34
Views
6
CrossRef citations to date
0
Altmetric
Review

Roles of androgen-dependent and -independent activation of signal transduction pathways for cell proliferation of prostate cancer cells

, , , , , & show all
Pages 689-704 | Published online: 10 Jan 2014

References

  • Quigley CA, De Bellis A, Marschke KB et al. Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr. Rev.16(3), 271–321 (1995).
  • Brinkmann AO, Blok LJ, de Ruiter PE et al. Mechanisms of androgen receptor activation and function. J. Steroid Biochem. Mol. Biol.69(1–6), 307–313 (1999).
  • Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer1(1), 34–45 (2001).
  • Nelson WG, De Marzo AM, Isaacs WB. Prostate cancer. N. Engl. J. Med.349(4), 366–381 (2003).
  • Huggins C. Endocrine-induced regression of cancers. Cancer Res.27(11), 1925–1930 (1967).
  • Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials. Prostate Cancer Trialists’ Collaborative Group. Lancet355(9214), 1491–1498 (2000).
  • Schmitt B, Wilt TJ, Schellhammer PF et al. Combined androgen blockade with nonsteroidal antiandrogens for advanced prostate cancer: a systematic review. Urology57(4), 727–732 (2001).
  • Akaza H, Yamaguchi A, Matsuda T et al. Superior anti-tumor efficacy of bicalutamide 80 mg in combination with a luteinizing hormone-releasing hormone (LHRH) agonist versus LHRH agonist monotherapy as first-line treatment for advanced prostate cancer: interim results of a randomized study in Japanese patients. Jpn. J. Clin. Oncol.34(1), 20–28 (2004).
  • Kolvenbag GJ, Furr BJ. Relative potency of bicalutamide (Casodex) and flutamide (Eulexin). Urology54(1), 194–197 (1999).
  • Ruijter E, van de Kaa C, Miller G et al. Molecular genetics and epidemiology of prostate carcinoma. Endocr. Rev.20(1), 22–45 (1999).
  • Hyytinen ER, Thalmann GN, Zhau HE et al. Genetic changes associated with the acquisition of androgen-independent growth, tumorigenicity and metastatic potential in a prostate cancer model. Br. J. Cancer75(2), 190–195 (1997).
  • Agoulnik IU, Weigel NL. Androgen receptor action in hormone-dependent and recurrent prostate cancer. J. Cell. Biochem.99(2), 362–372 (2006).
  • Tilley WD, Buchanan G, Hickey TE, Bentel JM. Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin Cancer Res.2(2), 277–285 (1996).
  • Taplin ME, Rajeshkumar B, Halabi S et al. Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J. Clin. Oncol.21(14), 2673–2678 (2003).
  • Gaddipati JP, McLeod DG, Heidenberg HB et al. Frequent detection of codon 877 mutation in the androgen receptor gene in advanced prostate cancers. Cancer Res.54(11), 2861–2864 (1994).
  • Takahashi H, Furusato M, Allsbrook WC Jr et al. Prevalence of androgen receptor gene mutations in latent prostatic carcinomas from Japanese men. Cancer Res.55(8), 1621–1624 (1995).
  • Taplin ME, Bubley GJ, Shuster TD et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med.332(21), 1393–1398 (1995).
  • Suzuki H, Akakura K, Komiya A et al. Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: relation to antiandrogen withdrawal syndrome. Prostate29(3), 153–158 (1996).
  • Watanabe M, Ushijima T, Shiraishi T et al. Genetic alterations of androgen receptor gene in Japanese human prostate cancer. Jpn. J. Clin. Oncol.27(6), 389–393 (1997).
  • Taplin ME, Bubley GJ, Ko YJ et al. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res.59(11), 2511–2515 (1999).
  • Marcelli M, Ittmann M, Mariani S et al. Androgen receptor mutations in prostate cancer. Cancer Res.60(4), 944–949 (2000).
  • Haapala K, Hyytinen ER, Roiha M et al. Androgen receptor alterations in prostate cancer relapsed during a combined androgen blockade by orchiectomy and bicalutamide. Lab. Invest.81(12), 1647–1651 (2001).
  • Chen G, Wang X, Zhang S et al. Androgen receptor mutants detected in recurrent prostate cancer exhibit diverse functional characteristics. Prostate63(4), 395–406 (2005).
  • Sanchez D, Rosell D, Honorato B et al. Androgen receptor mutations are associated with Gleason score in localized prostate cancer. BJU Int.98(6), 1320–1325 (2006).
  • Taplin ME, Balk SP. Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J. Cell. Biochem.91(3), 483–490 (2004).
  • Pilat MJ, Kamradt JM, Pienta KJ. Hormone resistance in prostate cancer. Cancer Metastasis Rev.17(4), 373–381 (1998).
  • Lindzey J, Kumar MV, Grossman M, Young C, Tindall DJ. Molecular mechanisms of androgen action. Vitam. Horm.49, 383–432 (1994).
  • Fenton MA, Shuster TD, Fertig AM et al. Functional characterization of mutant androgen receptors from androgen-independent prostate cancer. Clin Cancer Res.3(8), 1383–1388 (1997).
  • Zhao XY, Malloy PJ, Krishnan AV et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat. Med.6(6), 703–706 (2000).
  • Culig Z, Hobisch A, Cronauer MV et al. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol. Endocrinol.7(12), 1541–1550 (1993).
  • Duff J, McEwan IJ. Mutation of histidine 874 in the androgen receptor ligand-binding domain leads to promiscuous ligand activation and altered p160 coactivator interactions. Mol. Endocrinol.19(12), 2943–2954 (2005).
  • Ceraline J, Cruchant MD, Erdmann E et al. Constitutive activation of the androgen receptor by a point mutation in the hinge region: a new mechanism for androgen-independent growth in prostate cancer. Int. J. Cancer108(1), 152–157 (2004).
  • Horoszewicz JS, Leong SS, Kawinski E et al. LNCaP model of human prostatic carcinoma. Cancer Res.43(4), 1809–1818 (1983).
  • Veldscholte J, Ris-Stalpers C, Kuiper GG et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun.173(2), 534–540 (1990).
  • Yoshida T, Kinoshita H, Segawa T et al. Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient. Cancer Res.65(21), 9611–9616 (2005).
  • Hara T, Miyazaki J, Araki H et al. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res.63(1), 149–153 (2003).
  • Marhefka CA, Moore BM 2nd, Bishop TC et al. Homology modeling using multiple molecular dynamics simulations and docking studies of the human androgen receptor ligand binding domain bound to testosterone and nonsteroidal ligands. J. Med. Chem.44(11), 1729–1740 (2001).
  • Bohl CE, Chang C, Mohler ML et al. A ligand-based approach to identify quantitative structure–activity relationships for the androgen receptor. J. Med. Chem.47(15), 3765–3776 (2004).
  • Soderholm AA, Lehtovuori PT, Nyronen TH. Three-dimensional structure–activity relationships of nonsteroidal ligands in complex with androgen receptor ligand-binding domain. J. Med. Chem.48(4), 917–925 (2005).
  • Sack JS, Kish KF, Wang C et al. Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc. Natl Acad. Sci. USA98(9), 4904–4909 (2001).
  • Bohl CE, Gao W, Miller DD, Bell CE, Dalton JT. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc. Natl Acad. Sci. USA102(17), 6201–6206 (2005).
  • Kelly WK, Scher HI. Prostate specific antigen decline after antiandrogen withdrawal: the flutamide withdrawal syndrome. J. Urol.149(3), 607–609 (1993).
  • Miyamoto H, Rahman MM, Chang C. Molecular basis for the antiandrogen withdrawal syndrome. J. Cell. Biochem.91(1), 3–12 (2004).
  • Kojima S, Suzuki H, Akakura K et al. Alternative antiandrogens to treat prostate cancer relapse after initial hormone therapy. J. Urol.171(2 Pt 1), 679–683 (2004).
  • Miyake H, Hara I, Eto H. Clinical outcome of maximum androgen blockade using flutamide as second-line hormonal therapy for hormone-refractory prostate cancer. BJU Int.96(6), 791–795 (2005).
  • Sun M, Yang L, Feldman RI et al. Activation of phosphatidylinositol 3-kinase/Akt pathway by androgen through interaction of p85α, androgen receptor, and Src. J. Biol. Chem.278(44), 42992–43000 (2003).
  • Baron S, Manin M, Beaudoin C et al. Androgen receptor mediates non-genomic activation of phosphatidylinositol 3-OH kinase in androgen-sensitive epithelial cells. J. Biol. Chem.279(15), 14579–14586 (2004).
  • Migliaccio A, Castoria G, Di Domenico M et al. Steroid-induced androgen receptor-oestradiol receptor β-Src complex triggers prostate cancer cell proliferation. EMBO J.19(20), 5406–5417 (2000).
  • Castoria G, Lombardi M, Barone MV et al. Rapid signalling pathway activation by androgens in epithelial and stromal cells. Steroids69(8–9), 517–522 (2004).
  • Migliaccio A, Varricchio L, De Falco A et al. Inhibition of the SH3 domain-mediated binding of Src to the androgen receptor and its effect on tumor growth. Oncogene DOI: 10.1038/sj.onc.1210487 (Epub ahead of print) (2007).
  • Kousteni S, Bellido T, Plotkin LI et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell104(5), 719–730 (2001).
  • Zhoul J, Hernandez G, Tu SW et al. The role of DOC-2/DAB2 in modulating androgen receptor-mediated cell growth via the nongenomic c-Src-mediated pathway in normal prostatic epithelium and cancer. Cancer Res.65(21), 9906–9913 (2005).
  • Xia W, Unger P, Miller L, Nelson J, Gelman IH. The Src-suppressed C kinase substrate, SSeCKS, is a potential metastasis inhibitor in prostate cancer. Cancer Res.61(14), 5644–5651 (2001).
  • Lin X, Gelman IH. Reexpression of the major protein kinase C substrate, SSeCKS, suppresses v-src-induced morphological transformation and tumorigenesis. Cancer Res.57(11), 2304–2312 (1997).
  • Unni E, Sun S, Nan B et al. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Cancer Res.64(19), 7156–7168 (2004).
  • Abreu-Martin MT, Chari A, Palladino AA, Craft NA, Sawyers CL. Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer. Mol. Cell. Biol.19(7), 5143–5154 (1999).
  • Bakin RE, Gioeli D, Sikes RA, Bissonette EA, Weber MJ. Constitutive activation of the Ras/mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells. Cancer Res.63(8), 1981–1989 (2003).
  • Nam S, Kim D, Cheng JQ et al. Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells. Cancer Res.65(20), 9185–9189 (2005).
  • Guo Z, Dai B, Jiang T et al. Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell10(4), 309–319 (2006).
  • Lu ML, Schneider MC, Zheng Y, Zhang X, Richie JP. Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation. J. Biol. Chem.276(16), 13442–13451 (2001).
  • Freeman MR, Cinar B, Lu ML. Membrane rafts as potential sites of nongenomic hormonal signaling in prostate cancer. Trends Endocrinol. Metab.16(6), 273–279 (2005).
  • Lieberherr M, Grosse B. Androgens increase intracellular calcium concentration and inositol 1,4,5-trisphosphate and diacylglycerol formation via a pertussis toxin-sensitive G-protein. J. Biol. Chem.269(10), 7217–7223 (1994).
  • Benten WP, Lieberherr M, Giese G et al. Functional testosterone receptors in plasma membranes of T-cells. FASEB J.13(1), 123–133 (1999).
  • Benten WP, Lieberherr M, Stamm O et al. Testosterone signaling through internalizable surface receptors in androgen receptor-free macrophages. Mol. Biol. Cell.10(10), 3113–3123 (1999).
  • Gorczynska E, Handelsman DJ. Androgens rapidly increase the cytosolic calcium concentration in Sertoli cells. Endocrinology136(5), 2052–2059 (1995).
  • Lyng FM, Jones GR, Rommerts FF. Rapid androgen actions on calcium signaling in rat sertoli cells and two human prostatic cell lines: similar biphasic responses between 1 picomolar and 100 nanomolar concentrations. Biol. Reprod.63(3), 736–747 (2000).
  • Kampa M, Papakonstanti EA, Hatzoglou A et al. The human prostate cancer cell line LNCaP bears functional membrane testosterone receptors that increase PSA secretion and modify actin cytoskeleton. FASEB J.16(11), 1429–1431 (2002).
  • Stathopoulos EN, Dambaki C, Kampa M et al. Membrane androgen binding sites are preferentially expressed in human prostate carcinoma cells. BMC Clin. Pathol.3, 1 (2003).
  • Zhu Y, Bond J, Thomas P. Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc. Natl Acad. Sci. USA100(5), 2237–2242 (2003).
  • Zhu Y, Rice CD, Pang Y, Pace M, Thomas P. Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc. Natl Acad. Sci. USA100(5), 2231–2236 (2003).
  • Li J, Yen C, Liaw D et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science275(5308), 1943–1947 (1997).
  • Liaw D, Marsh DJ, Li J et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet.16(1), 64–67 (1997).
  • Steck PA, Pershouse MA, Jasser SA et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet.15(4), 356–362 (1997).
  • Stambolic V, Suzuki A, de la Pompa JL et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell95(1), 29–39 (1998).
  • Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP. Pten is essential for embryonic development and tumour suppression. Nat. Genet.19(4), 348–355 (1998).
  • Podsypanina K, Ellenson LH, Nemes A et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl Acad. Sci. USA96(4), 1563–1568 (1999).
  • Abate-Shen C, Banach-Petrosky WA, Sun X et al. Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Res.63(14), 3886–3890 (2003).
  • Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat. Genet.27(2), 222–224 (2001).
  • Wang S, Gao J, Lei Q et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell4(3), 209–221 (2003).
  • Suzuki H, Freije D, Nusskern DR et al. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res.58(2), 204–209 (1998).
  • Dong JT, Li CL, Sipe TW, Frierson HF Jr. Mutations of PTEN/MMAC1 in primary prostate cancers from Chinese patients. Clin Cancer Res.7(2), 304–308 (2001).
  • Wang SI, Parsons R, Ittmann M. Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res.4(3), 811–815 (1998).
  • Barber DF, Alvarado-Kristensson M, Gonzalez-Garcia A, Pulido R, Carrera AC. PTEN regulation, a novel function for the p85 subunit of phosphoinositide 3-kinase. Sci. STKE2006(362), pe49 (2006).
  • Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat. Rev. Cancer2(7), 489–501 (2002).
  • Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ. Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J. Biol. Chem.276(42), 38349–38352 (2001).
  • Cho H, Mu J, Kim JK et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB β). Science292(5522), 1728–1731 (2001).
  • Easton RM, Cho H, Roovers K et al. Role for Akt3/protein kinase Bgamma in attainment of normal brain size. Mol. Cell. Biol.25(5), 1869–1878 (2005).
  • Bellacosa A, Kumar CC, Di Cristofano A, Testa JR. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv. Cancer Res.94, 29–86 (2005).
  • Majumder PK, Yeh JJ, George DJ et al. Prostate intraepithelial neoplasia induced by prostate restricted Akt activation: the MPAKT model. Proc. Natl Acad. Sci. USA100(13), 7841–7846 (2003).
  • Malik SN, Brattain M, Ghosh PM et al. Immunohistochemical demonstration of phospho-Akt in high Gleason grade prostate cancer. Clin. Cancer Res.8(4), 1168–1171 (2002).
  • Liao Y, Grobholz R, Abel U et al. Increase of AKT/PKB expression correlates with Gleason pattern in human prostate cancer. Int. J. Cancer107(4), 676–680 (2003).
  • Ayala G, Thompson T, Yang G et al. High levels of phosphorylated form of Akt-1 in prostate cancer and non-neoplastic prostate tissues are strong predictors of biochemical recurrence. Clin. Cancer Res.10(19), 6572–6578 (2004).
  • Kreisberg JI, Malik SN, Prihoda TJ et al. Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical outcome in prostate cancer. Cancer Res.64(15), 5232–5236 (2004).
  • Shimizu Y, Segawa T, Inoue T et al. Increased Akt and phospho-Akt expression are associated with malignant biological features of prostate cancer in the Japanese population. BJU Int.100(3), 685–690 (2007).
  • Le Page C, Koumakpayi IH, Alam-Fahmy M, Mes-Masson AM, Saad F. Expression and localisation of Akt-1, Akt-2 and Akt-3 correlate with clinical outcome of prostate cancer patients. Br. J. Cancer94(12), 1906–1912 (2006).
  • Irie HY, Pearline RV, Grueneberg D et al. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition. J. Cell Biol.171(6), 1023–1034 (2005).
  • Cristiano BE, Chan JC, Hannan KM et al. A specific role for AKT3 in the genesis of ovarian cancer through modulation of G(2)-M phase transition. Cancer Res.66(24), 11718–11725 (2006).
  • Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr. Rev.25(2), 276–308 (2004).
  • Wen Y, Hu MC, Makino K et al. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res.60(24), 6841–6845 (2000).
  • Lin HK, Yeh S, Kang HY, Chang C. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc. Natl Acad. Sci. USA98(13), 7200–7205 (2001).
  • Lin HK, Hu YC, Yang L et al. Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer LNCaP cells with different passage numbers. J. Biol. Chem.278(51), 50902–50907 (2003).
  • Trotman LC, Wang X, Alimonti A et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell128(1), 141–156 (2007).
  • Wang X, Trotman LC, Koppie T et al. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell128(1), 129–139 (2007).
  • Shen WH, Balajee AS, Wang J et al. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell128(1), 157–170 (2007).
  • Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science258(5082), 607–614 (1992).
  • Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J.9(7), 484–496 (1995).
  • Koivunen J, Aaltonen V, Peltonen J. Protein kinase C (PKC) family in cancer progression. Cancer Lett.235(1), 1–10 (2006).
  • Goueli SA. Differential regulation of prostatic protein kinase C isozymes by androgens. FEBS Lett.264(1), 53–55 (1990).
  • Montalvo L, Carmena MJ, Bolanos O et al. Effects of the antiandrogen flutamide on the expression of protein kinase C isoenzymes in LNCaP and PC3 human prostate cancer cells. Biosci. Rep.24(1), 11–21 (2004).
  • Cornford P, Evans J, Dodson A et al. Protein kinase C isoenzyme patterns characteristically modulated in early prostate cancer. Am. J. Pathol.154(1), 137–144 (1999).
  • Wu D, Foreman TL, Gregory CW et al. Protein kinase cepsilon has the potential to advance the recurrence of human prostate cancer. Cancer Res.62(8), 2423–2429 (2002).
  • Wu D, Terrian DM. Regulation of caveolin-1 expression and secretion by a protein kinase cepsilon signaling pathway in human prostate cancer cells. J. Biol. Chem.277(43), 40449–40455 (2002).
  • Gavrielides MV, Gonzalez-Guerrico AM, Riobo NA, Kazanietz MG. Androgens regulate protein kinase Cδ transcription and modulate its apoptotic function in prostate cancer cells. Cancer Res.66(24), 11792–11801 (2006).
  • Berra E, Diaz-Meco MT, Dominguez I et al. Protein kinase Cζ isoform is critical for mitogenic signal transduction. Cell74(3), 555–563 (1993).
  • Moscat J, Diaz-Meco MT. The atypical protein kinase Cs. Functional specificity mediated by specific protein adapters. EMBO Rep.1(5), 399–403 (2000).
  • Lin D, Edwards AS, Fawcett JP et al. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat. Cell Biol.2(8), 540–547 (2000).
  • Joberty G, Petersen C, Gao L, Macara IG. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat. Cell Biol.2(8), 531–539 (2000).
  • Qiu RG, Abo A, Steven Martin G. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCζ signaling and cell transformation. Curr. Biol.10(12), 697–707 (2000).
  • Etienne-Manneville S, Hall A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ. Cell106(4), 489–498 (2001).
  • Hirai T, Chida K. Protein kinase Cζ (PKCζ): activation mechanisms and cellular functions. J. Biochem.133(1), 1–7 (2003).
  • Garcia-Cao I, Duran A, Collado M et al. Tumour-suppression activity of the proapoptotic regulator Par4. EMBO Rep.6(6), 577–583 (2005).
  • Sells SF, Wood DP Jr, Joshi-Barve SS et al. Commonality of the gene programs induced by effectors of apoptosis in androgen-dependent and -independent prostate cells. Cell Growth Differ.5(4), 457–466 (1994).
  • El-Guendy N, Rangnekar VM. Apoptosis by Par-4 in cancer and neurodegenerative diseases. Exp. Cell Res.283(1), 51–66 (2003).
  • Barradas M, Monjas A, Diaz-Meco MT, Serrano M, Moscat J. The downregulation of the pro-apoptotic protein Par-4 is critical for Ras-induced survival and tumor progression. EMBO J.18(22), 6362–6369 (1999).
  • Berra E, Municio MM, Sanz L et al. Positioning atypical protein kinase C isoforms in the UV-induced apoptotic signaling cascade. Mol. Cell. Biol.17(8), 4346–4354 (1997).
  • Ghosh PM, Bedolla R, Mikhailova M, Kreisberg JI. RhoA-dependent murine prostate cancer cell proliferation and apoptosis: role of protein kinase Cζ. Cancer Res.62(9), 2630–2636 (2002).
  • Powell CT, Fair WR, Heston WD. Differential expression of protein kinase C isozyme messenger RNAs in dunning R-3327 rat prostatic tumors. Cell Growth Differ.5(2), 143–149 (1994).
  • Powell CT, Gschwend JE, Fair WR et al. Overexpression of protein kinase C-ζ (PKC-ζ) inhibits invasive and metastatic abilities of Dunning R-3327 MAT-LyLu rat prostate cancer cells. Cancer Res.56(18), 4137–4141 (1996).
  • Inoue T, Yoshida T, Shimizu Y et al. Requirement of androgen-dependent activation of protein kinase Cζ for androgen-dependent cell proliferation in LNCaP cells and its roles in transition to androgen-independent cells. Mol. Endocrinol.20(12), 3053–3069 (2006).
  • Djakiew D. Dysregulated expression of growth factors and their receptors in the development of prostate cancer. Prostate42(2), 150–160 (2000).
  • Nazareth LV, Weigel NL. Activation of the human androgen receptor through a protein kinase A signaling pathway. J. Biol. Chem.271(33), 19900–19907 (1996).
  • Sadar MD. Androgen-independent induction of prostate-specific antigen gene expression via cross-talk between the androgen receptor and protein kinase A signal transduction pathways. J. Biol. Chem.274(12), 7777–7783 (1999).
  • Faus H, Haendler B. Post-translational modifications of steroid receptors. Biomed. Pharmacother.60(9), 520–528 (2006).
  • Kato S, Endoh H, Masuhiro Y et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science270(5241), 1491–1494 (1995).
  • Joel PB, Smith J, Sturgill TW et al. pp90rsk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Mol. Cell. Biol.18(4), 1978–1984 (1998).
  • Zhang Y, Beck CA, Poletti A, Edwards DP, Weigel NL. Identification of phosphorylation sites unique to the B form of human progesterone receptor. In vitro phosphorylation by casein kinase II. J. Biol. Chem.269(49), 31034–31040 (1994).
  • Rochette-Egly C. Nuclear receptors: integration of multiple signalling pathways through phosphorylation. Cell. Signal.15(4), 355–366 (2003).
  • Zhou ZX, Kemppainen JA, Wilson EM. Identification of three proline-directed phosphorylation sites in the human androgen receptor. Mol. Endocrinol.9(5), 605–615 (1995).
  • Gioeli D, Ficarro SB, Kwiek JJ et al. Androgen receptor phosphorylation. Regulation and identification of the phosphorylation sites. J. Biol. Chem.277(32), 29304–29314 (2002).
  • Wong HY, Burghoorn JA, Van Leeuwen M et al. Phosphorylation of androgen receptor isoforms. Biochem. J.383(2), 267–276 (2004).
  • Taneja SS, Ha S, Swenson NK et al. Cell-specific regulation of androgen receptor phosphorylation in vivo. J. Biol. Chem.280(49), 40916–40924 (2005).
  • Yeh S, Lin HK, Kang HY et al. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc. Natl Acad. Sci. USA96(10), 5458–5463 (1999).
  • Gioeli D, Black BE, Gordon V et al. Stress kinase signaling regulates androgen receptor phosphorylation, transcription, and localization. Mol. Endocrinol.20(3), 503–515 (2006).
  • Jenster G, de Ruiter PE, van der Korput HA et al. Changes in the abundance of androgen receptor isotypes: effects of ligand treatment, glutamine-stretch variation, and mutation of putative phosphorylation sites. Biochemistry33(47), 14064–14072 (1994).
  • Debes JD, Sebo TJ, Lohse CM et al. p300 in prostate cancer proliferation and progression. Cancer Res.63(22), 7638–7640 (2003).
  • Zhou HJ, Yan J, Luo W et al. SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res.65(17), 7976–7983 (2005).
  • Comuzzi B, Nemes C, Schmidt S et al. The androgen receptor co-activator CBP is up-regulated following androgen withdrawal and is highly expressed in advanced prostate cancer. J. Pathol.204(2), 159–166 (2004).
  • Wu RC, Qin J, Yi P et al. Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways. Mol. Cell15(6), 937–949 (2004).
  • Ueda T, Bruchovsky N, Sadar MD. Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J. Biol. Chem.277(9), 7076–7085 (2002).
  • Gregory CW, Fei X, Ponguta LA et al. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J. Biol. Chem.279(8), 7119–7130 (2004).
  • Wang X, Yang Y, Guo X et al. Suppression of androgen receptor transactivation by Pyk2 via interaction and phosphorylation of the ARA55 coregulator. J. Biol. Chem.277(18), 15426–15431 (2002).
  • Bubulya A, Wise SC, Shen XQ, Burmeister LA, Shemshedini L. c-Jun can mediate androgen receptor-induced transactivation. J. Biol. Chem.271(40), 24583–24589 (1996).
  • Wang G, Sadar MD. Amino-terminus domain of the androgen receptor as a molecular target to prevent the hormonal progression of prostate cancer. J. Cell. Biochem.98(1), 36–53 (2006).
  • Smith CL, O’Malley BW. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr. Rev.25(1), 45–71 (2004).
  • Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int. J. Cancer120(4), 719–733 (2007).
  • Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer5(5), 341–354 (2005).
  • Garrett TP, McKern NM, Lou M et al. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol. Cell11(2), 495–505 (2003).
  • Cho HS, Mason K, Ramyar KX et al. Structure of the extracellular region of HER2 alone and in complex with the herceptin Fab. Nature421(6924), 756–760 (2003).
  • Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J.16(7), 1647–1655 (1997).
  • Slamon DJ, Clark GM, Wong SG et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science235(4785), 177–182 (1987).
  • Signoretti S, Montironi R, Manola J et al. Her-2-neu expression and progression toward androgen independence in human prostate cancer. J. Natl Cancer Inst.92(23), 1918–1925 (2000).
  • Osman I, Scher HI, Drobnjak M et al. HER-2/neu (p185neu) protein expression in the natural or treated history of prostate cancer. Clin. Cancer Res.7(9), 2643–2647 (2001).
  • Lara PN Jr, Chee KG, Longmate J et al. Trastuzumab plus docetaxel in HER-2/neu-positive prostate carcinoma: final results from the California Cancer Consortium Screening and Phase II Trial. Cancer100(10), 2125–2131 (2004).
  • Calvo BF, Levine AM, Marcos M et al. Human epidermal receptor-2 expression in prostate cancer. Clin. Cancer Res.9(3), 1087–1097 (2003).
  • Savinainen KJ, Saramaki OR, Linja MJ et al. Expression and gene copy number analysis of ERBB2 oncogene in prostate cancer. Am. J. Pathol.160(1), 339–345 (2002).
  • Craft N, Shostak Y, Carey M, Sawyers CL. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat. Med.5(3), 280–285 (1999).
  • Ziada A, Barqawi A, Glode LM et al. The use of trastuzumab in the treatment of hormone refractory prostate cancer; Phase II trial. Prostate60(4), 332–337 (2004).
  • Canil CM, Moore MJ, Winquist E et al. Randomized phase II study of two doses of gefitinib in hormone-refractory prostate cancer: a trial of the National Cancer Institute of Canada-Clinical Trials Group. J. Clin. Oncol.23(3), 455–460 (2005).
  • Mellinghoff IK, Vivanco I, Kwon A et al. HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell6(5), 517–527 (2004).
  • Agus DB, Scher HI, Higgins B et al. Response of prostate cancer to anti-Her-2/neu antibody in androgen-dependent and -independent human xenograft models. Cancer Res.59(19), 4761–4764 (1999).
  • Agus DB, Akita RW, Fox WD et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell2(2), 127–137 (2002).
  • de Bono JS, Bellmunt J, Attard G et al. Open-label Phase II study evaluating the efficacy and safety of two doses of pertuzumab in castrate chemotherapy-naive patients with hormone-refractory prostate cancer. J. Clin. Oncol.25(3), 257–262 (2007).
  • Solit DB, Rosen N. Targeting HER-2 in prostate cancer: where to next? J. Clin. Oncol.25(3), 241–243 (2007).
  • Mellinghoff IK, Cloughesy TF, Mischel PS. PTEN-mediated resistance to epidermal growth factor receptor kinase inhibitors. Clin. Cancer Res.13(2), 378–381 (2007).
  • Pietras K, Sjoblom T, Rubin K, Heldin CH, Ostman A. PDGF receptors as cancer drug targets. Cancer Cell3(5), 439–443 (2003).
  • Tallquist M, Kazlauskas A. PDGF signaling in cells and mice. Cytokine Growth Factor Rev.15(4), 205–213 (2004).
  • Fudge K, Wang CY, Stearns ME. Immunohistochemistry analysis of platelet-derived growth factor A and B chains and platelet-derived growth factor α and β receptor expression in benign prostatic hyperplasias and Gleason-graded human prostate adenocarcinomas. Mod. Pathol.7(5), 549–554 (1994).
  • Fudge K, Bostwick DG, Stearns ME. Platelet-derived growth factor A and B chains and the α and β receptors in prostatic intraepithelial neoplasia. Prostate29(5), 282–286 (1996).
  • Uehara H, Kim SJ, Karashima T et al. Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases. J. Natl Cancer Inst.95(6), 458–470 (2003).
  • Kim SJ, Uehara H, Yazici S et al. Targeting platelet-derived growth factor receptor on endothelial cells of multidrug-resistant prostate cancer. J. Natl Cancer Inst.98(11), 783–793 (2006).
  • Salzberg M, Rochlitz C, Morant R et al. An open-label, noncomparative Phase II trial to evaluate the efficacy and safety of docetaxel in combination with gefitinib in patients with hormone-refractory metastatic prostate cancer. Onkologie30(7), 355–360 (2007).
  • Wilding G, Soulie P, Trump D, Das-Gupta A, Small E. Results from a pilot Phase I trial of gefitinib combined with docetaxel and estramustine in patients with hormone-refractory prostate cancer. Cancer106(9), 1917–1924 (2006).
  • Liao X, Tang S, Thrasher JB, Griebling TL, Li B. Small-interfering RNA-induced androgen receptor silencing leads to apoptotic cell death in prostate cancer. Mol. Cancer Ther.4(4), 505–515 (2005).
  • Yang Q, Fung KM, Day WV, Kropp BP, Lin HK. Androgen receptor signaling is required for androgen-sensitive human prostate cancer cell proliferation and survival. Cancer Cell Int.5(1), 8 (2005).
  • Chen CD, Welsbie DS, Tran C et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med.10(1), 33–39 (2004).
  • Wright ME, Tsai MJ, Aebersold R. Androgen receptor represses the neuroendocrine transdifferentiation process in prostate cancer cells. Mol. Endocrinol.17(9), 1726–1737 (2003).
  • Haag P, Bektic J, Bartsch G, Klocker H, Eder IE. Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen independent prostate cancer cells. J. Steroid Biochem. Mol. Biol.96(3–4), 251–258 (2005).
  • Cheng H, Snoek R, Ghaidi F, Cox ME, Rennie PS. Short hairpin RNA knockdown of the androgen receptor attenuates ligand-independent activation and delays tumor progression. Cancer Res.66(21), 10613–10620 (2006).
  • Miyake H, Nelson C, Rennie PS, Gleave ME. Testosterone-repressed prostate message-2 is an antiapoptotic gene involved in progression to androgen independence in prostate cancer. Cancer Res.60(1), 170–176 (2000).
  • Chi KN, Eisenhauer E, Fazli L et al. A Phase I pharmacokinetic and pharmacodynamic study of OGX-011, a 2’-methoxyethyl antisense oligonucleotide to clusterin, in patients with localized prostate cancer. J. Natl Cancer Inst.97(17), 1287–1296 (2005).
  • Gleave M, Nelson C, Chi K. Antisense targets to enhance hormone and cytotoxic therapies in advanced prostate cancer. Curr. Drug Targets4(3), 209–221 (2003).
  • Chi KN, Gleave ME. Antisense approaches in prostate cancer. Expert Opin. Biol. Ther.4(6), 927–936 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.