinol. Metab.85, 4690–4694. (2000).
  • Ozisik G, Mantovani G, Achermann JC et al. An alternate translation initiation site circumvents an amino-terminal DAX1 nonsense mutation leading to a mild form of X-linked adrenal hypoplasia congenita. J. Clin. Endocrinol. Metab.88, 417–423 (2003).
  • Ludwig M, Bolkenius U, Wickert L, Bidlingmaier F. Common polymorphisms in genes encoding the human mineralocorticoid receptor and the human amiloride-sensitive sodium channel. J. Steroid Biochem. Mol. Biol.64, 227–230 (1998).
  • Riepe FG, Holterhus PM. Exclusion of serum- and glucocorticoid-induced kinase 1 (SGK1) as a candidate gene for genetically heterogeneous renal pseudohypoaldosteronism type I in eight families. Am. J. Nephrol.27, 164–169 (2007).
  • Ludwig M, Bidlingmaier F, Reissinger A. Pseudohypoaldosteronism type 1 and the genes encoding prostasin, α-spectrin, and Nedd4. Int. J. Mol. Med.14, 1101–1104 (2004).
  • Huey CL, Riepe FG, Sippell WG, Yu AS. Genetic heterogeneity in autosomal dominant pseudohypoaldosteronism type I: exclusion of claudin-8 as a candidate gene. Am. J. Nephrol.24, 483–487 (2004).
  • Riepe FG, Krone N, Morlot M, Ludwig M, Sippell WG, Partsch CJ. Identification of a novel mutation in the human mineralocorticoid receptor gene in a german family with autosomal-dominant pseudohypoaldosteronism type 1: further evidence for marked interindividual clinical heterogeneity. J. Clin. Endocrinol. Metab.88, 1683–1686 (2003).
  • Wulff P, Vallon V, Huang DY et al. Impaired renal Na(+) retention in the sgk1-knockout mouse. J. Clin. Invest.110, 1263–1268 (2002).
  • Tsukita S, Furuse M. Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J. Cell Biol.149, 13–16 (2000).
  • Li WY, Huey CL, Yu AS. Expression of claudin-7 and -8 along the mouse nephron. Am. J. Physiol. Renal Physiol.286, F1063–F1071 (2004).
  • Goldschimdt I, Grahammer F, Warth R et al. Kidney and colon electrolyte transport in CHIF knockout mice. Cell. Physiol. Biochem.14, 113–120 (2004).
  • Rocha R, Stier CT Jr, Kifor I et al. Aldosterone: a mediator of myocardial necrosis and renal arteriopathy. Endocrinology141, 3871–3878 (2000).
  • Nystrom AM, Bondeson ML, Skanke N et al. A novel nonsense mutation of the mineralocorticoid receptor gene in a Swedish family with pseudohypoaldosteronism type I (PHA1). J. Clin. Endocrinol. Metab.89, 227–231 (2004).

Websites

  • The Human Gene Mutation Database at the Institute of Medical Genetics in Cardiff www.hgmd.cf.ac.uk
  • The Human Genome Variation Society: nomenclature for the description of sequence variations www.hgvs.org/mutnomen

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.