14
Views
0
CrossRef citations to date
0
Altmetric
Review

IGF signaling as a therapeutic target in pediatric solid tumors of the central and peripheral nervous system

, , &
Pages 677-688 | Published online: 10 Jan 2014

References

  • Datta SR, Dudek H, Tao X et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell91(2), 231–241 (1997).
  • Dudek H, Datta SR, Franke TF et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science275(5300), 661–665 (1997).
  • Okubo Y, Blakesley VA, Stannard B, Gutkind S, Le Roith D. Insulin-like growth factor-I inhibits the stress-activated protein kinase/c-Jun N-terminal kinase. J. Biol. Chem.273(40), 25961–25966 (1998).
  • Surmacz E. Growth factor receptors as therapeutic targets: strategies to inhibit the insulin-like growth factor I receptor. Oncogene22(42), 6589–6597 (2003).
  • Turner BC, Haffty BG, Narayanan L et al. Insulin-like growth factor-I receptor overexpression mediates cellular radioresistance and local breast cancer recurrence after lumpectomy and radiation. Cancer Res.57(15), 3079–3083 (1997).
  • Benini S, Manara MC, Baldini N et al. Inhibition of insulin-like growth factor I receptor increases the antitumor activity of doxorubicin and vincristine against Ewing’s sarcoma cells. Clin. Cancer Res.7(6), 1790–1797 (2001).
  • Scotlandi K, Avnet S, Benini S et al. Expression of an IGF-I receptor dominant negative mutant induces apoptosis, inhibits tumorigenesis and enhances chemosensitivity in Ewing’s sarcoma cells. Int. J. Cancer101(1), 11–16 (2002).
  • Wang Y, Sun Y. Insulin-like growth factor receptor-1 as an anti-cancer target: blocking transformation and inducing apoptosis. Curr. Cancer Drug Targets2(3), 191–207 (2002).
  • Adachi Y, Lee CT, Carbone DP. Genetic blockade of the insulin-like growth factor 1 receptor for human malignancy. Novartis Found Symp.262, 177–189 (2004).
  • Guerreiro AS, Boller D, Doepfner KT, Arcaro A. IGF-IR: potential role in antitumor agents. Drug News Perspect.19(5), 261–272 (2006).
  • Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer3(3), 203–216 (2003).
  • Riley RD, Heney D, Jones DR et al. A systematic review of molecular and biological tumor markers in neuroblastoma. Clin. Cancer Res.10(1 Pt 1), 4–12 (2004).
  • Recio-Pinto E, Ishii DN. Effects of insulin, insulin-like growth factor-II and nerve growth factor on neurite outgrowth in cultured human neuroblastoma cells. Brain Res.302(2), 323–334 (1984).
  • Mattsson ME, Enberg G, Ruusala AI, Hall K, Pahlman S. Mitogenic response of human SH-SY5Y neuroblastoma cells to insulin-like growth factor I and II is dependent on the stage of differentiation. J. Cell. Biol.102(5), 1949–1954 (1986).
  • Mattsson ME, Hammerling U, Mohall E, Hall K, Pahlman S. Mitogenically uncoupled insulin and IGF-I receptors of differentiated human neuroblastoma cells are functional and mediate ligand-induced signals. Growth Factors2(4), 251–265 (1990).
  • Ota A, Wilson GL, Spilberg O, Pruss R, LeRoith D. Functional insulin-like growth factor I receptors are expressed by neural-derived continuous cell lines. Endocrinology122(1), 145–152 (1988).
  • Shemer J, Adamo M, Wilson GL, Heffez D, Zick Y, LeRoith D. Insulin and insulin-like growth factor-I stimulate a common endogenous phosphoprotein substrate (pp185) in intact neuroblastoma cells. J. Biol. Chem.262(32), 15476–15482 (1987).
  • El-Badry OM, Romanus JA, Helman LJ, Cooper MJ, Rechler MM, Israel MA. Autonomous growth of a human neuroblastoma cell line is mediated by insulin-like growth factor II. J. Clin. Invest.84(3), 829–839 (1989).
  • El-Badry OM, Helman LJ, Chatten J, Steinberg SM, Evans AE, Israel MA. Insulin-like growth factor II-mediated proliferation of human neuroblastoma. J. Clin. Invest.87(2), 648–657 (1991).
  • Yee D, Favoni RE, Lebovic GS et al. Insulin-like growth factor I expression by tumors of neuroectodermal origin with the t(11;22) chromosomal translocation. A potential autocrine growth factor. J. Clin. Invest.86(6), 1806–1814 (1990).
  • Kuo YH, Chen TT. Novel activities of pro-IGF-I E peptides: regulation of morphological differentiation and anchorage-independent growth in human neuroblastoma cells. Exp. Cell. Res.280(1), 75–89 (2002).
  • Schneid H, Seurin D, Noguiez P, Le Bouc Y. Abnormalities of insulin-like growth factor (IGF-I and IGF-II) genes in human tumor tissue. Growth Regul.2(1), 45–54 (1992).
  • Sullivan KA, Castle VP, Hanash SM, Feldman EL. Insulin-like growth factor II in the pathogenesis of human neuroblastoma. Am. J. Pathol.147(6), 1790–1798 (1995).
  • Shevah O, Laron Z. Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: a preliminary report. Growth Horm. IGF Res.17(1), 54–57 (2007).
  • Martin DM, Feldman EL. Regulation of insulin-like growth factor-IL expression and its role in autocrine growth of human neuroblastoma cells. J. Cell. Physiol.155(2), 290–300 (1993).
  • Leventhal PS, Randolph AE, Vesbit TE, Schenone A, Windebank A, Feldman EL. Insulin-like growth factor-II as a paracrine growth factor in human neuroblastoma cells. Exp. Cell. Res.221(1), 179–186 (1995).
  • Maloney EK, McLaughlin JL, Dagdigian NE et al. An anti-insulin-like growth factor I receptor antibody that is a potent inhibitor of cancer cell proliferation. Cancer Res.63(16), 5073–5083 (2003).
  • Kurihara S, Hakuno F, Takahashi S. Insulin-like growth factor-I-dependent signal transduction pathways leading to the induction of cell growth and differentiation of human neuroblastoma cell line SH-SY5Y: the roles of MAP kinase pathway and PI 3-kinase pathway. Endocr. J.47(6), 739–751 (2000).
  • Misawa A, Hosoi H, Tsuchiya K, Sugimoto T. Rapamycin inhibits proliferation of human neuroblastoma cells without suppression of MycN. Int. J. Cancer104(2), 233–237 (2003).
  • Kim B, van Golen CM, Feldman EL. Insulin-like growth factor-I signaling in human neuroblastoma cells. Oncogene23(1), 130–141 (2004).
  • Menouny M, Binoux M, Babajko S. Role of insulin-like growth factor binding protein-2 and its limited proteolysis in neuroblastoma cell proliferation: modulation by transforming growth factor-β and retinoic acid. Endocrinology138(2), 683–690 (1997).
  • Babajko S, Leneuve P, Loret C, Binoux M. IGF-binding protein-6 is involved in growth inhibition in SH-SY5Y human neuroblastoma cells: its production is both IGF- and cell density-dependent. J. Endocrinol.152(2), 221–227 (1997).
  • Kiess W, Koepf G, Christiansen H, Blum WF. Human neuroblastoma cells use either insulin-like growth factor-I or insulin-like growth factor-II in an autocrine pathway via the IGF-I receptor: variability of IGF, IGF binding protein (IGFBP) and IGF receptor gene expression and IGF and IGFBP secretion in human neuroblastoma cells in relation to cellular proliferation. Regul. Pept.72(1), 19–29 (1997).
  • Russo VC, Rekaris G, Baker NL, Bach LA, Werther GA. Basic fibroblast growth factor induces proteolysis of secreted and cell membrane-associated insulin-like growth factor binding protein-2 in human neuroblastoma cells. Endocrinology140(7), 3082–3090 (1999).
  • Tanno B, Negroni A, Vitali R et al. Expression of insulin-like growth factor-binding protein 5 in neuroblastoma cells is regulated at the transcriptional level by c-Myb and B-Myb via direct and indirect mechanisms. J. Biol. Chem.277(26), 23172–23180 (2002).
  • Tanno B, Cesi V, Vitali R et al. Silencing of endogenous IGFBP-5 by micro RNA interference affects proliferation, apoptosis and differentiation of neuroblastoma cells. Cell Death Differ.12(3), 213–223 (2005).
  • Tanno B, Vitali R, De Arcangelis D et al. Bim-dependent apoptosis follows IGFBP-5 down-regulation in neuroblastoma cells. Biochem. Biophys. Res. Commun.351(2), 547–552 (2006).
  • Cesi V, Vitali R, Tanno B et al. Insulin-like growth factor binding protein 5: contribution to growth and differentiation of neuroblastoma cells. Ann. NY Acad. Sci.1028, 59–68 (2004).
  • Grellier P, De Galle B, Babajko S. Expression of insulin-like growth factor-binding protein 6 complementary DNA alters neuroblastoma cell growth. Cancer Res.58(8), 1670–1676 (1998).
  • Grellier P, Berrebi D, Peuchmaur M, Babajko S. The IGF system in neuroblastoma xenografts: focus on IGF-binding protein-6. J. Endocrinol.172(3), 467–476 (2002).
  • Seurin D, Lassarre C, Bienvenu G, Babajko S. Insulin-like growth factor binding protein-6 inhibits neuroblastoma cell proliferation and tumour development. Eur. J. Cancer38(15), 2058–2065 (2002).
  • Dake BL, Boes M, Bach LA, Bar RS. Effect of an insulin-like growth factor binding protein fusion protein on thymidine incorporation in neuroblastoma and rhabdomyosarcoma cell lines. Endocrinology145(7), 3369–3374 (2004).
  • Bach LA. IGFBP-6 five years on; not so ‘forgotten’? Growth Horm. IGF Res.15(3), 185–192 (2005).
  • Pahlman S, Meyerson G, Lindgren E, Schalling M, Johansson I. Insulin-like growth factor I shifts from promoting cell division to potentiating maturation during neuronal differentiation. Proc. Natl Acad. Sci. USA88(22), 9994–9998 (1991).
  • Lavenius E, Parrow V, Nanberg E, Pahlman S. Basic FGF and IGF-I promote differentiation of human SH-SY5Y neuroblastoma cells in culture. Growth Factors10(1), 29–39 (1994).
  • Sumantran VN, Feldman EL. Insulin-like growth factor I regulates c-myc and GAP-43 messenger ribonucleic acid expression in SH-SY5Y human neuroblastoma cells. Endocrinology132(5), 2017–2023 (1993).
  • Fagerstrom S, Pahlman S, Gestblom C, Nanberg E. Protein kinase C-e is implicated in neurite outgrowth in differentiating human neuroblastoma cells. Cell. Growth Differ.7(6), 775–785 (1996).
  • Fagerstrom S, Pahlman S, Nanberg E. Protein kinase C-dependent tyrosine phosphorylation of p130cas in differentiating neuroblastoma cells. J. Biol. Chem.273(4), 2336–2343 (1998).
  • Kim B, Leventhal PS, Saltiel AR, Feldman EL. Insulin-like growth factor-I-mediated neurite outgrowth in vitro requires mitogen-activated protein kinase activation. J. Biol. Chem.272(34), 21268–21273 (1997).
  • Kim B, Leventhal PS, White MF, Feldman EL. Differential regulation of insulin receptor substrate-2 and mitogen-activated protein kinase tyrosine phosphorylation by phosphatidylinositol 3-kinase inhibitors in SH-SY5Y human neuroblastoma cells. Endocrinology139(12), 4881–4889 (1998).
  • Shiraishi M, Tanabe A, Saito N, Sasaki Y. Unphosphorylated MARCKS is involved in neurite initiation induced by insulin-like growth factor-I in SH-SY5Y cells. J. Cell. Physiol.209(3), 1029–1038 (2006).
  • Ma ZQ, Santagati S, Patrone C, Pollio G, Vegeto E, Maggi A. Insulin-like growth factors activate estrogen receptor to control the growth and differentiation of the human neuroblastoma cell line SK-ER3. Mol. Endocrinol.8(7), 910–918 (1994).
  • Matsumoto K, Lucarelli E, Minniti C, Gaetano C, Thiele CJ. Signals transduced via insulin-like growth factor I receptor (IGF(R)) mediate resistance to retinoic acid-induced cell growth arrest in a human neuroblastoma cell line. Cell Death Differ.1(1), 49–58 (1994).
  • Bernardini S, Cianfarani S, Spagnoli A et al. Expression and down-regulation by retinoic acid of IGF binding protein-2 and -4 in medium from human neuroblastoma cells. J. Neuroendocrinol.6(4), 409–413 (1994).
  • Chambery D, de Galle B, Babajko S. Retinoic acid stimulates IGF binding protein (IGFBP)-6 and depresses IGFBP-2 and IGFBP-4 in SK-N-SH human neuroblastoma cells. J. Endocrinol.159(2), 227–232 (1998).
  • Perez-Juste G, Aranda A. Differentiation of neuroblastoma cells by phorbol esters and insulin-like growth factor 1 is associated with induction of retinoic acid receptor β gene expression. Oncogene18(39), 5393–5402 (1999).
  • Zumkeller W, Schwab M. Insulin-like growth factor system in neuroblastoma tumorigenesis and apoptosis: potential diagnostic and therapeutic perspectives. Horm. Metab. Res.31(2–3), 138–141 (1999).
  • Matthews CC, Feldman EL. Insulin-like growth factor I rescues SH-SY5Y human neuroblastoma cells from hyperosmotic induced programmed cell death. J. Cell. Physiol.166(2), 323–331 (1996).
  • Singleton JR, Randolph AE, Feldman EL. Insulin-like growth factor I receptor prevents apoptosis and enhances neuroblastoma tumorigenesis. Cancer Res.56(19), 4522–4529 (1996).
  • Cheng HL, Feldman EL. Bidirectional regulation of p38 kinase and c-Jun N-terminal protein kinase by insulin-like growth factor-I. J. Biol. Chem.273(23), 14560–14565 (1998).
  • Brown A, Jolly P, Wei H. Genistein modulates neuroblastoma cell proliferation and differentiation through induction of apoptosis and regulation of tyrosine kinase activity and N-myc expression. Carcinogenesis19(6), 991–997 (1998).
  • Van Golen CM, Feldman EL. Insulin-like growth factor I is the key growth factor in serum that protects neuroblastoma cells from hyperosmotic-induced apoptosis. J. Cell. Physiol.182(1), 24–32 (2000).
  • Leinninger GM, Russell JW, van Golen CM, Berent A, Feldman EL. Insulin-like growth factor-I regulates glucose-induced mitochondrial depolarization and apoptosis in human neuroblastoma. Cell Death Differ.11(8), 885–896 (2004).
  • Gil-Ad I, Shtaif B, Luria D, Karp L, Fridman Y, Weizman A. Insulin-like-growth-factor-I (IGF-I) antagonizes apoptosis induced by serum deficiency and doxorubicin in neuronal cell culture. Growth Horm. IGF Res.9(6), 458–464 (1999).
  • Liu X, Turbyville T, Fritz A, Whitesell L. Inhibition of insulin-like growth factor I receptor expression in neuroblastoma cells induces the regression of established tumors in mice. Cancer Res.58(23), 5432–5438 (1998).
  • van Golen CM, Castle VP, Feldman EL. IGF-I receptor activation and BCL-2 overexpression prevent early apoptotic events in human neuroblastoma. Cell Death Differ.7(7), 654–665 (2000).
  • Beierle EA, Strande LF, Chen MK. Insulin-like growth factor-I protects neuroblastoma against starvation-induced apoptosis and is associated with increased Bcl-2 expression. J. Pediatr. Surg.37(3), 472–476 (2002).
  • van Golen CM, Schwab TS, Ignatoski KM, Ethier SP, Feldman EL. PTEN/MMAC1 overexpression decreases insulin-like growth factor-I-mediated protection from apoptosis in neuroblastoma cells. Cell. Growth Differ.12(7), 371–378 (2001).
  • Schwab TS, Madison BB, Grauman AR, Feldman EL. Insulin-like growth factor-I induces the phosphorylation and nuclear exclusion of forkhead transcription factors in human neuroblastoma cells. Apoptosis10(4), 831–840 (2005).
  • Kim B, Feldman EL. Insulin-like growth factor I prevents mannitol-induced degradation of focal adhesion kinase and Akt. J. Biol. Chem.277(30), 27393–27400 (2002).
  • Kim B, Oh S, van Golen CM, Feldman EL. Differential regulation of insulin receptor substrate-1 degradation during mannitol and okadaic acid induced apoptosis in human neuroblastoma cells. Cell Signal.17(6), 769–775 (2005).
  • van Golen CM, Soules ME, Grauman AR, Feldman EL. N-Myc overexpression leads to decreased β1 integrin expression and increased apoptosis in human neuroblastoma cells. Oncogene22(17), 2664–2673 (2003).
  • Saeki M, Maeda S, Wada K, Kamisaki Y. Insulin-like growth factor-1 protects peroxynitrite-induced cell death by preventing cytochrome c-induced caspase-3 activation. J. Cell. Biochem.84(4), 708–716 (2002).
  • Kenchappa P, Yadav A, Singh G, Nandana S, Banerjee K. Rescue of TNFα-inhibited neuronal cells by IGF-1 involves Akt and c-Jun N-terminal kinases. J. Neurosci. Res.76(4), 466–474 (2004).
  • Opel D, Poremba C, Simon T, Debatin KM, Fulda S. Activation of Akt predicts poor outcome in neuroblastoma. Cancer Res.67(2), 735–745 (2007).
  • Leventhal PS, Shelden EA, Kim B, Feldman EL. Tyrosine phosphorylation of paxillin and focal adhesion kinase during insulin-like growth factor-I-stimulated lamellipodial advance. J. Biol. Chem.272(8), 5214–5218 (1997).
  • Kim B, Feldman EL. Differential regulation of focal adhesion kinase and mitogen-activated protein kinase tyrosine phosphorylation during insulin-like growth factor-I-mediated cytoskeletal reorganization. J. Neurochem.71(3), 1333–1336 (1998).
  • Kim B, Cheng HL, Margolis B, Feldman EL. Insulin receptor substrate 2 and Shc play different roles in insulin-like growth factor I signaling. J. Biol. Chem.273(51), 34543–34550 (1998).
  • Puglianiello A, Germani D, Rossi P, Cianfarani S. IGF-I stimulates chemotaxis of human neuroblasts. Involvement of type 1 IGF receptor, IGF binding proteins, phosphatidylinositol-3 kinase pathway and plasmin system. J. Endocrinol.165(1), 123–131 (2000).
  • Meyer GE, Shelden E, Kim B, Feldman EL. Insulin-like growth factor I stimulates motility in human neuroblastoma cells. Oncogene20(51), 7542–7550 (2001).
  • Meyer G, Kim B, van Golen C, Feldman EL. Cofilin activity during insulin-like growth factor I-stimulated neuroblastoma cell motility. Cell Mol. Life Sci.62(4), 461–470 (2005).
  • Meyer A, van Golen CM, Kim B, van Golen KL, Feldman EL. Integrin expression regulates neuroblastoma attachment and migration. Neoplasia6(4), 332–342 (2004).
  • van Golen CM, Schwab TS, Kim B et al. Insulin-like growth factor-I receptor expression regulates neuroblastoma metastasis to bone. Cancer Res.66(13), 6570–6578 (2006).
  • Beppu K, Nakamura K, Linehan WM, Rapisarda A, Thiele CJ. Topotecan blocks hypoxia-inducible factor-1α and vascular endothelial growth factor expression induced by insulin-like growth factor-I in neuroblastoma cells. Cancer Res.65(11), 4775–4781 (2005).
  • Chambery D, Mohseni-Zadeh S, de Galle B, Babajko S. N-myc regulation of type I insulin-like growth factor receptor in a human neuroblastoma cell line. Cancer Res.59(12), 2898–2902 (1999).
  • Jasty R, van Golen C, Lin HJ et al. Bcl-2 and M-Myc coexpression increases IGF-IR and features of malignant growth in neuroblastoma cell lines. Neoplasia3(4), 304–313 (2001).
  • Misawa A, Hosoi H, Arimoto A et al. N-Myc induction stimulated by insulin-like growth factor I through mitogen-activated protein kinase signaling pathway in human neuroblastoma cells. Cancer Res.60(1), 64–69 (2000).
  • Wittrock J, Schweizer P, Girgert R. Induction of N-myc in neuroblastoma by autocrine IGF-II depends on farnesylated Ras. Application of farnesyltransferase inhibitors. Anticancer Res.22(6C), 4205–4209 (2002).
  • Kim CJ, Chi JG, Thiele CJ. Insulin-like growth factor-II expression is down-regulated in TrkA-transfected SK-N-AS neuroblastoma cells. Lab. Invest.79(8), 1007–1013 (1999).
  • Kim CJ, Matsuo T, Lee KH, Thiele CJ. Up-regulation of insulin-like growth factor-II expression is a feature of TrkA but not TrkB activation in SH-SY5Y neuroblastoma cells. Am. J. Pathol.155(5), 1661–1670 (1999).
  • Garcia-Echeverria C, Pearson MA, Marti A et al. In vivo antitumor activity of NVP–AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell.5(3), 231–239 (2004).
  • Mitsiades CS, Mitsiades NS, McMullan CJ et al. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell.5(3), 221–230 (2004).
  • Guerreiro AS, Boller D, Shalaby T, Grotzer MA, Arcaro A. Protein kinase B modulates the sensitivity of human neuroblastoma cells to insulin-like growth factor receptor inhibition. Int. J. Cancer119(11), 2527–2538 (2006).
  • Tanno B, Mancini C, Vitali R et al. Down-regulation of insulin-like growth factor I receptor activity by NVP-AEW541 has an antitumor effect on neuroblastoma cells in vitro and in vivo. Clin. Cancer Res.12(22), 6772–6780 (2006).
  • Meyer GE, Chesler L, Liu D et al. Nordihydroguaiaretic acid inhibits insulin-like growth factor signaling, growth, and survival in human neuroblastoma cells. J. Cell. Biochem. DOI: 10.1002/jcb.21373 (2007) (Epub ahead of print).
  • Muller HL, Oh Y, Gargosky SE, Lehrnbecher T, Hintz RL, Rosenfeld RG. Concentrations of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3), IGF, and IGFBP-3 protease activity in cerebrospinal fluid of children with leukemia, central nervous system tumor, or meningitis. J. Clin. Endocrinol. Metab.77(5), 1113–1119 (1993).
  • Muller HL, Oh Y, Lehrnbecher T, Blum WF, Rosenfeld RG. Insulin-like growth factor-binding protein-2 concentrations in cerebrospinal fluid and serum of children with malignant solid tumors or acute leukemia. J. Clin. Endocrinol. Metab.79(2), 428–434 (1994).
  • Patti R, Reddy CD, Geoerger B et al. Autocrine secreted insulin-like growth factor-I stimulates MAP kinase-dependent mitogenic effects in human primitive neuroectodermal tumor/medulloblastoma. Int. J. Oncol.16(3), 577–584 (2000).
  • Ogino S, Kubo S, Abdul-Karim FW, Cohen ML. Comparative immunohistochemical study of insulin-like growth factor II and insulin-like growth factor receptor type 1 in pediatric brain tumors. Pediatr. Dev. Pathol.4(1), 23–31 (2001).
  • Del Valle L, Enam S, Lassak A et al. Insulin-like growth factor I receptor activity in human medulloblastomas. Clin. Cancer Res.8(6), 1822–1830 (2002).
  • Wang JY, Del Valle L, Gordon J et al. Activation of the IGF-IR system contributes to malignant growth of human and mouse medulloblastomas. Oncogene20(29), 3857–3868 (2001).
  • Ye P, Xing Y, Dai Z, D’Ercole AJ. In vivo actions of insulin-like growth factor-I (IGF-I) on cerebellum development in transgenic mice: evidence that IGF-I increases proliferation of granule cell progenitors. Brain Res. Dev. Brain Res.95, 44–54 (1996).
  • Rao G, Pedone CA, Valle LD, Reiss K, Holland EC, Fults DW. Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene23(36), 6156–6162 (2004).
  • Reiss K. Insulin-like growth factor-I receptor – a potential therapeutic target in medulloblastomas. Expert Opin. Ther. Targets6(5), 539–544 (2002).
  • Urbanska K, Trojanek J, Del Valle L et al. Inhibition of IGF-I receptor in anchorage-independence attenuates GSK-3b constitutive phosphorylation and compromises growth and survival of medulloblastoma cell lines. Oncogene26(16), 2308–2317 (2007).
  • Rorke LB, Packer RJ, Biegel JA. Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood: definition of an entity. J. Neurosurg.85, 56–65 (1996).
  • Judkins AR, Mauger J, Ht A, Rorke LB, Biegel JA. Immunohistochemical analysis of hSNF5/INI1 in pediatric CNS neoplasms. Am. J. Surg. Pathol.28(5), 644–650 (2004).
  • Biegel JA, Tan L, Zhang F, Wainwright L, Russo P, Rorke LB. Alterations of the hSNF5/INI1 gene in central nervous system atypical teratoid/rhabdoid tumors and renal and extrarenal rhabdoid tumors. Clin. Cancer Res.8(11), 3461–3467 (2002).
  • Versteege I, Sevenet N, Lange J et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature394(6689), 203–206 (1998).
  • Burger PC, Yu IT, Tihan T et al. Atypical teratoid/rhabdoid tumor of the central nervous system: a highly malignant tumor of infancy and childhood frequently mistaken for medulloblastoma: a Pediatric Oncology Group study. Am. J. Surg. Pathol.22(9), 1083–1092 (1998).
  • Bambakidis NC, Robinson S, Cohen M, Cohen AR. Atypical teratoid/rhabdoid tumors of the central nervous system: clinical, radiographic and pathologic features. Pediatr. Neurosurg.37(2), 64–70 (2002).
  • Hilden JM, Meerbaum S, Burger P et al. Central nervous system atypical teratoid/rhabdoid tumor: results of therapy in children enrolled in a registry. J. Clin. Oncol.22(14), 2877–2884 (2004).
  • Tekautz TM, Fuller CE, Blaney S et al. Atypical teratoid/rhabdoid tumors (ATRT): improved survival in children 3 years of age and older with radiation therapy and high-dose alkylator-based chemotherapy. J. Clin. Oncol.23(7), 1491–1499 (2005).
  • D’Cunja J, Shalaby T, Rivera P et al. Antisense treatment of IGF-IR induces apoptosis and enhances chemosensitivity in central nervous system atypical teratoid/rhabdoid tumours cells. Eur. J. Cancer43(10), 1581–1589 (2007).
  • Arcaro A, Doepfner KT, Boller D et al. Novel role for insulin as an autocrine growth factor for malignant brain tumour cells. Biochem. J.406(1), 57–66 (2007).
  • Hayward R. The present and future management of childhood craniopharyngioma. Childs Nerv. Syst.15, 764–769 (1999).
  • Moore KD, Couldwell WT. Craniopharyngioma. In: Neuro-Oncology: The Essentials (1st Edition). Bernstein M, Berger MS (Eds). Thieme Medical Pub NY, USA 409–418 (2000).
  • Bucher H, Zapf J, Torresani T, Prader A, Froesch ER, Illig R. Insulin-like growth factors I and II, prolactin, and insulin in 19 growth hormone-deficient children with excessive, normal, or decreased longitudinal growth after operation for craniopharyngioma. N. Engl. J. Med.309(19), 1142–1146 (1983).
  • Corneli G, Baldelli R, Di Somma C et al. Occurrence of GH deficiency in adult patients who underwent neurosurgery in the hypothalamus-pituitary area for non-functioning tumour masses. Growth Horm. IGF Res.13(2–3), 104–108 (2003).
  • Pinto G, Bussieres L, Recasens C, Souberbielle JC, Zerah M, Brauner R. Hormonal factors influencing weight and growth pattern in craniopharyngioma. Horm. Res.53(4), 163–169 (2000).
  • Chung TT, Drake WM, Evanson J et al. Tumour surveillance imaging in patients with extrapituitary tumours receiving growth hormone replacement. Clin. Endocrinol. (Oxf.)63(3), 274–279 (2005).
  • Wit JM, Schuitema-Dijkstra A, van Buul-Offers S, Opmeer F, Van den Brande JL. Excessive growth in a child with craniopharyngioma and growth hormone deficiency. Eur. J. Pediatr.147(6), 658–661 (1988).
  • Zumkeller W, Saaf M, Rahn T, Hall K. Demonstration of insulin-like growth factors I, II and heterogeneous insulin-like growth factor binding proteins in the cyst fluid of patients with craniopharyngioma. Neuroendocrinology54(3), 196–201 (1991).
  • Zumkeller W, Saaf M, Rahn T. Insulin-like growth factors and IGF binding proteins in cyst fluid from patients with craniopharyngioma prior to intracavitary irradiation with Yttrium and thereafter. Clin. Mol. Pathol.49(1), M51–M56 (1996).
  • Ulfarsson E, Karstrom A, Yin S et al. Expression and growth dependency of the insulin-like growth factor I receptor in craniopharyngioma cells: a novel therapeutic approach. Clin. Cancer Res.11(13), 4674–4680 (2005).
  • Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin. Cancer Res.12(18), 5268–5272 (2006).
  • Sachdev D, Yee D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol. Cancer Ther.6(1), 1–12 (2007).
  • Laron Z. Laron-type dwarfism (hereditary somatomedin deficiency): a review. Ergeb Inn. Med. Kinderheilkd51, 117–150 (1984).
  • Rosenbloom AL, Guevara Aguirre J, Rosenfeld RG, Fielder PJ. The little women of Loja – growth hormone-receptor deficiency in an inbred population of southern Ecuador. N. Engl. J. Med.323(20), 1367–1374 (1990).
  • Wittman MD, Balasubramanian B, Stoffan K et al. Novel 1H-(benzimidazol-2-yl)-1H-pyridin-2-one inhibitors of insulin-like growth factor I (IGF-1R) kinase. Bioorg. Med. Chem. Lett.17(4), 974–977 (2007).
  • Allen GW, Saba C, Armstrong EA et al. Insulin-like growth factor-I receptor signaling blockade combined with radiation. Cancer Res.67(3), 1155–1162 (2007).
  • Tazzari PL, Tabellini G, Bortul R et al. The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion. Leukemia21(5), 886–896 (2007).
  • Doepfner KT, Spertini O, Arcaro A. Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway. Leukemia21(9), 1921–1930 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.