29
Views
0
CrossRef citations to date
0
Altmetric
Review

Challenges in studies of the genetic basis of Type 2 diabetes

Pages 451-459 | Published online: 10 Jan 2014

References

  • Zimmet P, Alberti KG, Shaw J. Global and societal complications of the diabetic epidemic. Nature414, 782–787 (2001).
  • Mokdad AH, Ford ES, Browman BA et al. Diabetes trends in the US: 1990–1998. Diabetes Care23, 1278–1283 (2000).
  • Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care27, 1047–1053 (2004).
  • Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world – a growing challenge. N. Engl. J. Med.356, 213–215 (2007).
  • Kahn CR. Insulin action, diabetogenes, and the cause of Type II diabetes. Diabetes43, 1066–1082 (1994).
  • Kahn SE. The importance of β-cell failure for the development and progression of Type 2 diabetes. J. Clin. Endocrinol. Metab.86, 4047–4058 (2001).
  • Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and Type 2 diabetes. Nature444, 840–846 (2006).
  • Groop LC, Tuomi T. Non-insulin dependent diabetes mellitus – a collision between thrifty genes and an affluent society. Ann. Med.29, 37–53 (1997).
  • Meigs J, Cupples L, Wilson P. Parental transmission of Type 2 diabetes: the Framingham Offspring Study. Diabetes49, 2201–2207 (2000).
  • Barnett AH, Eff C, Leslie RD, Pyke DA. Diabetes in identical twins. A study of 200 pairs. Diabetologia20, 87–93 (1981).
  • Kaprio J, Tuomilehto J, Koskenvuo M et al. Concordance for Type 1 (insulin-dependent) and Type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia35, 1060–1067 (1992).
  • Poulsen P, Kyvik KO, Vaag A, Beck-Nielsen H. Heritability of Type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance – a population-based twin study. Diabetologia42, 139–145 (1999).
  • Medici F, Hawa M, Ianari A, Pyke DA, Leslie RD. Concordance rate for Type II diabetes mellitus in monozygotic twins: actuarial analysis. Diabetologia42, 146–150 (1999).
  • King H, Rewers M. Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. WHO Ad Hoc Diabetes Reporting Group. Diabetes Care16, 157–177 (1993).
  • Fajans SS, Conn JW. Prediabetes, subclinical diabetes and latent clinical diabetes, interpretation, diagnosis and treatment. In: On the Nature and Treatment of Diabetes. Leibel DS, Wrenshall GS (Eds), Excerpta Medica, Amsterdam, Holland, 641–656 (1965).
  • Tattersall RB, Fajans SS. A difference between the inheritance of classical juvenile-onset and maturity-onset type diabetes of young people. Diabetes24, 44–53 (1975).
  • Ledermann HM. Maturity-onset diabetes of the young (MODY) at least ten times more common than previously assumed? Diabetologia38, 1482 (1995).
  • Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N. Engl. J. Med.345, 971–980 (2001).
  • Froguel P, Vaxillaire M, Sun F et al. Close linkage of glucokinase locus on chromosome 7p to early onset non-insulin-dependent diabetes mellitus. Nature356, 162–164 (1992).
  • Yamagata K, Furuta H, Oda N et al. Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young MODY1. Nature384, 458–460 (1996).
  • Yamagata K, Odai N, Kaisaki PJ et al. Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young MODY3. Nature384, 455–458 (1996).
  • Horikawa Y, Iwasaki N, Hara M et al. Mutation in hepatocyte nuclear factor-1β gene (TCF2) associated with MODY. Nat. Genet.17, 384–385 (1997).
  • Stoffers DA, Ferrer J, Clarke WL, Habener JF. Early-onset Type-II diabetes mellitus MODY4 linked to IPF1. Nat. Genet.17, 138–139 (1997).
  • Malecki MT, Jhala US, Antonellis A et al. Mutations in NEUROD1 are associated with the development of Type 2 diabetes mellitus. Nat. Genet.23, 323–328 (1999).
  • Huopio H, Otonkoski T, Vauhkonen I, Reimann F, Ashcroft FM, Laakso M. A new subtype of autosomal dominant diabetes attributable to a mutation in the gene for sulfonylurea receptor 1. Lancet361, 301–307 (2003).
  • Ballinger SW, Shoffner JM, Hedaya EV et al. Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nat. Genet.1, 11–15 (1992).
  • Van den Ouweland JM, Lemkes HH, Ruitenbeek W et al. Mutation in kmitochondrial tRNA (Leu) (UUR) gene in a large pedigree with maternally transmitted Type II diabetes and deafness. Nat. Genet.1, 368–371 (1991).
  • Knouff C, Auwerx J. Peroxisome proliferator-activated receptor-γ calls for activation in moderation: lessons from genetics and pharmacology. Endocrin. Rev.25, 899–918 (2004).
  • Tiffin N, Adie E, Turner F et al. Computational disease gene identification: a concert of methods prioritizes Type 2 diabetes and obesity candidate genes. Nucl. Acids Res.34, 3067–3081 (2006).
  • Freeman H, Cox RD. Type 2 diabetes: a cocktail of genetic discovery. Hum. Mol. Genet.15, R202–R209 (2006).
  • Horikawa Y, Oda N, Cox NJ et al. Genetic variation in the gene encoding calpain-10 is associated with Type 2 diabetes mellitus. Nat. Genet.26, 163–175 (2000).
  • Song Y, Niu T, Manson JE, Kwiatkowski DJ, Liu S. Are variants in the CAP10 gene related to risk of Type 2 diabetes? A quantitative assessment of population and family-based association studies. Am. J. Hum. Genet.74, 208–222 (2004).
  • Tsuchiya T, Schwarz PE, Bosque-Plata LD et al. Association of the calpain-10 gene with Type 2 diabetes in Europeans: results of pooled and meta-analyses. Mol. Genet. Metab.89, 174–184 (2006).
  • Reynisdottir I, Thorleifsson G, Benediktsson R et al. Localisation of a susceptibility gene for Type 2 diabetes to chromosome 5q34-q35.2. Am. J. Hum. Genet.73, 323–335 (2003).
  • Grant SFA, Thorleifsson G, Reynisdottir I et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of Type 2 diabetes. Nat. Genet.38, 320–323 (2006).
  • Zeggini E, McCarthy MI. TCF7L2: the biggest story in diabetes genetics since HLA? Diabetologia50, 1–4 (2007).
  • Deeb SS, Fajans L, Nemoto M et al. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat. Genet.20, 284–287 (1998).
  • Altshuler D, Hirschhorn JN, Lannemark M et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of Type 2 diabetes. Nat. Genet.26, 76–80 (2000).
  • Gloyn AL, Weedon MN, Owen KR et al. Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with Type 2 diabetes. Diabetes52, 568–572 (2003).
  • Love-Gregory LD, Wasson J, Ma J et al. A common polymorphism in the upstream promoter region of the hepatocyte nuclear factor-4 gene on chromosome 20q is associated with Type 2 diabetes and appears to contribute to the evidence for linkage in an Ashkenazi Jewish population. Diabetes53, 1134–1140 (2004).
  • Silander K, Mohlke KL, Scott LJ et al. Genetic variation near the hepatocyte nuclear factor-4α gene predicts susceptibility to Type 2 diabetes. Diabetes53, 1141–1149 (2004).
  • Baroso I, Luan J, Middelberg RPS et al. Candidate gene association study in Type 2 diabetes indicates a role for genes involved in β-cell function as well as insulin action. PLoS Biology1, 41–55 (2003).
  • Andrulionyte L, Laukkanen O, Chiasson JL, Laakso M for the STOP-NIDDM Study Group. Single nucleotide polymorphisms in the promoter of the HNF4α gene are associated with the conversion to Type 2 diabetes: the STOP-NIDDM trial. J. Mol. Med.84, 701–708 (2006).
  • Hegele RA, Cao H, Harris SB, Hanley AJ, Zinman B. Hepatocyte nuclear factor-1α G319S. A private mutation in Oji-Cree associated with Type 2 diabetes. Diabetes Care22, 524 (1999).
  • Holmkvist J, Cervin C, Lyssenko V et al. Common variants in HNF-1α and risk of Type 2 diabetes. Diabetologia49, 2882–2891 (2006).
  • Rose CS, Ek J, Urhammer SA et al. A-30G>A polymorphism of the β-cell-specific glucokinase promoter associated with hyperglycemia in the general population of whites. Diabetes54, 3026–3031 (2005).
  • Cargill M, Altshuler D, Ireland J et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet.22, 231–238 (1999).
  • Miettinen O. S. The “case–control” study: valid selection of subjects. J. Chronic Dis.38, 543–548 (1985).
  • Bhatti P. Sigurdson AJ, Wang SS et al. Genetic variation and willingness to participate in epidemiologic research: data from three studies. Cancer Epidemiol. Biomarkers Prev.14, 2449–2453 (2005).
  • Manolio TA, Bailey-Wilson JE, Collins FS. Genes, environment and the value of propective cohort studies. Nat. Genet. Rev.7, 812–820 (2006).
  • Stern MP. Diabetes and atherosclerosis. Diabetes44, 369–374 (1995).
  • Laakso M. Diabetes and cardiovascular disease in Type 2 diabetes: challenge for treatment and prevention. J. Intern. Med.249, 225–235 (2001).
  • Chakravarti A, Little P. Nature, nurture, and human disease. Nature421, 412–414 (2003).
  • Tuomilehto J, Lindström J, Eriksson JG et al. Prevention of Type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med.344, 1343–1350 (2001).
  • Knowler WC, Barrett-Connor E, Fowler SE et al. Reduction in the incidence of Type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med.346, 393–403 (2002).
  • Lindi VI, Uusitupa MI, Lindström J et al. for the Finnish Diabetes Prevention Study Group. Association of the Pro12Ala polymorphism in the PPAR-γ2 gene with 3-year incidence of Type 2 diabetes and body weight change in the Finnish Diabetes Prevention Study. Diabetes51, 2581–2586 (2002).
  • Kubaszek A, Pihlajamäki J, Komarovski V et al. Promoter polymorphims of the TNF-α (G-308A) and IL-6 (C-174G) genes predict the conversion from impaired glucose tolerance to Type 2 diabetes. The Finnish Diabetes Prevention Study. Diabetes52, 1872–1876 (2003).
  • Siitonen N, Lindström J, Eriksson J et al. Association of a deletion/insertion polymorphism in the α2B-adrenergic receptor gene with insulin secretion and Type 2 diabetes. The Finnish Diabetes Prevention Study. Diabetologia47, 1416–1424 (2004).
  • Todorova B, Kubaszek A, Pihlajamäki J et al. The G-250A promoter polymorphism of the hepatic lipase gene predicts the conversion from impaired glucose tolerance to Type 2 diabetes: The Finnish Diabetes Prevention Study. J. Clin. Endocrinol. Metab.89, 2019–2023 (2004).
  • Laukkanen O, Pihlajamäki J, Lindström J et al. for the Finnish Diabetes Prevention Study Group. Polymorphisms in the SUR1 (ABCC8) and Kir6.2 (KCNJ11) genes predict the conversion from impaired glucose tolerance to Type 2 diabetes. The Finnish Diabetes Prevention Study. J. Clin. Endocrinol. Metab.89, 6286–6290 (2004).
  • Laukkanen O, Lindström J, Eriksson J et al. for the Finnish Diabetes Prevention Study Group. Polymorphisms in the SLC2A2 (GLUT2) gene are associated with the conversion from impaired glucose tolerance to Type 2 diabetes: the Finnish Diabetes Prevention Study. Diabetes54, 2256–2260 (2005).
  • Laukkanen O, Pihlajamäki J, Lindström J et al. Common polymorphisms in the genes regulating the early insulin signalling pathway: effects on the weight change and the conversion from impaired glucose tolerance to Type 2 diabetes. The Finnish Diabetes Prevention Study. Diabetologia47, 871–877 (2004).
  • Salopuro T, Pulkkinen L, Lindström J et al. for the Finnish Diabetes Prevention Study Group. Genetic variation in leptin receptor gene is associated with Type 2 diabetes and body weight: The Finnish Diabetes Prevention Study. Int. J. Obes.29, 1245–1251 (2005).
  • Mager U, Lindi V, Lindström J et al. for the Finnish Diabetes Prevention Study. Association of the Leu72Met polymorphism of the grehlin gene with the risk of Type 2 diabetes in subjects with impaired glucose tolerance in the Finnish Diabetes Prevention Study. Diabet. Med.23, 685–689 (2006).
  • Siitonen N, Pulkkinen L, Mager U et al. Association of sequence variations in the gene encoding adeponectin receptor 1 (ADIPOR1) with body size and insulin levels. The Finnish Diabetes Prevention Study. Diabetologia49, 1795–1805 (2006).
  • Florez JC, Jablonski KA, Bayley N et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N. Engl. J. Med.355, 241–250 (2006).
  • Chiasson J-L, Josse RG, Gomis R et al. for the STOP-NIDDM Trial Research Group. Acarbose for prevention of Type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet359, 2072–2077 (2002).
  • Andrulionyte L, Zacharova J, Chiasson JL, Laakso M for the STOP-NIDDM Study Group. Common polymorphisms of the PPAR-γ2 (Pro12Ala) and PGC-1α (Gly482Ser) genes are associated with the conversion from impaired glucose tolerance to Type 2 diabetes in the STOP-NIDDM trial. Diabetologia47, 2176–2184 (2004).
  • Zacharova J, Chiasson JL, Laakso M for the STOP-NIDDM Study Group. The common polymorphisms (SNP +45 and SNP +276) of the adiponectin gene predict the conversion from impaired glucose tolerance to Type 2 diabetes: the STOP-NIDDM trial. Diabetes54, 893–899 (2005).
  • Zacharova J, Todorova BR, Chiasson JL, Laakso M for the STOP-NIDDM Study Group. The G-250 substitution in the promoter region of the hepatic lipase gene is associated with the conversion from impaired glucose tolerance to Type 2 diabetes: the STOP-NIDDM trial. J. Intern. Med.257, 185–193 (2005).
  • Andruolionyte L, Chiasson J-L, Laakso M. SNPs of PPARD in combination with the Gly482Ser substitution of PGC-1A and the Pro12Ala substitution of PPARG2 predict the conversion from IGT to Type 2 diabetes: the STOP-NIDDM trial. Diabetes55, 2148–2152 (2006).
  • Weyrich P, Stefan N, Häring H-U, Laakso M, Fritsche A. Effect of genotype on success of lifestyle intervention in subjects at risk for Type 2 diabetes. J. Mol. Med.85, 107–117 (2007).
  • Nicklas BJ, van Rossum EF, Berman DM, Ryan AS, Dennis KE, Shuldiner AR. Genetic variation in the peroxisome proliferators-activated receptor-γ2 gene (Pro12Ala) affects metabolic responses to weight loss and subsequent weight regain. Diabetes50, 2172–2176 (2001).
  • Kahara T, Takamura T, Hayakawa T et al. PPARγ gene polymorphism is associated with exercise-mediated changes of insulin resistance in healthy men. Metabolism52, 209–212 (2003).
  • Weiss EP, Kulaputana O, Ghiu IA et al. Endurance training-induced changes in the insulin response to oral glucose are associated with the peroxisome proliferators-activated receptor-γ2 Pro12Ala genotype in men but not in women. Metabolism Clin. Exp.54, 97–102 (2005).
  • Adamo KB, Sigal RJ, Williams K et al. Influence of Pro12Ala peroxisome proliferator-activated receptor γ2 polymorphism on glucose response to exercise training in Type 2 diabetes. Diabetologia48, 1503–1509 (2005).
  • Sladek R, Rocheleau G, Rung J et al. A genome-wide association study identifies novel risk loci for Type 2 diabetes. Nature445, 881–885 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.