31
Views
1
CrossRef citations to date
0
Altmetric
Review

Role of PPARγ in adipocyte recruitment and thermogenesis

, &
Pages 641-651 | Published online: 10 Jan 2014

References

  • Davis TR, Johnston DR, Bell FC, Cremer BJ. Regulation of shivering and non-shivering heat production during acclimation of rats. Am. J. Physiol.198, 471–475 (1960).
  • Depocas F, Hart JS, Heroux O. Cold acclimation and the electromyogram of unanesthetized rats. J. Appl. Physiol.9(3), 404–408 (1956).
  • Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A, Cannon B. UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim. Biophys. Acta1504(1), 82–106 (2001).
  • Cinti S. The adipose organ. Prostaglandins Leukot. Essent. Fatty Acids73(1), 9–15 (2005).
  • Guerra C, Koza RA, Yamashita H, Walsh K, Kozak LP. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Invest.102(2), 412–420 (1998).
  • Oberkofler H, Dallinger G, Liu YM, Hell E, Krempler F, Patsch W. Uncoupling protein gene: quantification of expression levels in adipose tissues of obese and non-obese humans. J. Lipid Res.38(10), 2125–2133 (1997).
  • Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol. Rev.84(1), 277–359 (2004).
  • Huttunen P, Hirvonen J, Kinnula V. The occurrence of brown adipose tissue in outdoor workers. Eur. J. Appl. Physiol. Occup. Physiol.46(4), 339–345 (1981).
  • Lean ME, James WP, Jennings G, Trayhurn P. Brown adipose tissue in patients with phaeochromocytoma. Int. J. Obes.10(3), 219–227 (1986).
  • Fisher MH, Amend AM, Bach TJ et al. A selective human β3 adrenergic receptor agonist increases metabolic rate in rhesus monkeys. J. Clin. Invest.101(11), 2387–2393 (1998).
  • Ahima RS. Adipose tissue as an endocrine organ. Obesity (Silver Spring)14(Suppl. 5), S242–S249 (2006).
  • Klaus S, Casteilla L, Bouillaud F, Ricquier D. The uncoupling protein UCP: a membraneous mitochondrial ion carrier exclusively expressed in brown adipose tissue. Int. J. Biochem.23(9), 791–801 (1991).
  • Ricquier D, Casteilla L, Bouillaud F. Molecular studies of the uncoupling protein. FASEB J.5(9), 2237–2242 (1991).
  • Dulloo AG, Miller DS. Energy balance following sympathetic denervation of brown adipose tissue. Can. J. Physiol. Pharmacol.62(2), 235–240 (1984).
  • Hamann A, Flier JS, Lowell BB. Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. Endocrinology137(1), 21–29 (1996).
  • Lowell BB, Susulic V, Hamann A et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature366(6457), 740–742 (1993).
  • Melnyk A, Harper ME, Himms-Hagen J. Raising at thermoneutrality prevents obesity and hyperphagia in BAT-ablated transgenic mice. Am. J. Physiol.272(4 Pt 2), R1088–R1093 (1997).
  • Kopecky J, Hodny Z, Rossmeisl M, Syrovy I, Kozak LP. Reduction of dietary obesity in aP2-Ucp transgenic mice: physiology and adipose tissue distribution. Am. J. Physiol.270(5 Pt 1), E768–E775 (1996).
  • Kopecky J, Clarke G, Enerback S, Spiegelman B, Kozak LP. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Invest.96(6), 2914–2923 (1995).
  • Stefl B, Janovska A, Hodny Z et al. Brown fat is essential for cold-induced thermogenesis but not for obesity resistance in aP2-Ucp mice. Am. J. Physiol.274(3 Pt 1), E527–E533 (1998).
  • Medina-Gomez G, Vidal-Puig A. Gateway to the metabolic syndrome. Nat. Med.11(6), 602–603 (2005).
  • Lelliott C, Vidal-Puig AJ. Lipotoxicity, an imbalance between lipogenesis de novo and fatty acid oxidation. Int. J. Obes. Relat. Metab. Disord.28(Suppl. 4), S22–S28 (2004).
  • Garg A. Lipodystrophies. Am. J. Med.108(2), 143–152 (2000).
  • Unger RH. Lipotoxic diseases. Annu. Rev. Med.53, 319–336 (2002).
  • Unger RH, Orci L. Lipotoxic diseases of nonadipose tissues in obesity. Int. J. Obes. Relat. Metab. Disord.24(Suppl. 4), S28–S32 (2000).
  • Bays H. Adiposopathy: role of adipocyte factors in a new paradigm. Expert Rev. Cardiovasc. Ther.3(2), 187–189 (2005).
  • Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia43(12), 1498–1506 (2000).
  • Guzik TJ, Mangalat D, Korbut R. Adipocytokines – novel link between inflammation and vascular function? J. Physiol. Pharmacol.57(4), 505–528 (2006).
  • Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature444(7121), 875–880 (2006).
  • Gray SL, Nora ED, Grosse J et al. Leptin deficiency unmasks the deleterious effects of impaired peroxisome proliferator-activated receptor-γ function (P465L PPARγ) in mice. Diabetes55(10), 2669–2677 (2006).
  • Medina-Gomez G, Virtue S, Lelliott C et al. The link between nutritional status and insulin sensitivity is dependent on the adipocyte-specific peroxisome proliferator-activated receptor-γ2 isoform. Diabetes54(6), 1706–1716 (2005).
  • Sakai T, Sakaue H, Nakamura T et al. Skp2 controls adipocyte proliferation during the development of obesity. J. Biol. Chem.282(3), 2038–2046 (2007).
  • Mangelsdorf DJ, Thummel C, Beato M et al. The nuclear receptor superfamily: the second decade. Cell83(6), 835–839 (1995).
  • Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev.20(5), 649–688 (1999).
  • Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat. Endocrinology137(1), 354–366 (1996).
  • Mukherjee R, Davies PJ, Crombie DL et al. Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists. Nature386(6623), 407–410 (1997).
  • Xu HE, Stanley TB, Montana VG et al. Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARα. Nature415(6873), 813–817 (2002).
  • McKenna NJ, O’Malley BW. Minireview: nuclear receptor coactivators – an update. Endocrinology143(7), 2461–2465 (2002).
  • Spiegelman BM, Heinrich R. Biological control through regulated transcriptional coactivators. Cell119(2), 157–167 (2004).
  • Hu E, Kim JB, Sarraf P, Spiegelman BM. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ. Science274(5295), 2100–2103 (1996).
  • Pascual G, Fong AL, Ogawa S et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ. Nature437(7059), 759–763 (2005).
  • Ide T, Egan K, Bell-Parikh LC, FitzGerald GA. Activation of nuclear receptors by prostaglandins. Thromb. Res.110(5–6), 311–315 (2003).
  • Bell-Parikh LC, Ide T, Lawson JA, McNamara P, Reilly M, FitzGerald GA. Biosynthesis of 15-deoxy-δ12,14-PGJ2 and the ligation of PPARγ. J. Clin. Invest.112(6), 945–955 (2003).
  • Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor-γ (PPARγ). J. Biol. Chem.270(22), 12953–12956 (1995).
  • Kletzien RF, Clarke SD, Ulrich RG. Enhancement of adipocyte differentiation by an insulin-sensitizing agent. Mol. Pharmacol.41(2), 393–398 (1992).
  • Rangwala SM, Lazar MA. Transcriptional control of adipogenesis. Annu. Rev. Nutr.20, 535–559 (2000).
  • Hu E, Tontonoz P, Spiegelman BM. Transdifferentiation of myoblasts by the adipogenic transcription factors PPARγ and C/EBPα. Proc. Natl Acad. Sci. USA92(21), 9856–9860 (1995).
  • Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell79(7), 1147–1156 (1994).
  • Rosen ED, Sarraf P, Troy AE et al. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell4(4), 611–617 (1999).
  • Barak Y, Nelson MC, Ong ES et al. PPARγ is required for placental, cardiac, and adipose tissue development. Mol. Cell4(4), 585–595 (1999).
  • Masugi J, Tamori Y, Kasuga M. Inhibition of adipogenesis by a COOH-terminally truncated mutant of PPARγ2 in 3T3-L1 cells. Biochem. Biophys. Res. Commun.264(1), 93–99 (1999).
  • Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPARγ 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev.8(10), 1224–1234 (1994).
  • Semple RK, Chatterjee VK, O’Rahilly S. PPARγ and human metabolic disease. J. Clin. Invest.116(3), 581–589 (2006).
  • Savage DB, Tan GD, Acerini CL et al. Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-γ. Diabetes52(4), 910–917 (2003).
  • Shadid S, Jensen MD. Effects of pioglitazone versus diet and exercise on metabolic health and fat distribution in upper body obesity. Diabetes Care26(11), 3148–3152 (2003).
  • Tsai YS, Maeda N. PPARγ: a critical determinant of body fat distribution in humans and mice. Trends Cardiovasc. Med.15(3), 81–85 (2005).
  • Laplante M, Festuccia WT, Soucy G et al. Mechanisms of the depot specificity of peroxisome proliferator-activated receptor-γ action on adipose tissue metabolism. Diabetes55(10), 2771–2778 (2006).
  • Zhang J, Fu M, Cui T et al. Selective disruption of PPARγ2 impairs the development of adipose tissue and insulin sensitivity. Proc. Natl Acad. Sci. USA101(29), 10703–10708 (2004).
  • Medina-Gomez G, Gray SL, Yetukuri L et al. PPARγ2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet.3(4), E64 (2007).
  • Foellmi-Adams LA, Wyse BM, Herron D, Nedergaard J, Kletzien RF. Induction of uncoupling protein in brown adipose tissue. Synergy between norepinephrine and pioglitazone, an insulin-sensitizing agent. Biochem. Pharmacol.52(5), 693–701 (1996).
  • Berthiaume M, Sell H, Lalonde J et al. Actions of PPARγ agonism on adipose tissue remodeling, insulin sensitivity, and lipemia in absence of glucocorticoids. Am. J. Physiol. Regul. Integr. Comp. Physiol.287(5), R1116–R1123 (2004).
  • Fukui Y, Masui S, Osada S, Umesono K, Motojima K. A new thiazolidinedione, NC-2100, which is a weak PPARγ activator, exhibits potent antidiabetic effects and induces uncoupling protein 1 in white adipose tissue of KKAy obese mice. Diabetes49(5), 759–767 (2000).
  • Tan GD, Debard C, Tiraby C et al. A “futile cycle” induced by thiazolidinediones in human adipose tissue? Nat. Med.9(7), 811–812 (2003).
  • Tiraby C, Tavernier G, Lefort C et al. Acquirement of brown fat cell features by human white adipocytes. J. Biol. Chem.278(35), 33370–33376 (2003).
  • Imai T, Takakuwa R, Marchand S et al. Peroxisome proliferator-activated receptor-γ is required in mature white and brown adipocytes for their survival in the mouse. Proc. Natl Acad. Sci. USA101(13), 4543–4547 (2004).
  • Gray SL, Dalla NE, Backlund EC et al. Decreased brown adipocyte recruitment and thermogenic capacity in mice with impaired peroxisome proliferator-activated receptor (P465L PPARγ) function. Endocrinology147(12), 5708–5714 (2006).
  • Linhart HG, Ishimura-Oka K, DeMayo F et al. C/EBPα is required for differentiation of white, but not brown, adipose tissue. Proc. Natl Acad. Sci. USA98(22), 12532–12537 (2001).
  • Tanaka T, Yoshida N, Kishimoto T, Akira S. Defective adipocyte differentiation in mice lacking the C/EBPβ and/or C/EBPδ gene. EMBO J.16(24), 7432–7443 (1997).
  • Hansen JB, Kristiansen K. Regulatory circuits controlling white versus brown adipocyte differentiation. Biochem. J.398(2), 153–168 (2006).
  • Hansen JB, Jorgensen C, Petersen RK et al. Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proc. Natl Acad. Sci. USA101(12), 4112–4117 (2004).
  • Scime A, Grenier G, Huh MS et al. Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1α. Cell Metab.2(5), 283–295 (2005).
  • Picard F, Gehin M, Annicotte J et al. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell111(7), 931–941 (2002).
  • Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell92(6), 829–839 (1998).
  • Lin J, Wu PH, Tarr PT et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell119(1), 121–135 (2004).
  • Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. Peroxisome proliferator-activated receptor-γ coactivator 1β (PGC-1β ), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem.277(3), 1645–1648 (2002).
  • Meirhaeghe A, Crowley V, Lenaghan C et al. Characterization of the human, mouse and rat PGC1β (peroxisome-proliferator-activated receptor-γ co-activator 1β) gene in vitro and in vivo. Biochem. J.373(Pt 1), 155–165 (2003).
  • Lin J, Tarr PT, Yang R et al. PGC-1β in the regulation of hepatic glucose and energy metabolism. J. Biol. Chem.278(33), 30843–30848 (2003).
  • St-Pierre J, Lin J, Krauss S et al. Bioenergetic analysis of peroxisome proliferator-activated receptor-γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells. J. Biol. Chem.278(29), 26597–26603 (2003).
  • Kamei Y, Ohizumi H, Fujitani Y et al. PPARγ coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc. Natl Acad. Sci. USA100(21), 12378–12383 (2003).
  • Lelliott CJ, Medina-Gomez G, Petrovic N et al. Ablation of PGC-1β results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol.4(11), E369 (2006).
  • Seydoux J, Girardier L. Control of brown fat thermogenesis by the sympathetic nervous system. Experientia32(Suppl.), 153–167 (1978).
  • Kozak UC, Kopecky J, Teisinger J, Enerback S, Boyer B, Kozak LP. An upstream enhancer regulating brown-fat-specific expression of the mitochondrial uncoupling protein gene. Mol. Cell. Biol.14(1), 59–67 (1994).
  • Yubero P, Manchado C, Cassard-Doulcier AM et al. CCAAT/enhancer binding proteins α and β are transcriptional activators of the brown fat uncoupling protein gene promoter. Biochem. Biophys. Res. Commun.198(2), 653–659 (1994).
  • Silva JE. Thermogenic mechanisms and their hormonal regulation. Physiol. Rev.86(2), 435–464 (2006).
  • Digby JE, Montague CT, Sewter CP et al. Thiazolidinedione exposure increases the expression of uncoupling protein 1 in cultured human preadipocytes. Diabetes47(1), 138–141 (1998).
  • Sears IB, MacGinnitie MA, Kovacs LG, Graves RA. Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor-γ. Mol. Cell. Biol.16(7), 3410–3419 (1996).
  • Thurlby PL, Wilson S, Arch JR. Ciglitazone is not itself thermogenic but increases the potential for thermogenesis in lean mice. Biosci. Rep.7(7), 573–577 (1987).
  • Sell H, Berger JP, Samson P et al. Peroxisome proliferator-activated receptor-γ agonism increases the capacity for sympathetically mediated thermogenesis in lean and ob/ob mice. Endocrinology145(8), 3925–3934 (2004).
  • Lindgren EM, Nielsen R, Petrovic N et al. Noradrenaline represses PPAR (peroxisome-proliferator-activated receptor)γ2 gene expression in brown adipocytes: intracellular signalling and effects on PPARγ2 and PPARγ1 protein levels. Biochem. J.382(Pt 2), 597–606 (2004).
  • Nedergaard J, Petrovic N, Lindgren EM, Jacobsson A, Cannon B. PPARγ in the control of brown adipocyte differentiation. Biochim. Biophys. Acta1740(2), 293–304 (2005).
  • Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab.293(2), E444–E452 (2007).
  • Klaus S. Functional differentiation of white and brown adipocytes. Bioessays19(3), 215–223 (1997).
  • Loncar D, Bedrica L, Mayer J et al. The effect of intermittent cold treatment on the adipose tissue of the cat. Apparent transformation from white to brown adipose tissue. J. Ultrastruct. Mol. Struct. Res.97(1–3), 119–129 (1986).
  • Champigny O, Ricquier D, Blondel O, Mayers RM, Briscoe MG, Holloway BR. β3-adrenergic receptor stimulation restores message and expression of brown-fat mitochondrial uncoupling protein in adult dogs. Proc. Natl Acad. Sci. USA88(23), 10774–10777 (1991).
  • Cinti S. Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. J. Endocrinol. Invest.25(10), 823–835 (2002).
  • Cousin B, Cinti S, Morroni M et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell. Sci.103(Pt 4), 931–942 (1992).
  • Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am. J. Physiol. Cell Physiol.279(3), C670–C681 (2000).
  • Acheson KJ, Ravussin E, Schoeller DA et al. Two-week stimulation or blockade of the sympathetic nervous system in man: influence on body weight, body composition, and twenty four-hour energy expenditure. Metabolism37(1), 91–98 (1988).
  • Ravussin E, Lillioja S, Knowler WC et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N. Engl. J. Med.318(8), 467–472 (1988).
  • Tsukiyama-Kohara K, Poulin F, Kohara M et al. Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat. Med.7(10), 1128–1132 (2001).
  • Cederberg A, Gronning LM, Ahren B, Tasken K, Carlsson P, Enerback S. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell106(5), 563–573 (2001).
  • Yang X, Enerback S, Smith U. Reduced expression of FOXC2 and brown adipogenic genes in human subjects with insulin resistance. Obes. Res.11(10), 1182–1191 (2003).
  • Russell LK, Mansfield CM, Lehman JJ et al. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ. Res.94(4), 525–533 (2004).
  • Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor-γ coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Invest.106(7), 847–856 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.