27
Views
1
CrossRef citations to date
0
Altmetric
Review

Function of nuclear steroid receptors in apoptosis: role of ursodeoxycholic acid

, , &
Pages 487-501 | Published online: 10 Jan 2014

References

  • Kucharova S, Farkas R. Hormone nuclear receptors and their ligands: role in programmed cell death (review). Endocr. Regul.36, 37–60 (2002).
  • Banerjee P, Chatterjee M. Antiproliferative role of vitamin D and its analogs – a brief overview. Mol. Cell. Biochem.253, 247–254 (2003).
  • Daniel PT. Dissecting the pathways to death. Leukemia14, 2035–2044 (2000).
  • Reed JC. Apoptosis-based therapies. Nat. Rev. Drug. Discov.1, 111–121 (2002).
  • Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immunol. Today18, 44–51 (1997).
  • Zamzami N, Susin SA, Marchetti P et al. Mitochondrial control of nuclear apoptosis. J. Exp. Med.183, 1533–1544 (1996).
  • Sorenson CM. Bcl-2 family members and disease. Biochim. Biophys. Acta1644, 169–177 (2004).
  • Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev.13, 1899–1911 (1999).
  • Eskes R, Antonsson B, Osen-Sand A et al. Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J. Cell. Biol.143, 217–224 (1998).
  • Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J. Biol. Chem.274, 2225–2233 (1999).
  • Antonsson B, Conti F, Ciavatta A et al. Inhibition of Bax channel-forming activity by Bcl-2. Science277, 370–372 (1997).
  • Parone PA, James D, Martinou JC. Mitochondria: regulating the inevitable. Biochimie84, 105–111 (2002).
  • Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell90, 405–413 (1997).
  • Thornberry NA, Lazebnik Y. Caspases: enemies within. Science281, 1312–1316 (1998).
  • Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell.9, 459–470 (2002).
  • Rosen A, Casciola-Rosen L. Macromolecular substrates for the ICE-like proteases during apoptosis. J. Cell. Biochem.64, 50–54 (1997).
  • Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell117, 561–574 (2004).
  • Phillips AC, Ernst MK, Bates S, Rice NR, Vousden KH. E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol. Cell4, 771–781 (1999).
  • Bates S, Vousden KH. Mechanisms of p53-mediated apoptosis. Cell Mol. Life Sci.55, 28–37 (1999).
  • Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature387, 299–303 (1997).
  • Bates S, Phillips AC, Clark PA et al. p14ARF links the tumour suppressors RB and p53. Nature395, 124–125 (1998).
  • Schuler M, Green DR. Mechanisms of p53-dependent apoptosis. Biochem. Soc. Trans.29, 684–688 (2001).
  • Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell80, 293–299 (1995).
  • Thornborrow EC, Manfredi JJ. The tumor suppressor protein p53 requires a cofactor to activate transcriptionally the human BAX promoter. J. Biol. Chem.276, 15598–15608 (2001).
  • Miyashita T, Krajewski S, Krajewska M et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene9, 1799–1805 (1994).
  • Krammer PH. CD95(APO-1/Fas)-mediated apoptosis: live and let die. Adv. Immunol.71, 163–210 (1999).
  • Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell94, 491–501 (1998).
  • Eskes R, Desagher S, Antonsson B, Martinou JC. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol.20, 929–935 (2000).
  • Datta SR, Dudek H, Tao X et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell91, 231–241 (1997).
  • del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science278, 687–689 (1997).
  • Wang HG, Pathan N, Ethell IM et al. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science284, 339–343 (1999).
  • Kane LP, Shapiro VS, Stokoe D, Weiss A. Induction of NF-κB by the Akt/PKB kinase. Curr. Biol.9, 601–604 (1999).
  • Mattson MP, Camandola S. NF-κB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest.107, 247–254 (2001).
  • Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science294, 1866–1870 (2001).
  • Mangelsdorf DJ, Thummel C, Beato M et al. The nuclear receptor superfamily: the second decade. Cell83, 835–839 (1995).
  • Laudet V. Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J. Mol. Endocrinol.19, 207–226 (1997).
  • Maglich JM, Sluder A, Guan X et al. Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes. Genome Biol.2, RESEARCH0029 (2001).
  • Giguere V. Orphan nuclear receptors: from gene to function. Endocr. Rev.20, 689–725 (1999).
  • Pei L, Waki H, Vaitheesvaran B, Wilpitz DC, Kurland IJ, Tontonoz P. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat. Med.12, 1048–1055 (2006).
  • Jakel H, Fruchart-Najib J, Fruchart JC. Retinoic acid receptor-related orphan receptor α as a therapeutic target in the treatment of dyslipidemia and atherosclerosis. Drug News Perspect.19, 91–97 (2006).
  • Wu Q, Dawson MI, Zheng Y et al. Inhibition of trans-retinoic acid-resistant human breast cancer cell growth by retinoid X receptor-selective retinoids. Mol. Cell. Biol.17, 6598–6608 (1997).
  • Sun P, Wei L, Denkert C, Lichtenegger W, Sehouli J. The orphan nuclear receptors, estrogen receptor-related receptors: their role as new biomarkers in gynecological cancer. Anticancer Res.26, 1699–1706 (2006).
  • Madan AP, DeFranco DB. Bidirectional transport of glucocorticoid receptors across the nuclear envelope. Proc. Natl Acad. Sci. USA90, 3588–3592 (1993).
  • Prima V, Depoix C, Masselot B, Formstecher P, Lefebvre P. Alteration of the glucocorticoid receptor subcellular localization by non steroidal compounds. J. Steroid Biochem. Mol. Biol.72, 1–12 (2000).
  • Bohen SP, Kralli A, Yamamoto KR. Hold ’em and fold ’em: chaperones and signal transduction. Science268, 1303–1304 (1995).
  • Lange CA. Making sense of cross-talk between steroid hormone receptors and intracellular signaling pathways: who will have the last word? Mol. Endocrinol.18, 269–278 (2004).
  • Fu M, Rao M, Wang C et al. Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol. Cell. Biol.23, 8563–8575 (2003).
  • Lu NZ, Cidlowski JA. The origin and functions of multiple human glucocorticoid receptor isoforms. Ann. NY Acad. Sci.1024, 102–123 (2004).
  • Lazar M. Mechanism of action of hormones that act on nuclear receptors. In: Williams Textbook of Endcrinology, 10th Edition. Saunders WB, PA, USA (2002).
  • Fu M, Wang C, Zhang X, Pestell R. Nuclear receptor modifications and endocrine cell proliferation. J. Steroid Biochem. Mol. Biol.85, 133–138 (2003).
  • Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature377, 454–457 (1995).
  • Christiaens V, Bevan CL, Callewaert L et al. Characterization of the two coactivator-interacting surfaces of the androgen receptor and their relative role in transcriptional control. J. Biol. Chem.277, 49230–49237 (2002).
  • Moore JT, Goodwin B, Willson TM, Kliewer SA. Nuclear receptor regulation of genes involved in bile acid metabolism. Crit. Rev. Eukaryot. Gene Expr.12, 119–135 (2002).
  • Hafezi-Moghadam A, Simoncini T, Yang E et al. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat. Med.8, 473–479 (2002).
  • Limbourg FP, Huang Z, Plumier JC et al. Rapid nontranscriptional activation of endothelial nitric oxide synthase mediates increased cerebral blood flow and stroke protection by corticosteroids. J. Clin. Invest.110, 1729–1738 (2002).
  • Fu M, Wang C, Zhang X, Pestell RG. Acetylation of nuclear receptors in cellular growth and apoptosis. Biochem. Pharmacol.68, 1199–1208 (2004).
  • Almawi WY, Melemedjian OK, Jaoude MM. On the link between Bcl-2 family proteins and glucocorticoid-induced apoptosis. J. Leukoc. Biol.76, 7–14 (2004).
  • Almeida OF, Conde GL, Crochemore C et al. Subtle shifts in the ratio between pro- and antiapoptotic molecules after activation of corticosteroid receptors decide neuronal fate. FASEB J.14, 779–790 (2000).
  • Distelhorst CW. Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ.9, 6–19 (2002).
  • Moll UM, Marchenko N, Zhang XK. p53 and Nur77/TR3 – transcription factors that directly target mitochondria for cell death induction. Oncogene25, 4725–4743 (2006).
  • Song RX, Santen RJ. Membrane initiated estrogen signaling in breast cancer. Biol. Reprod.75, 9–16 (2006).
  • McCormick JA, Lyons V, Jacobson MD et al. 5´-heterogeneity of glucocorticoid receptor messenger RNA is tissue specific: differential regulation of variant transcripts by early-life events. Mol. Endocrinol.14, 506–517 (2000).
  • Bastian LS, Nordeen SK. Concerted stimulation of transcription by glucocorticoid receptors and basal transcription factors: limited transcriptional synergism suggests mediation by coactivators/adaptors. Mol. Endocrinol.5, 619–627 (1991).
  • Beato M, Herrlich P, Schutz G. Steroid hormone receptors: many actors in search of a plot. Cell83, 851–857 (1995).
  • Cidlowski JA, King KL, Evans-Storms RB, Montague JW, Bortner CD, Hughes FM Jr. The biochemistry and molecular biology of glucocorticoid-induced apoptosis in the immune system. Recent Prog. Horm. Res.51, 457–490; discussion 490–451 (1996).
  • Helmberg A, Auphan N, Caelles C, Karin M. Glucocorticoid-induced apoptosis of human leukemic cells is caused by the repressive function of the glucocorticoid receptor. EMBO J.14, 452–460 (1995).
  • Ramdas J, Harmon JM. Glucocorticoid-induced apoptosis and regulation of NF-κB activity in human leukemic T cells. Endocrinology139, 3813–3821 (1998).
  • Huang ST, Cidlowski JA. Phosphorylation status modulates Bcl-2 function during glucocorticoid-induced apoptosis in T lymphocytes. FASEB J.16, 825–832 (2002).
  • Sasagawa I, Yazawa H, Suzuki Y, Nakada T. Stress and testicular germ cell apoptosis. Arch. Androl.47, 211–216 (2001).
  • Rasmuson S, Andrew R, Nasman B, Seckl JR, Walker BR, Olsson T. Increased glucocorticoid production and altered cortisol metabolism in women with mild to moderate Alzheimer’s disease. Biol. Psychiatry49, 547–552 (2001).
  • Wetzel DM, Bohn MC, Kazee AM, Hamill RW. Glucocorticoid receptor mRNA in Alzheimer’s diseased hippocampus. Brain Res.679, 72–81 (1995).
  • Sasson R, Tajima K, Amsterdam A. Glucocorticoids protect against apoptosis induced by serum deprivation, cyclic adenosine 3´,5´-monophosphate and p53 activation in immortalized human granulosa cells: involvement of Bcl-2. Endocrinology142, 802–811 (2001).
  • Crochemore C, Michaelidis TM, Fischer D, Loeffler JP, Almeida OF. Enhancement of p53 activity and inhibition of neural cell proliferation by glucocorticoid receptor activation. FASEB J.16, 761–770 (2002).
  • Bellosillo B, Villamor N, Lopez-Guillermo A et al. Spontaneous and drug-induced apoptosis is mediated by conformational changes of Bax and Bak in B-cell chronic lymphocytic leukemia. Blood100, 1810–1816 (2002).
  • Ranta F, Avram D, Berchtold S et al. Dexamethasone induces cell death in insulin-secreting cells, an effect reversed by exendin-4. Diabetes55, 1380–1390 (2006).
  • Sionov RV, Cohen O, Kfir S, Zilberman Y, Yefenof E. Role of mitochondrial glucocorticoid receptor in glucocorticoid-induced apoptosis. J. Exp. Med.203, 189–201 (2006).
  • Pagliacci MC, Migliorati G, Smacchia M, Grignani F, Riccardi C, Nicoletti I. Cellular stress and glucocorticoid hormones protect L929 mouse fibroblasts from tumor necrosis factor α cytotoxicity. J. Endocrinol. Invest.16, 591–599 (1993).
  • Cox G, Austin RC. Dexamethasone-induced suppression of apoptosis in human neutrophils requires continuous stimulation of new protein synthesis. J. Leukoc. Biol.61, 224–230 (1997).
  • Gascoyne DM, Kypta RM, Vivanco MM. Glucocorticoids inhibit apoptosis during fibrosarcoma development by transcriptionally activating Bcl-xL. J. Biol. Chem.278, 18022–18029 (2003).
  • Rogatsky I, Trowbridge JM, Garabedian MJ. Glucocorticoid receptor-mediated cell cycle arrest is achieved through distinct cell-specific transcriptional regulatory mechanisms. Mol. Cell Biol.17, 3181–3193 (1997).
  • Evans-Storms RB, Cidlowski JA. Dominant suppression of lymphocyte apoptosis by hepatoma cells. Exp. Cell Res.230, 121–132 (1997).
  • Yamamoto M, Fukuda K, Miura N, Suzuki R, Kido T, Komatsu Y. Inhibition by dexamethasone of transforming growth factor β1-induced apoptosis in rat hepatoma cells: a possible association with Bcl-xL induction. Hepatology27, 959–966 (1998).
  • Bailly-Maitre B, de Sousa G, Boulukos K, Gugenheim J, Rahmani R. Dexamethasone inhibits spontaneous apoptosis in primary cultures of human and rat hepatocytes via Bcl-2 and Bcl-xL induction. Cell Death Differ.8, 279–288 (2001).
  • Ni Chonghaile T, Concannon CG, Szegezdi E, Gorman AM, Samali A. Dexamethasone inhibits apoptosis in C6 glioma cells through increased expression of Bcl-XL. Apoptosis11, 1247–1255 (2006).
  • Scoltock AB, Heimlich G, Cidlowski JA. Glucocorticoids inhibit the apoptotic actions of UV-C but not Fas ligand in hepatoma cells: direct evidence for a critical role of Bcl-x(L). Cell Death Differ.14, 840–850 (2007).
  • Karabelyos C, Dobozy O, Szalai C et al. Elevated hepatic glucocorticoid receptor expression during liver regeneration in rats. Pathol. Oncol. Res.5, 107–109 (1999).
  • Goodlad GA, Clark CM. Glucocorticoid-induced changes in liver: inhibition of nuclear Ca2+, Mg2+-dependent endonuclease activity in response to dexamethasone administration. Cell Biochem. Funct.13, 251–257 (1995).
  • Evans-Storms RB, Cidlowski JA. Delineation of an antiapoptotic action of glucocorticoids in hepatoma cells: the role of nuclear factor-κB. Endocrinology141, 1854–1862 (2000).
  • Moran TJ, Gray S, Mikosz CA, Conzen SD. The glucocorticoid receptor mediates a survival signal in human mammary epithelial cells. Cancer Res.60, 867–872 (2000).
  • Mikosz CA, Brickley DR, Sharkey MS, Moran TW, Conzen SD. Glucocorticoid receptor-mediated protection from apoptosis is associated with induction of the serine/threonine survival kinase gene, sgk-1. J. Biol. Chem.276, 16649–16654 (2001).
  • Sengupta S, Wasylyk B. Physiological and pathological consequences of the interactions of the p53 tumor suppressor with the glucocorticoid, androgen, and estrogen receptors. Ann. NY Acad. Sci.1024, 54–71 (2004).
  • Hassan AH, von Rosenstiel P, Patchev VK, Holsboer F, Almeida OF. Exacerbation of apoptosis in the dentate gyrus of the aged rat by dexamethasone and the protective role of corticosterone. Exp. Neurol.140, 43–52 (1996).
  • Planey SL, Derfoul A, Steplewski A, Robertson NM, Litwack G. Inhibition of glucocorticoid-induced apoptosis in 697 pre-B lymphocytes by the mineralocorticoid receptor N-terminal domain. J. Biol. Chem.277, 42188–42196 (2002).
  • Cutolo M, Sulli A, Barone A, Seriolo B, Accardo S. Sex hormones, proto-oncogene expression and apoptosis: their effects on rheumatoid synovial tissue. Clin. Exp. Rheumatol.14, 87–94 (1996).
  • Yao M, Nguyen TV, Pike CJ. Estrogen regulates Bcl-w and Bim expression: role in protection against β-amyloid peptide-induced neuronal death. J. Neurosci.27, 1422–1433 (2007).
  • Zhang CC, Shapiro DJ. Activation of the p38 mitogen-activated protein kinase pathway by estrogen or by 4-hydroxytamoxifen is coupled to estrogen receptor-induced apoptosis. J. Biol. Chem.275, 479–486 (2000).
  • Altiok N, Koyuturk M, Altiok S. JNK pathway regulates estradiol-induced apoptosis in hormone-dependent human breast cancer cells. Breast Cancer Res. Treat. (2006) (Epub ahead of print).
  • Fu M, Wang C, Wang J et al. Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function. Mol. Cell Biol.22, 3373–3388 (2002).
  • Wang C, Fu M, Angeletti RH et al. Direct acetylation of the estrogen receptor α hinge region by p300 regulates transactivation and hormone sensitivity. J. Biol. Chem.276, 18375–18383 (2001).
  • Whitfield GK, Jurutka PW, Haussler CA, Haussler MR. Steroid hormone receptors: evolution, ligands, and molecular basis of biologic function. J. Cell Biochem.32–33(Suppl.), 110–122 (1999).
  • Maher JJ. What doesn’t kill you makes you stronger: how hepatocytes survive prolonged cholestasis. Hepatology39, 1141–1143 (2004).
  • Higuchi H, Yoon JH, Grambihler A, Werneburg N, Bronk SF, Gores GJ. Bile acids stimulate cFLIP phosphorylation enhancing TRAIL-mediated apoptosis. J. Biol. Chem.278, 454–461 (2003).
  • Sokol RJ, Straka MS, Dahl R et al. Role of oxidant stress in the permeability transition induced in rat hepatic mitochondria by hydrophobic bile acids. Pediatr. Res.49, 519–531 (2001).
  • Rodrigues CMP, Solá S, Sharpe JC, Moura JJ, Steer CJ. Tauroursodeoxycholic acid prevents Bax-induced membrane perturbation and cytochrome c release in isolated mitochondria. Biochemistry42, 3070–3080 (2003).
  • Schoemaker MH, Conde de la Rosa L, Buist-Homan M et al. Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways. Hepatology39, 1563–1573 (2004).
  • Russell DW, Setchell KD. Bile acid biosynthesis. Biochemistry31, 4737–4749 (1992).
  • Gong YZ, Everett ET, Schwartz DA, Norris JS, Wilson FA. Molecular cloning, tissue distribution, and expression of a 14-κDa bile acid-binding protein from rat ileal cytosol. Proc. Natl Acad. Sci. USA91, 4741–4745 (1994).
  • Russell DW. Nuclear orphan receptors control cholesterol catabolism. Cell97, 539–542 (1999).
  • Makishima M, Okamoto AY, Repa JJ et al. Identification of a nuclear receptor for bile acids. Science284, 1362–1365 (1999).
  • Xie W, Radominska-Pandya A, Shi Y et al. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc. Natl Acad. Sci. USA98, 3375–3380 (2001).
  • Staudinger JL, Goodwin B, Jones SA et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl Acad. Sci. USA98, 3369–3374 (2001).
  • Paumgartner G, Beuers U. Mechanisms of action and therapeutic efficacy of ursodeoxycholic acid in cholestatic liver disease. Clin. Liver Dis.8, 67–81, vi (2004).
  • Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J. Clin. Invest.101, 2790–2799 (1998).
  • Schoemaker MH, Conde de la Rosa L, Buist-Homan M et al. Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways. Hepatology39, 1563–1573 (2004).
  • Rodrigues CM, Ma X, Linehan-Stieers C, Fan G, Kren BT, Steer CJ. Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation. Cell Death Differ.6, 842–854 (1999).
  • Solá S, Ma X, Castro RE, Kren BT, Steer CJ, Rodrigues CM. Ursodeoxycholic acid modulates E2F-1 and p53 expression through a caspase-independent mechanism in transforming growth factor β1-induced apoptosis of rat hepatocytes. J. Biol. Chem.278, 48831–48838 (2003).
  • Solá S, Castro RE, Kren BT, Steer CJ, Rodrigues CM. Modulation of nuclear steroid receptors by ursodeoxycholic acid inhibits TGF-β1-induced E2F-1/p53-mediated apoptosis of rat hepatocytes. Biochemistry43, 8429–8438 (2004).
  • Kren BT, Rodrigues CM, Setchell KD, Steer CJ. Modulation of steady-state messenger RNA levels in the regenerating rat liver with bile acid feeding. Liver Transpl.7, 321–334 (2001).
  • Solá S, Amaral JD, Castro RE et al. Nuclear translocation of UDCA by the glucocorticoid receptor is required to reduce TGF-β1-induced apoptosis in rat hepatocytes. Hepatology42, 925–934 (2005).
  • Setchell KD, Rodrigues CM, Clerici C et al. Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei. Gastroenterology112, 226–235 (1997).
  • Monte MJ, Martinez-Diez MC, El-Mir MY et al. Changes in the pool of bile acids in hepatocyte nuclei during rat liver regeneration. J. Hepatol.36, 534–542 (2002).
  • Mendoza ME, Monte MJ, El-Mir MY, Badia MD, Marin JJ. Changes in the pattern of bile acids in the nuclei of rat liver cells during hepatocarcinogenesis. Clin. Sci. (Lond.)102, 143–150 (2002).
  • Tanaka H, Makino Y, Miura T et al. Ligand-independent activation of the glucocorticoid receptor by ursodeoxycholic acid. Repression of IFN-g-induced MHC class II gene expression via a glucocorticoid receptor-dependent pathway. J. Immunol.156, 1601–1608 (1996).
  • Miura T, Ouchida R, Yoshikawa N et al. Functional modulation of the glucocorticoid receptor and suppression of NF-κB-dependent transcription by ursodeoxycholic acid. J. Biol. Chem.276, 47371–47378 (2001).
  • Mitsuyoshi H, Nakashima T, Inaba K et al. Ursodeoxycholic acid enhances glucocorticoid-induced tyrosine aminotransferase-gene expression in cultured rat hepatocytes. Biochem. Biophys. Res. Commun.240, 732–736 (1997).
  • Bourguet W, Germain P, Gronemeyer H. Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Trends Pharmacol. Sci.21, 381–388 (2000).
  • Im E, Martinez JD. Ursodeoxycholic acid (UDCA) can inhibit deoxycholic acid (DCA)-induced apoptosis via modulation of EGFR/Raf-1/ERK signaling in human colon cancer cells. J. Nutr.134, 483–486 (2004).
  • Howard WR, Pospisil JA, Njolito E, Noonan DJ. Catabolites of cholesterol synthesis pathways and forskolin as activators of the farnesoid X-activated nuclear receptor. Toxicol. Appl. Pharmacol.163, 195–202 (2000).
  • Chiang JY, Kimmel R, Weinberger C, Stroup D. Farnesoid X receptor responds to bile acids and represses cholesterol 7α-hydroxylase gene (CYP7A1) transcription. J. Biol. Chem.275, 10918–10924 (2000).
  • Schuetz EG, Strom S, Yasuda K et al. Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J. Biol. Chem.276, 39411–39418 (2001).
  • Haughton EL, Tucker SJ, Marek CJ et al. Pregnane X receptor activators inhibit human hepatic stellate cell transdifferentiation in vitro. Gastroenterology131, 194–209 (2006).
  • Solá S, Amaral JD, Borralho PM et al. Functional modulation of nuclear steroid receptors by tauroursodeoxycholic acid reduces amyloid β-peptide-induced apoptosis. Mol. Endocrinol.20, 2292–2303 (2006).
  • Keene CD, Rodrigues CM, Eich T, Chhabra MS, Steer CJ, Low WC. Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proc. Natl Acad. Sci. USA99, 10671–10676 (2002).
  • Rodrigues CM, Spellman SR, Solá S et al. Neuroprotection by a bile acid in an acute stroke model in the rat. J. Cereb. Blood Flow Metab.22, 463–471 (2002).
  • Rodrigues CM, Solá S, Nan Z et al. Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proc. Natl Acad. Sci. USA100, 6087–6092 (2003).
  • Duan WM, Rodrigues CM, Zhao LR, Steer CJ, Low WC. Tauroursodeoxycholic acid improves the survival and function of nigral transplants in a rat model of Parkinson’s disease. Cell Transplant11, 195–205 (2002).
  • Ved R, Saha S, Westlund B et al. Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of α-synuclein, parkin and DJ-1 in C. elegans. J. Biol. Chem.280, 42655–42668 (2005).
  • Rodrigues CM, Solá S, Brites D. Bilirubin induces apoptosis via the mitochondrial pathway in developing rat brain neurons. Hepatology35, 1186–1195 (2002).
  • Keene CD, Rodrigues CM, Eich T et al. A bile acid protects against motor and cognitive deficits and reduces striatal degeneration in the 3-nitropropionic acid model of Huntington’s disease. Exp. Neurol.171, 351–360 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.