15
Views
0
CrossRef citations to date
0
Altmetric
Review

Alteration of glomerulogenesis- and podocyte structure-related gene expression in early diabetic nephropathy

&
Pages 615-622 | Published online: 10 Jan 2014

References

  • Grenfell A, Watkins PJ. Clinical diabetic nephropathy: natural history and complications. Clin. Endocrinol. Metab.15, 783–805 (1986).
  • Adler AI, Stevens RJ, Manley SE et al. Development and progression of nephropathy in Type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int.63, 225–232 (2003).
  • Morgensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease: with emphasis on the stage of incipint diabetic nephropahy. Diabetes32(Suppl. 2), 64–78 (1983).
  • Osterby R. Structual changes in diabetic kidney. Clin. Endocrinol. Metab.15, 733–751 (1986).
  • Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC. Structual–functional relationship in diabetic nephropathy. J. Clin. Invest.74, 1143–1155 (1984).
  • Ellis EN, Steffes MW, Goetz FC, Sutherland DE. Glomerular filtration surface in Type 1 diabetes mellitus. Kidney Int.29, 889–894 (1986).
  • Olson JL, Laszik ZL. Diabetic nephropathy. In: Heptinstall’s Pathology of the Kidney (6th Edition). Lippincott Williams & Wilkins, PA, USA 803–852 (2007).
  • Wolf G. New insights into the pathophisiology of diabetic nephropathy. Eur. J. Clin. Invest.34, 785–796 (2004).
  • Schrijvers BF, Flyvbjerg A, De Vriese A. The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int.65, 2003–2017 (2004).
  • Bonnet F, Cooper ME, Kawauchi H, Allen TJ, Boner G, Cao Z. Irbesartan normalizes the deficiency in glomerular nephrin expression in a model of diabetes and hypertension. Diabetologia44, 874–877 (2001).
  • Coimbra TM, Janssen U, Grone HJ et al. Early events leading to renal injury in obese Zucker (fatty) rats with Type II diabetes. Kidney Int.57, 167–182 (2000).
  • Wolf G, Chen S, Ziyadeh FN. From the periphery of the glomerular capillary wall toward the center disease. Podocyte injury comes of age in diabetic nephropathy. Diabetes54, 1626–1634 (2005).
  • Bjorn SF, Bangstad HJ, Hanssen KF. Glomerular epithelial foot processes and filtration slits in IDDM diabetic patients. Diabetologia38, 1197–1204 (1995).
  • Vernier RL, Steffes MW, Sisson-Ross S, Mauer SM. Heparan sulfate proteoglycan in the glomerular basement membrane in Type 1 diabetes mellitus. Kidney Int.41, 1070–1080 (1992).
  • Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J. Am. Soc. Nephrol.15, 1–12 (2004).
  • Makino H, Miyamoto Y, Sawai K et al. Altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone. Diabetes55, 2747–2756 (2006).
  • Clark AT, Young RJ, Bertram JF. In vitro studies on the roles of transforming growth factor-β1 in rat metanephric development Kidney Int.59, 1641–1653 (2001).
  • Lui A, Dardik A, Ballermann BJ. Neutralizing TGF-β1 antibody infusion in neonatal rat delays in vivo glomerullar capillary formation. Kidney Int.56, 1334–1348 (1999).
  • Makino H, Mukoyama M, Sugawara A et al. Expression of connective tissue growth factor in early streptozotocin-induced diabetic rat kidney: effect of aspirin treatment. Clin. Exp. Nephrol.7, 33–40 (2003).
  • Wahab NA, Schaefer L, Weston BS et al. Glomerular expression of thrombospondin-1, transforming growth factor β and connective tissue growth factor at different stages of diabetic nephropathy and their interdependent roles in mesangial response to diabetic stimuli. Diabetologia48, 2650–2660 (2005).
  • Sharma K, Ziyadeh FN. Biochemical events and cytokine interactions linking glucose metabolism to the development of diabetic nephropathy. Semin. Nephrol.17, 80–92 (1997).
  • Han SY, Jee YH, Han KH et al. An imbalance between matrix metalloproteinase-2 and tissue inhibitor of matrix metalloprotease-2 contributes to the development of early diabetic nephropathy. Nephrol. Dial. Transplant.21, 2406–2416 (2006).
  • Monkawa T, Hiromura K, Wolf G, Shankland SJ. The hypertrophic effect of transforming growth factor-β is reduced in the absence of cycline-dependent kinase-inhibitors p21 and p27. J. Am. Soc. Nephrol.13, 1172–1178 (2002).
  • Ziyadeh FN, Hoffman BB, Han DC et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-β antibody in db/db diabetic mice. Proc. Natl Acad. Sci. USA97, 8015–8020 (2000).
  • Ding G, Reddy K, Kapasi AA et al. Angiotensin II induces apoptosis in rat glomerular epithelial cells. Am. J. Physiol. Renal Physiol.238, F173–F180 (2002).
  • Iglesias-de la Cruz MC, Ziyadeh FN, Isono M et al. Effects of high glucose and TGF-β1 on the expression of collagen IV and vascular endothelial growth factor in mouse podocytes. Kidney Int.62, 901–913 (2002).
  • Dudley AT, Lyons KM, Robertson EJ. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev.9, 2795–2807 (1995).
  • Wang S, Hirschberg R. Bone morphogenetic protein-7 signals opposing transforming growth factor β in mesangial cells. J. Biol. Chem.279, 23200–23206 (2004).
  • Wang S, de Caestecker M, Kopp J, Mitu G, Lapage J, Hirschberg R. Renal bone morphogenetic protein-7 protects against diabetic nephropathy. J. Am. Soc. Nephrol.17, 2504–2512 (2006).
  • Wang SN, Lapage J, Hirschberg R. Loss of tubular bone morphogenic protein-7 in diabetic nephropathy. J. Am. Soc. Nephrol.12, 2392–2399 (2001).
  • Topol LZ, Bardot B, Zhang Q et al. Biosynthesis, post-translation modification, and functional characterization of Drm/Gremlin. J. Biol. Chem.275, 8785–8793 (2000).
  • Hsu DR, Economides AN, Wang X, Eimon PM, Harland RM. The Xenopus dorsalizing factor gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol. Cell1, 673–683 (1998).
  • Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A. Gremlin-mediated BMP antagonism induces the epithelial–mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development131, 3401–3410 (2004).
  • McMahon RA, Murphy M, Clarkson M et al. IHG-2, a mesangial cell gene induced by high glucose, is human gremlin. J. Biol. Chem.275, 9901–9904 (2000).
  • Dolan V, Murphy M, Sadlier D et al. Expression of gremlin, a bone morphogenetic protein antagonist, in human diabetic nephropathy. Am. J. Kidney Dis.45, 1034–1039 (2005).
  • Murphy M, McMahon RA, Clarkson M et al. Induction of gremlin expression in the remnant kidney in vivo and during TGF-induced epithelial mesenchymal transformation in vitro. J. Am. Soc. Nephrol.11, 625A (2000).
  • Ichinose K, Maeshima Y, Yamamoto Y et al. 2-(8-hydroxy-6-methoxy-oxo-1H-2-benzopyran-3yl) propionic, an inhibitor of angiogenesis, ameriorates renal alteration in obese Type 2 diabetic mice. Diabetes55, 1232–1242 (2006).
  • Nyengaad JR, Rasch R. The impact of experimental diabetes mellitus in rats on glomerular capillary number and sizes. Diabetologia36, 189–194 (1993).
  • Kitamoto Y, Tokunaga H, Miyamoto K, Tomita K. VEGF is an essential molecule for glomerular structuring. Nephrol. Dial. Transplant.17, S25–S27 (2002).
  • Kitamoto Y, Tokunaga H, Tomita K. Vascular endothelial growth factor is an essential molecule for mouse kidney development: glomerulogenesis and nephrogenesis. J. Clin. Invest.99, 2351–2357 (1997).
  • Gerber HP, Hillan KJ, Ryan AM et al. VEGF is required for growth and survival in neonatal mice. Development126, 1149–1159 (1999).
  • Bailey E, Bottomley MJ, Westwell S et al. Vascular endothelial growth factor mRNA expression in minimal change, membranous, and diabetic nephropathy demonstrated by non-isotropic in situ hybridization. J. Clin. Pathol.52, 735–738 (1999).
  • Rizkalla B, Forbes JM, Cooper ME, Cao Z. Increased renal vascular endothelial growth factor and angiopoietins by angiotensin II infusion is mediated by both AT1 and AT2 receptors. J. Am. Soc. Nephrol.14, 3061–3071 (2003).
  • Hoshi S, Nomoto K, Kuromitsu J, Tomari S, Nagata M. High glucose induced VEGF expression via PKC and ERK in glomerular podocytes. Biochem. Biophys. Res. Commun.290, 177–184 (2002).
  • Flyvbjerg A, Dagnes-Hansen F, De Vriese AS et al. Amelioration of long-term renal changes in obese Type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes51, 3090–3094 (2002).
  • Chen S, Kasama Y, Lee JS, Jim B, Marin M, Ziyadeh FN. Podocyte-derived vascular endothelial growth factor mediates the stimulation of α2(IV) collagen production by transforming growth factor-β 1 in mouse podocytes. Diabetes53, 2939–2949 (2004).
  • Sung SH, Ziyadeh FN, Wang A, Pyagay PE, Kanwar YS, Chen S. Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice. J. Am. Soc. Nephrol.17, 3093–3104 (2006).
  • Woolf AS, Yuan HT. Angiopoietin growth factors and Tie receptor tyrosine kinases in renal vascular development. Pediatr. Nephrol.16, 177–184 (2001).
  • Suri C, Jones PF, Palan S et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell87, 1171–1180 (1996).
  • Maisonpierre PC, Suri C, Jones PF et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science277, 55–60 (1997).
  • Freeburg PB, Robert B, St John PL, Abrahamson DR. Podocyte expression of hypoxia-inducible factor (HIF)-1 and HIF-2 during glomerular development. J. Am. Soc. Nephrol.14, 927–938 (2003).
  • Doronzo G, Russo I, Mattiello L Riganti C, Anfossi G, Trovati M. Insulin activates hypoxia-inducible factor-1α in human and rat vascular smooth muscle cells via phosphatidylinositol-3 kinase and mitogen-activated protein kinase pathways: impairment in insulin resistance owing to defects in insulin signalling. Diabetologia49, 1049–1063 (2006).
  • Treins C, Giorgetti-Peraldi S, Murdaca J, Van Obberghen E. Regulation of vascular endothelial growth factor expression by advanced glycation end products. J. Biol. Chem.276, 43836–43841 (2001).
  • Haase VH. Hypoxia-inducible factors in the kidney. Am. J. Physiol. Renal Physiol.291, F271–F281 (2006).
  • Takahashi T, Takahashi K, Gerety S, Wang H, Anderson DJ, Daniel TO. Temporally compartmentalized expression of ephrin B2 during renal glomerular development. J. Am. Soc. Nephrol.12, 2673–2682 (2001).
  • Foo SS, Tumer CJ, Adams S et al. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell124, 161–173 (2006).
  • Iglesias P, Diez JJ. Peroxisome proliferator-activated receptor γ agonists in renal disease. Eur. J. Endocrinol.154, 613–621 (2006).
  • Wharram BL, Goyal M, Gillespie PJ et al. Altered podocyte structure is GLEPP1 (Ptpro)-deficient mice associated with hypertension and low glomerular filtration rate. J. Clin. Invest.106, 1281–1290 (2000).
  • Kim YH, Goyal M, Wharram B, Wiggins J, Kershaw D, Wiggins R. GLEPP1 receptor tyrosine phosphatase (Ptpro) in rat PAN nephrosis. Nephron90, 471–476 (2002).
  • Quaggin SE, Van den Heuvel GB, Igarashi P. Pod-1, a mesoderm-specific basic-helix–loop–helix protein expressed in mesenchymal and glomerular epithelial cells in the developing kidney. Mech. Dev.71, 37–48 (1998).
  • Mundel P, Shankland SJ. Podocyte biology and response to injury. J. Am. Soc. Nephrol.13, 3005 (2002).
  • Tryggvason K, Patrakka J, Wartiovaara J. Hereditary proteinuria syndromes and mechanisms of proteinuria. N. Engl. J. Med.354, 1387–1401 (2006).
  • Kelly DJ, Aaltonen P, Cox AJ et al. Expression of slit diaphragm protein, nephrin, in experimental diabetic nephropathy: differing effect of anti-proteinuric therapies. Nephrol. Dial. Transplant.17, 1327–1332 (2002).
  • Doublier S, Salvidio G, Lupia E et al. Nephrin expression is reduced in human diabetic nephropathy. Evidence for distinct role for glycated albumin and angiotensin II. Diabetes52, 1023–1030 (2003).
  • Pätäri A, Forsblom C, Havana M, Taipale H, Groop PH, Holthöfer H. Nephrinemia in diabetic nephropathy of Type 1 diabetes. Diabetes52, 2969–2974 (2003).
  • Nosadini R, Velussi M, Brocco E et al. Altered transcapillary escape of albumin and microalbuminuria reflects two different pathogenetic mechanisms. Diabetes54, 228–233 (2005).
  • Gonzales-Mariscal L, Betanzos A, Avila-Flores A. MAGUK proteins: structure and role in the tight junction. Semin. Cell Dev. Biol.11, 315–324 (2000).
  • Choles HR, Vasylyeva TL, Pergola PE et al. ZO-1 expression and phosphorylation in diabetic nephropathy. Diabetes55, 894–900 (2006).
  • Kaplan JM, Kim SH, North KN et al. Mutations in ACTN4, encoding α-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet.24, 251–256 (2000).
  • Michaud JL, Lemieux LI, Dube M, Vanderhyden BC, Robertson SJ, Kennedy CR. Focal and segmental glomerulosclerosis in mice with podocyte-specific expression of mutant α-actinin-4. J. Am. Soc. Nephrol.14, 1200–1211 (2003).
  • Ha TS. High glucose and advanced glycosylated end-products affect the expression of α-actinin-4 in glomerular epithelial cells. Nephrology11, 435–441 (2006).
  • Kojima K, Kerjaschki D. Is podocyte shape controlled by the dystroglycan complex. Nephrol. Dial. Transplant.17, S23–S24 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.