30
Views
1
CrossRef citations to date
0
Altmetric
Review

Skeletal muscle AMP kinase as a target to prevent pathogenesis of Type 2 diabetes

, &
Pages 477-485 | Published online: 10 Jan 2014

References

  • Zierath JR, He L, Guma A et al. Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia39(10), 1180–1189 (1996).
  • Shepherd PR, Nave BT, Rincon J et al. Differential regulation of phosphoinositide 3-kinase adapter subunit variants by insulin in human skeletal muscle. J. Biol. Chem.272(30), 19000–19007 (1997).
  • Krook A, Bjornholm M, Galuska D et al. Characterization of signal transduction and glucose transport in skeletal muscle from Type 2 diabetic patients. Diabetes49(2), 284–292 (2000).
  • Bjornholm M, Kawano Y, Lehtihet M, Zierath JR. Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation. Diabetes46(3), 524–527 (1997).
  • Koistinen HA, Galuska D, Chibalin AV et al. 5-amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with Type 2 diabetes. Diabetes52(5), 1066–1072 (2003).
  • Ryder JW, Fahlman R, Wallberg-Henriksson H et al. Effect of contraction on mitogen-activated protein kinase signal transduction in skeletal muscle. Involvement of the mitogen- and stress-activated protein kinase 1. J. Biol. Chem.275(2), 1457–1462 (2000).
  • Storgaard H, Song XM, Jensen CB et al. Insulin signal transduction in skeletal muscle from glucose-intolerant relatives of Type 2 diabetic patients [corrected]. Diabetes50(12), 2770–2778 (2001).
  • Karlsson HK, Hallsten K, Bjornholm M et al. Effects of metformin and rosiglitazone treatment on insulin signaling and glucose uptake in patients with newly diagnosed Type 2 diabetes: a randomized controlled study. Diabetes54(5), 1459–1467 (2005).
  • Eliasson B, Cederholm J, Nilsson P, Gudbjornsdottir S. The gap between guidelines and reality: Type 2 diabetes in a national diabetes register 1996–2003. Diabet. Med.22(10), 1420–1426 (2005).
  • Eliasson B, Eeg-Olofsson K, Cederholm J, Nilsson PM, Gudbjornsdottir S. Antihyperglycaemic treatment of Type 2 diabetes: results from a national diabetes register. Diabetes Metab. (2007) (Epub ahead of print).
  • Chibalin AV, Yu M, Ryder JW et al. Exercise-induced changes in expression and activity of proteins involved in insulin signal transduction in skeletal muscle: differential effects on insulin-receptor substrates 1 and 2. Proc. Natl Acad. Sci. USA97(1), 38–43 (2000).
  • Yu M, Blomstrand E, Chibalin AV et al. Exercise-associated differences in an array of proteins involved in signal transduction and glucose transport. J. Appl. Physiol.90(1), 29–34 (2001).
  • Holloszy JO. Exercise-induced increase in muscle insulin sensitivity. J. Appl. Physiol.99(1), 338–343 (2005).
  • Sakamoto K, Goodyear LJ. Exercise effects on muscle insulin signaling and action: invited review: intracellular signaling in contracting skeletal muscle. J. Appl. Physiol.93(1), 369–383 (2002).
  • Long YC, Widegren U, Zierath JR. Exercise-induced mitogen-activated protein kinase signalling in skeletal muscle. Proc. Nutr. Soc.63(2), 227–232 (2004).
  • Hawley JA, Hargreaves M, Zierath JR. Signalling mechanisms in skeletal muscle: role in substrate selection and muscle adaptation. Essays Biochem.42, 1–12 (2006).
  • Zierath JR. Invited review: exercise training-induced changes in insulin signaling in skeletal muscle. J. Appl. Physiol.93(2), 773–781 (2002).
  • Teran-Garcia M, Rankinen T, Koza RA, Rao DC, Bouchard C. Endurance training-induced changes in insulin sensitivity and gene expression. Am. J. Physiol. Endocrinol. Metab.288(6), E1168–E1178 (2005).
  • Widegren U, Jiang XJ, Krook A et al. Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. FASEB J.12(13), 1379–1389 (1998).
  • Yu M, Blomstrand E, Chibalin AV, Krook A, Zierath JR. Marathon running increases ERK1/2 and p38 MAP kinase signalling to downstream targets in human skeletal muscle. J. Physiol.536(Pt 1), 273–282 (2001).
  • Krook A, Widegren U, Jiang XJ et al. Effects of exercise on mitogen- and stress-activated kinase signal transduction in human skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol.279(5), R1716–R1721 (2000).
  • Niu W, Huang C, Nawaz Z et al. Maturation of the regulation of GLUT4 activity by p38 MAPK during L6 cell myogenesis. J. Biol. Chem.278(20), 17953–17962 (2003).
  • Koistinen HA, Chibalin AV, Zierath JR. Aberrant p38 mitogen-activated protein kinase signalling in skeletal muscle from Type 2 diabetic patients. Diabetologia46(10), 1324–1328 (2003).
  • Al-Khalili L, Chibalin AV, Yu M et al. MEF2 activation in differentiated primary human skeletal muscle cultures requires coordinated involvement of parallel pathways. Am. J. Physiol. Cell Physiol.286, C1410–C1416 (2004).
  • Thai MV, Guruswamy S, Cao KT, Pessin JE, Olson AL. Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice. Regulation of MEF2 DNA binding activity in insulin-deficient diabetes. J. Biol. Chem.273(23), 14285–14292 (1998).
  • Fiedler M, Zierath JR, Selen G et al. 5-aminoimidazole-4-carboxy-amide-1-β-d-ribofuranoside treatment ameliorates hyperglycaemia and hyperinsulinaemia but not dyslipidaemia in KKAy-CETP mice. Diabetologia44(12), 2180–2186 (2001).
  • Song XM, Fiedler M, Galuska D et al. 5-Aminoimidazole-4-carboxamide ribonucleoside treatment improves glucose homeostasis in insulin-resistant diabetic (ob/ob) mice. Diabetologia45(1), 56–65 (2002).
  • Hardie DG. AMP-activated protein kinase as a drug target. Ann. Rev. Pharmacol. Toxicol.47(1), 185–210 (2007).
  • Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J. Clin. Invest.116(7), 1776–1783 (2006).
  • Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology144(12), 5179–5183 (2003).
  • Hardie DG, Scott JW, Pan DA, Hudson ER. Management of cellular energy by the AMP-activated protein kinase system. FEBS Letters546(1), 113–120 (2003).
  • Winder WW. Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J. Appl. Physiol.91(3), 1017–1028 (2001).
  • Carling D. The AMP-activated protein kinase cascade – a unifying system for energy control. Trends Biochem. Sci.29(1), 18–24 (2004).
  • Hardie DG. The AMP-activated protein kinase pathway – new players upstream and downstream. J. Cell. Sci.117(23), 5479–5487 (2004).
  • Hawley SA, Pan DA, Mustard KJ et al. Calmodulin-dependent protein kinase kinase-[β] is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab.2(1), 9–19 (2005).
  • Hurley RL, Anderson KA, Franzone JM et al. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem.280(32), 29060–29066 (2005).
  • Woods A, Dickerson K, Heath R et al. Ca2+/calmodulin-dependent protein kinase kinase-[β] acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metabolism2(1), 21–33 (2005).
  • Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in Type 2 diabetes. Am. J. Physiol. Endocrinol. Metab.277(1), E1–10 (1999).
  • Corton JM, Gillespie JG, Hawley SA, Hardie DG. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem.229(2), 558–565 (1995).
  • Iglesias MA, Ye J-M, Frangioudakis G et al. AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes51(10), 2886–2894 (2002).
  • Chang PY, Jensen J, Printz RL et al. Overexpression of hexokinase II in transgenic mice. Evidence that increased phosphorylation augments muscle glucose uptake. J. Biol. Chem.271(25), 14834–14839 (1996).
  • Zierath JR, Tsao TS, Stenbit AE et al. Restoration of hypoxia-stimulated glucose uptake in GLUT4-deficient muscles by muscle-specific GLUT4 transgenic complementation. J. Biol. Chem.273(33), 20910–20915 (1998).
  • Cuthbertson DJ, Babraj JA, Mustard KJW et al. AICAR acutely stimulates skeletal muscle 2-deoxyglucose uptake in healthy men. Diabetes (2007) (Epub ahead of print).
  • Mu J, Brozinick JT Jr, Valladares O, Bucan M, Birnbaum MJ. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell,7(5), 1085–1094 (2001).
  • Koh H-J, Arnolds DE, Fujii N et al. Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3. Mol. Cell. Biol.26(22), 8217–8227 (2006).
  • Barnes BR, Marklund S, Steiler TL et al. The 5´-AMP-activated protein kinase γ3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J. Biol. Chem.279(37), 38441–38447 (2004).
  • Jorgensen SB, Viollet B, Andreelli F et al. Knockout of the α2 but not α1 5´-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-{β}-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. J. Biol. Chem.279(2), 1070–1079 (2004).
  • Sakamoto K, McCarthy A, Smith D et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J.24(10), 1810–1820 (2005).
  • Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am. J. Physiol. Endocrinol. Metab.270(2), E299–E304 (1996).
  • Winder WW, Wilson HA, Hardie DG et al. Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A. J. Appl. Physiol.82(1), 219–225 (1997).
  • Trumble G, Smith M, Winder W. Purification and characterization of rat skeletal muscle acetyl-CoA carboxylase. Eur. J. Biochem.231(1), 192–198 (1995).
  • Ruderman NB, Saha AK, Vavvas D, Witters LA. Malonyl-CoA, fuel sensing, and insulin resistance. Am. J. Physiol. Endocrinol. Metab.276(1), E1–18 (1999).
  • Merrill GF, Kurth EJ, Hardie DG, Winder WW. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol. Endocrinol. Metab.273(6), E1107–E1112 (1997).
  • Merrill GF, Kurth EJ, Rasmussen BB, Winder WW. Influence of malonyl-CoA and palmitate concentration on rate of palmitate oxidation in rat muscle. J. Appl. Physiol.85(5), 1909–1914 (1998).
  • Brownsey RW, Boone AN, Elliott JE, Kulpa JE, Lee WM. Regulation of acetyl-CoA carboxylase. Biochem. Soc. Trans.34(Pt 2), 223–227 (2006).
  • Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science291(5513), 2613–2616 (2001).
  • Daval M, Foufelle F, Ferre P. Functions of AMP-activated protein kinase in adipose tissue. J. Physiol.574(1), 55–62 (2006).
  • Richards SK, Parton LE, Leclerc I, Rutter GA, Smith RM. Over-expression of AMP-activated protein kinase impairs pancreatic β-cell function in vivo. J. Endocrinol.187(2), 225–235 (2005).
  • Kefas BA, Cai Y, Ling Z et al. AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase. J. Mol. Endocrinol.30(2), 151–161 (2003).
  • Rutter GA, Da Silva Xavier G, Leclerc I. Roles of 5´-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochem. J.375(1), 1–16 (2003).
  • Minokoshi Y, Alquier T, Furukawa N et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature428(6982), 569–574 (2004).
  • Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab.1(1), 15–25 (2005).
  • Mahlapuu M, Johansson C, Lindgren K et al. Expression profiling of the γ-subunit isoforms of AMP-activated protein kinase suggests a major role for γ3 in white skeletal muscle. Am. J. Physiol. Endocrinol. Metab.286(2), E194–E200 (2004).
  • Estrade M, Vignon X, Rock E, Monin G. Glycogen hyperaccumulation in white muscle fibres of RN- carrier pigs. A biochemical and ultrastructural study. Comp. Biochem. Physiol. B104(2), 321–326 (1993).
  • Milan D, Jeon J-T, Looft C et al. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science288(5469), 1248–1251 (2000).
  • Lebret B, Le Roy P, Monin G et al. Influence of the three RN genotypes on chemical composition, enzyme activities, and myofiber characteristics of porcine skeletal muscle. J. Anim Sci.77(6), 1482–1489 (1999).
  • Buhl ES, Jessen N, Schmitz O et al. Chronic treatment with 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner. Diabetes50(1), 12–17 (2001).
  • Wright DC, Geiger PC, Holloszy JO, Han DH. Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle. Am. J. Physiol. Endocrinol. Metab.288(6), E1062–E1066 (2005).
  • Fritz T, Kitz Krämer D, Karlsson HKR et al. Low-intensity exercise increases skeletal muscle protein expression of PPARδ and UCP3 in Type 2 diabetic patients Diabet. Metab. Res. Rev.22(6), 492–498 (2006).
  • Long YC, Barnes BR, Mahlapuu M et al. Role of AMP-activated protein kinase in the coordinated expression of genes controlling glucose and lipid metabolism in mouse white skeletal muscle. Diabetologia48(11), 2354–2364 (2005).
  • Nilsson EC, Long YC, Martinsson S et al. Opposite transcriptional regulation in skeletal muscle of AMP-activated protein kinase γ3 R225Q transgenic versus knock-out mice. J. Biol. Chem.281(11), 7244–7252 (2006).
  • Long YC, Glund S, Garcia-Roves PM, Zierath JR. Calcineurin regulates skeletal muscle metabolism via coordinated changes in gene expression. J. Biol. Chem.282(3), 1607–1614 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.