22
Views
4
CrossRef citations to date
0
Altmetric
Review

Metabolic regulation: effects of natriuretic peptide interactions

, &
Pages 607-614 | Published online: 10 Jan 2014

References

  • de Bold AJ, Borenstein HB, Veress AT et al. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Reprinted from Life Sci.28, 89–94 (1981). J. Am. Soc. Nephrol.12, 403–409 (2001).
  • de Bold AJ, Borenstein HB, Veress AT et al. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci.28, 89–94 (1981).
  • Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr. Rev.27, 47–72 (2006).
  • Yang-Feng TL, Floyd-Smith G, Nemer M et al. The pronatriodilatin gene is located on the distal short arm of human chromosome 1 and on mouse chromosome 4. Am. J. Hum. Genet.37, 1117–1128 (1985).
  • Sudoh T, Kangawa K, Minamino N et al. A new natriuretic peptide in porcine brain. Nature332, 78–81 (1988).
  • Potter LR, Garbers DL. Dephosphorylation of the guanylyl cyclase-A receptor causes desensitization. J. Biol. Chem.267, 14531–14534 (1992).
  • Kuhn M, Voss M, Mitko D et al. Left ventricular assist device support reverses altered cardiac expression and function of natriuretic peptides and receptors in end-stage heart failure. Cardiovasc. Res.64, 308–314 (2004).
  • Haneda M, Kikkawa R, Maeda S et al. Dual mechanism of angiotensin II inhibits ANP-induced mesangial cGMP accumulation. Kidney Int.40, 188–194 (1991).
  • Abbey SE, Potter LR. Vasopressin-dependent inhibition of the C-type natriuretic peptide receptor, NPR-B/GC-B, requires elevated intracellular calcium concentrations. J. Biol. Chem.277, 42423–42430 (2002).
  • Sarzani R, Dessi-Fulgheri P, Paci VM et al. Expression of natriuretic peptide receptors in human adipose and other tissues. J. Endocrinol. Invest.19, 581–585 (1996).
  • Schulz S, Singh S, Bellet RA et al. The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell58, 1155–1162 (1989).
  • Suga S, Nakao K, Hosoda K et al. Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology130, 229–239 (1992).
  • Pagano M, Anand-Srivastava MB. Cytoplasmic domain of natriuretic peptide receptor C constitutes Gi activator sequences that inhibit adenylyl cyclase activity. J. Biol. Chem.276, 22064–22070 (2001).
  • Anand-Srivastava MB, Sehl PD, Lowe DG. Cytoplasmic domain of natriuretic peptide receptor-C inhibits adenylyl cyclase. Involvement of a pertussis toxin-sensitive G protein. J. Biol. Chem.271, 19324–19329 (1996).
  • Jaubert J, Jaubert F, Martin N et al. Three new allelic mouse mutations that cause skeletal overgrowth involve the natriuretic peptide receptor C gene (Npr3). Proc. Natl Acad. Sci. USA96, 10278–10283 (1999).
  • Matsukawa N, Grzesik WJ, Takahashi N et al. The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc. Natl Acad. Sci. USA96, 7403–7408 (1999).
  • Charles CJ, Espiner EA, Nicholls MG et al. Clearance receptors and endopeptidase 24.11: equal role in natriuretic peptide metabolism in conscious sheep. Am. J. Physiol.271, R373–R380 (1996).
  • Edwards BS, Zimmerman RS, Schwab TR et al. Atrial stretch, not pressure, is the principal determinant controlling the acute release of atrial natriuretic factor. Circ. Res.62, 191–195 (1988).
  • Engelmann MD, Niemann L, Kanstrup IL et al. Natriuretic peptide response to dynamic exercise in patients with atrial fibrillation. Int. J. Cardiol.105, 31–39 (2005).
  • Moro C, Crampes F, Sengenes C et al. Atrial natriuretic peptide contributes to physiological control of lipid mobilization in humans. FASEB J.18, 908–910 (2004).
  • Ogihara T, Shima J, Hara H et al. Significant increase in plasma immunoreactive atrial natriuretic polypeptide concentration during head-out water immersion. Life Sci.38, 2413–2418 (1986).
  • Hollister AS, Tanaka I, Imada T et al. Sodium loading and posture modulate human atrial natriuretic factor plasma levels. Hypertension8, II106–II111 (1986).
  • Cody RJ, Atlas SA, Laragh JH et al. Atrial natriuretic factor in normal subjects and heart failure patients. Plasma levels and renal, hormonal, and hemodynamic responses to peptide infusion. J. Clin. Invest.78, 1362–1374 (1986).
  • Mukoyama M, Nakao K, Hosoda K et al. Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J. Clin. Invest.87, 1402–1412 (1991).
  • McCullough PA, Nowak RM, McCord J et al. B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: analysis from Breathing Not Properly (BNP) multinational study. Circulation106, 416–422 (2002).
  • Publication Committee for the VMAC Investigators. Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. JAMA287, 1531–1540 (2002).
  • Sengenes C, Berlan M et al. Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB J.14, 1345–1351 (2000).
  • Moro C, Galitzky J, Sengenes C et al. Functional and pharmacological characterization of the natriuretic peptide-dependent lipolytic pathway in human fat cells. J. Pharmacol. Exp. Ther.308, 984–992 (2004).
  • Degerman E, Belfrage P, Manganiello VC. Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3). J. Biol. Chem.272, 6823–6826 (1997).
  • Boschmann M. Heterogenity of adipose tissue metabolism. In: Adipose Tissue. Klaus S (Ed.). Landes Bioscience, CO, USA 131–157 (2001).
  • Birkenfeld AL, Boschmann M, Moro C et al. β-adrenergic and atrial natriuretic peptide interactions on human cardiovascular and metabolic regulation. J. Clin. Endocrinol. Metab.91, 5069–5075 (2006).
  • Sengenes C, Bouloumie A, Hauner H et al. Involvement of a cGMP-dependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes. J. Biol. Chem.278, 48617–48626 (2003).
  • Khoo JC, Sperry PJ, Gill GN et al. Activation of hormone-sensitive lipase and phosphorylase kinase by purified cyclic GMP-dependent protein kinase. Proc. Natl Acad. Sci. USA74, 4843–4847 (1977).
  • Sengenes C, Zakaroff-Girard A, Moulin A et al. Natriuretic peptide-dependent lipolysis in fat cells is a primate specificity. Am. J. Physiol. Regul. Integr. Comp. Physiol.283, R257–R265 (2002).
  • Birkenfeld AL, Boschmann M, Moro C et al. Lipid mobilization with physiological atrial natriuretic peptide concentrations in humans. J. Clin. Endocrinol. Metab.90, 3622–3628 (2005).
  • Uehlinger DE, Weidmann P, Gnadinger MP et al. Increase in circulating insulin induced by atrial natriuretic peptide in normal humans. J. Cardiovasc. Pharmacol.8, 1122–1129 (1986).
  • Moro C, Polak J, Richterova B et al. Differential regulation of atrial natriuretic peptide- and adrenergic receptor-dependent lipolytic pathways in human adipose tissue. Metabolism54, 122–131 (2005).
  • Floras JS. Sympathoinhibitory effects of atrial natriuretic factor in normal humans. Circulation81, 1860–1873 (1990).
  • Lang CC, Struthers AD. Interactions between atrial natriuretic factor and the autonomic nervous system. Clin. Auton. Res.1, 329–336 (1991).
  • Galitzky J, Sengenes C, Thalamas C et al. The lipid-mobilizing effect of atrial natriuretic peptide is unrelated to sympathetic nervous system activation or obesity in young men. J. Lipid Res.42, 536–544 (2001).
  • Rashed HM, Nair BG, Patel TB. Regulation of hepatic glycolysis and gluconeogenesis by atrial natriuretic peptide. Arch. Biochem. Biophys.298, 640–645 (1992).
  • Tunstall RJ, Cameron-Smith D. Effect of elevated lipid concentrations on human skeletal muscle gene expression. Metabolism54, 952–959 (2005).
  • Moro C, Klimcakova E, Lolmede K et al. Atrial natriuretic peptide inhibits the production of adipokines and cytokines linked to inflammation and insulin resistance in human subcutaneous adipose tissue. Diabetologia50, 1038–1047 (2007).
  • Kiemer AK, Hartung T, Vollmar AM. cGMP-mediated inhibition of TNF-α production by the atrial natriuretic peptide in murine macrophages. J. Immunol.165, 175–181 (2000).
  • Kiemer AK, Lehner MD, Hartung T et al. Inhibition of cyclooxygenase-2 by natriuretic peptides. Endocrinology143, 846–852 (2002).
  • Weber NC, Blumenthal SB, Hartung T et al. ANP inhibits TNF-α-induced endothelial MCP-1 expression – involvement of p38 MAPK and MKP-1. J. Leukoc. Biol.74, 932–941 (2003).
  • Fain JN, Kanu A, Bahouth SW et al. Inhibition of leptin release by atrial natriuretic peptide (ANP) in human adipocytes. Biochem. Pharmacol.65, 1883–1888 (2003).
  • Kistorp C, Faber J, Galatius S et al. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation112, 1756–1762 (2005).
  • Wang TJ, Larson MG, Levy D et al. Impact of obesity on plasma natriuretic peptide levels. Circulation109, 594–600 (2004).
  • Wang TJ, Larson MG, Keyes MJ et al. Association of plasma natriuretic peptide levels with metabolic risk factors in ambulatory individuals. Circulation115, 1345–1353 (2007).
  • Igaki T, Itoh H, Suga S et al. C-type natriuretic peptide in chronic renal failure and its action in humans. Kidney Int. Suppl.55, S144–S147 (1996).
  • Cogan E, Debieve MF, Philipart I et al. High plasma levels of atrial natriuretic factor in SIADH. N. Engl. J. Med.314, 1258–1259 (1986).
  • La Villa G, Romanelli RG, Casini R et al. Plasma levels of brain natriuretic peptide in patients with cirrhosis. Hepatology16, 156–161 (1992).
  • Chen YF. Atrial natriuretic peptide in hypoxia. Peptides26, 1068–1077 (2005).
  • Tan AC, Russel FG, Thien T et al. Atrial natriuretic peptide. An overview of clinical pharmacology and pharmacokinetics. Clin. Pharmacokinet.24, 28–45 (1993).
  • Singh G, Kuc RE, Maguire JJ et al. Novel snake venom ligand dendroaspis natriuretic peptide is selective for natriuretic peptide receptor-A in human heart: downregulation of natriuretic peptide receptor-A in heart failure. Circ. Res.99, 183–190 (2006).
  • Moro C, Polak J, Hejnova J et al. Atrial natriuretic peptide stimulates lipid mobilization during repeated bouts of endurance exercise. Am. J. Physiol. Endocrinol. Metab.290, E864–E869 (2006).
  • Moro C, Pillard F, De G, I et al. Training enhances ANP lipid-mobilizing action in adipose tissue of overweight men. Med. Sci. Sports Exerc.37, 1126–1132 (2005).
  • Depre C, Shipley GL, Chen W et al. Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat. Med.4, 1269–1275 (1998).
  • Tuunanen H, Engblom E, Naum A et al. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation114, 2130–2137 (2006).
  • Anker SD, Ponikowski P, Varney S et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet349, 1050–1053 (1997).
  • von Haehling S, Doehner W, Anker SD. Nutrition, metabolism, and the complex pathophysiology of cachexia in chronic heart failure. Cardiovasc. Res.73, 298–309 (2007).
  • McEntegart MB, Awede B, Petrie MC et al. Increase in serum adiponectin concentration in patients with heart failure and cachexia: relationship with leptin, other cytokines, and B-type natriuretic peptide. Eur. Heart J.28(7), 829–835 (2007).
  • Dessi-Fulgheri P, Sarzani R, Tamburrini P et al. Plasma atrial natriuretic peptide and natriuretic peptide receptor gene expression in adipose tissue of normotensive and hypertensive obese patients. J. Hypertens.15, 1695–1699 (1997).
  • Licata G, Volpe M, Scaglione R et al. Salt-regulating hormones in young normotensive obese subjects. Effects of saline load. Hypertension23, I20–I24 (1994).
  • Sarzani R, Strazzullo P, Salvi F et al. Natriuretic peptide clearance receptor alleles and susceptibility to abdominal adiposity. Obes. Res.12, 351–356 (2004).
  • Sengenes C, Stich V, Berlan M et al. Increased lipolysis in adipose tissue and lipid mobilization to natriuretic peptides during low-calorie diet in obese women. Int. J. Obes. Relat. Metab. Disord.26, 24–32 (2002).
  • Sarzani R, Paci VM, Zingaretti CM et al. Fasting inhibits natriuretic peptides clearance receptor expression in rat adipose tissue. J. Hypertens.13, 1241–1246 (1995).
  • Olsen MH, Hansen TW, Christensen MK et al. N-terminal pro brain natriuretic peptide is inversely related to metabolic cardiovascular risk factors and the metabolic syndrome. Hypertension46, 660–666 (2005).
  • Lafontan M, Moro C, Sengenes C, Galitzky J, Crampes F, Berlan M. An unsuspected metabolic role for atrial natriuretic peptides: the control of lipolysis, lipid mobilization, and systemic nonesterified fatty acids levels in humans. Aterioscler. Thromb. Vasc. Biol.25, 2032–2042 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.