27
Views
0
CrossRef citations to date
0
Altmetric
Review

Noncoding miRNAs as key controllers of pancreatic β-cell functions

&
Pages 461-468 | Published online: 10 Jan 2014

References

  • Prentki M, Nolan CJ. Islet β-cell failure in Type 2 diabetes. J. Clin. Invest.116, 1802–1812 (2006).
  • Marchetti P, Del Prato S, Lupi R, Del Guerra S. The pancreatic β-cell in human Type 2 diabetes. Nutr. Metab. Cardiovasc. Dis.16(Suppl. 1), S3–S6 (2006).
  • Weir GC, Bonner-Weir S. Five stages of evolving β-cell dysfunction during progression to diabetes. Diabetes53(Suppl. 3), S16–S21 (2004).
  • Chakrabarti SK, Mirmira RG. Transcription factors direct the development and function of pancreatic β cells. Trends Endocrinol. Metab.14, 78–84 (2003).
  • Bell GI, Polonsky KS. Diabetes mellitus and genetically programmed defects in β-cell function. Nature414, 788–791 (2001).
  • Sladek R, Rocheleau G, Rung J et al. A genome-wide association study identifies novel risk loci for Type 2 diabetes. Nature445, 881–885 (2007).
  • Scott LJ, Mohlke KL, Bonnycastle LL et al. A genome-wide association study of Type 2 diabetes in finns detects multiple susceptibility variants. Science316(5829), 1341–1345 (2007).
  • Scheuner D, Vander Mierde D, Song B et al. Control of mRNA translation preserves endoplasmic reticulum function in β cells and maintains glucose homeostasis. Nat. Med.11, 757–764 (2005).
  • Halban PA. Cellular sources of new pancreatic β cells and therapeutic implications for regenerative medicine. Nat. Cell Biol.6, 1021–1025 (2004).
  • Ambros V. The functions of animal microRNAs. Nature431, 350–355 (2004).
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004).
  • Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development132, 4653–4662 (2005).
  • Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell. Biol.6, 376–385 (2005).
  • Chen X. MicroRNA biogenesis and function in plants. FEBS Lett.579, 5923–5931 (2005).
  • Krutzfeldt J, Stoffel M. MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab.4, 9–12 (2006).
  • Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res.66, 7390–7394 (2006).
  • Jin P, Zarnescu DC, Ceman S et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat. Neurosci.7, 113–117 (2004).
  • Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA11, 241–247 (2005).
  • Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol.17, 118–126 (2007).
  • Jackson RJ, Standart N. How do microRNAs regulate gene expression? Sci. STKE (367), RE1 (2007).
  • Liu J, Rivas FV, Wohlschlegel J, Yates JR 3rd, Parker R, Hannon GJ. A role for the P-body component GW182 in microRNA function. Nat. Cell Biol.7, 1261–1266 (2005).
  • Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol.7, 719–723 (2005).
  • Eulalio A, Behm-Ansmant I, Izaurralde E. P bodies: at the crossroads of post-transcriptional pathways. Nat. Rev. Mol. Cell. Biol.8, 9–22 (2007).
  • Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell125, 1111–1124 (2006).
  • Didiano D, Hobert O. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat. Struct. Mol. Biol.13, 849–851 (2006).
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20 (2005).
  • Hsu PW, Huang HD, Hsu SD et al. miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res.34, D135–D139 (2006).
  • Krek A, Grun D, Poy MN et al. Combinatorial microRNA target predictions. Nat. Genet.37, 495–500 (2005).
  • Robins H, Li Y, Padgett RW. Incorporating structure to predict microRNA targets. Proc. Natl Acad. Sci. USA102, 4006–4009 (2005).
  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human microRNA targets. PLoS Biol.2, E363 (2004).
  • Vatolin S, Navaratne K, Weil RJ. A novel method to detect functional microRNA targets. J. Mol. Biol.358, 983–996 (2006).
  • Poy MN, Eliasson L, Krutzfeldt J et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature432, 226–230 (2004).
  • Sen S, Kundu G, Mekhail N, Castel J, Misono K, Healy B. Myotrophin: purification of a novel peptide from spontaneously hypertensive rat heart that influences myocardial growth. J. Biol. Chem.265, 16635–16643 (1990).
  • Bhattacharya N, Ghosh S, Sept D, Cooper JA. Binding of myotrophin/V-1 to actin-capping protein: implications for how capping protein binds to the filament barbed end. J. Biol. Chem.281, 31021–31030 (2006).
  • Gupta S, Purcell NH, Lin A, Sen S. Activation of nuclear factor-κB is necessary for myotrophin-induced cardiac hypertrophy. J. Cell Biol.159, 1019–1028 (2002).
  • Norlin S, Ahlgren U, Edlund H. Nuclear factor-κB activity in β-cells is required for glucose-stimulated insulin secretion. Diabetes54, 125–132 (2005).
  • Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of granuphilin/Slp4 and the secretory response of insulin-producing cells. J. Biol. Chem.281, 26932–26942 (2006).
  • Coppola T, Frantz C, Perret-Menoud V, Gattesco S, Hirling H, Regazzi R. Pancreatic β-cell protein granuphilin binds Rab3 and Munc-18 and controls exocytosis. Mol. Biol. Cell13, 1906–1915 (2002).
  • Gomi H, Mizutani S, Kasai K, Itohara S, Izumi T. Granuphilin molecularly docks insulin granules to the fusion machinery. J. Cell Biol.171, 99–109 (2005).
  • Lang J. Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur. J. Biochem.259, 3–17 (1999).
  • Wang J, Takeuchi T, Yokota H, Izumi T. Novel rabphilin-3-like protein associates with insulin-containing granules in pancreatic β cells. J. Biol. Chem.274, 28542–28548 (1999).
  • Baroukh N, Ravier MA, Loder MK et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cells lines. J. Biol. Chem. DOI 10.1074/jbc.M611841200 (2007) (Epub ahead of print).
  • Hattersley AT, Ashcroft FM. Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes54, 2503–2513 (2005).
  • Rhodes CJ. Type 2 diabetes – a matter of β-cell life and death? Science307, 380–384 (2005).
  • Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res.33, 1290–1297 (2005).
  • Voorhoeve PM, le Sage C, Schrier M et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell124, 1169–1181 (2006).
  • Wollheim CB, Maechler P. β-cell mitochondria and insulin secretion: messenger role of nucleotides and metabolites. Diabetes51(Suppl. 1), S37–S42 (2002).
  • Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol.13, 790–795 (2003).
  • Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature435, 834–838 (2005).
  • Esau C, Kang X, Peralta E et al. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem.279, 52361–52365 (2004).
  • Kasashima K, Nakamura Y, Kozu T. Altered expression profiles of microRNAs during TPA-induced differentiation of HL-60 cells. Biochem. Biophys. Res. Commun.322, 403–410 (2004).
  • Webb GC, Akbar MS, Zhao C, Steiner DF. Expression profiling of pancreatic β cells: glucose regulation of secretory and metabolic pathway genes. Proc. Natl Acad. Sci. USA97, 5773–5778 (2000).
  • Busch AK, Cordery D, Denyer GS, Biden TJ. Expression profiling of palmitate- and oleate-regulated genes provides novel insights into the effects of chronic lipid exposure on pancreatic β-cell function. Diabetes51, 977–987 (2002).
  • Cardozo AK, Heimberg H, Heremans Y et al. A comprehensive analysis of cytokine-induced and nuclear factor-κ B-dependent genes in primary rat pancreatic β-cells. J. Biol. Chem.276, 48879–48886 (2001).
  • Kutlu B, Cardozo AK, Darville MI et al. Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells. Diabetes52, 2701–2719 (2003).
  • Conaco C, Otto S, Han JJ, Mandel G. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc. Natl Acad. Sci. USA103, 2422–2427 (2006).
  • Vo N, Klein ME, Varlamova O et al. A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl Acad. Sci. USA102, 16426–16431 (2005).
  • Wu J, Xie X. Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol.7, R85 (2006).
  • Dickson LM, Rhodes CJ. Pancreatic β-cell growth and survival in the onset of Type 2 diabetes: a role for protein kinase B in the Akt? Am. J. Physiol. Endocrinol. Metab.287, E192–E198 (2004).
  • Atouf F, Czernichow P, Scharfmann R. Expression of neuronal traits in pancreatic β cells. Implication of neuron-restrictive silencing factor/repressor element silencing transcription factor, a neuron-restrictive silencer. J. Biol. Chem.272, 1929–1934 (1997).
  • Abderrahmani A, Niederhauser G, Plaisance V, Haefliger JA, Regazzi R, Waeber G. Neuronal traits are required for glucose-induced insulin secretion. FEBS Lett.565, 133–138 (2004).
  • Clop A, Marcq F, Takeda H et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet.38, 813–818 (2006).
  • Saunders MA, Liang H, Li WH. Human polymorphism at microRNAs and microRNA target sites. Proc. Natl Acad. Sci. USA104, 3300–3305 (2007).
  • Hutvagner G, Simard MJ, Mello CC, Zamore PD. Sequence-specific inhibition of small RNA function. PLoS Biol.2, E98 (2004).
  • Meister G, Landthaler M, Dorsett Y, Tuschl T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA10, 544–550 (2004).
  • Orom UA, Kauppinen S, Lund AH. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene372, 137–141 (2006).
  • Krutzfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature438, 685–689 (2005).
  • Soutschek J, Akinc A, Bramlage B et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature432, 173–178 (2004).
  • Lilla V, Webb G, Rickenbach K et al. Differential gene expression in well-regulated and dysregulated pancreatic β-cell (MIN6) sublines. Endocrinology144, 1368–1379 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.